Apparently it is recommended to force include precompiled headers, so that the source may be used with and without precompiled headers. Even CMake uses the force include method on precompiled headers.
However for example Microsofts MSVC documentation says:
The compiler treats all code occurring before the .h file as precompiled. It skips to just beyond the #include directive associated with the .h file, uses the code contained in the .pch file, and then compiles all code after filename.
and for the /FIoption the documentation says:
This option has the same effect as specifying the file with double quotation marks in an #include directive on the first line of every source file specified on the command line, in the CL environment variable, or in a command file.
So to summarize this: All includes that are above/before an include directive of a corresponding precompiled header, will be precompiled into the PCH file. Force-including that file will put this in the first line of a file.
My question now is: How does this work together? Is there some special logic for PCH files during build process or am I missing something?
Update: I checked the gcc documentation as well and it looks like that gcc searches for precompiled headers for each include directive it finds and uses precompiled headers if possible. So do I understand it correctly that MSVC kind of summarizes all includes before (including the header itself) an include that should be used to generate a precompiled header, where gcc instead generates a precompiled header for that specific header?
If that's right it arises the question: Is gcc really way more flexible regarding preocmpiled header usage and how easy it is to gain a performance boost during compilation out of it?
First of all i want to say that I read about precompiled headers and I understand that this is an optimization that saves me the time of compiling headers over and over on every built.
I'm reading the documentation of boost and I see that in the instructions they say:
In Configuration Properties > C/C++ > Precompiled Headers, change Use Precompiled Header (/Yu) to Not Using Precompiled Headers
And then they explain it:
There's no problem using Boost with precompiled headers; these instructions merely avoid precompiled headers because it would require Visual Studio-specific changes to the source code used in the examples.
Can some explain me the sentence I marked in bold? which visual studio specific changes they are talking about ? (Here is the link to the documentation I'm reading: http://www.boost.org/doc/libs/1_55_0/more/getting_started/windows.html#pch)
Why and when I would want to turn off the precompiled headers?
what is the difference between "Create" and "Use" in the precompiled header options.
Originally a comment, but I may as well post it. Note: this is specific to VC++:
The bold sentence is their way of saying the samples don't follow the mantra of a unified use-this-lead-in-header-for-pch-generation model. IOW, their samples aren't PCH-friendly, but you can still use pch with boost in your projects if properly configured.
You would turn them off for a variety of reasons. Some source modules, particularly ones from 3rd-parties, don't follow the PCH model of including "the" pch-through-header at their outset. Their samples are such code (and thus the advise to turn them off for their samples). Sometimes source files require different preprocessor configurations only for this files and not all files int he project; another reason to disable PCH for those files.
You typically use a source/header pair to generate "the One"; the precompiled header image. This header file typically includes:
Any system standard lib headers used by your project
3rd-party SDK headers
Just about everything else that is NOT in active development for your project.
The single source file tagged as Create typically includes one line of code : #include "YourHeaderFile.h", where YourHeaderFile.h is the header you filled with stuff from the list above. Tagging it as "Create" through header YourHeaderFile.h tells VC it is the file needed for rebuilding the PCH through that header when compiling other source files. All other source files are tagged as Use (except the ones where PCH is turned off) and should include, as their first line of code, the same #include "TheHeaderFile.h".
In short (hard to believe), <boost> is telling you their samples aren't setup like described above, and as such you should turn PCH off when building them.
When you use pre-compiled headers, you need to do something like:
#include <foo>
#include <bar>
#include <baz>
#pragma hdrstop
// other code here
Everything before the #pragma goes into the precompiled header. Everything after it depends on the precompiled header. The VC++ specific "magic" to make pre-compiled header work is that #pragma.
There's a little more to the story than just that though. To make pre-compiled headers work well, you want to include exactly the same set of headers in exactly the same order in every source file.
That leads to (typically) creating one header that includes all the other common headers and has the #pragma hdrstop right at its end, then including that in all the other source files.
Then, when the compiler does its thing, there are two phases: first you need to create a pre-compiled header. This means running the compiler with one switch. The compiler only looks at what comes before the #pragma hdrstop, builds a symbol table (and such) and puts the data into a .pch file.
Then comes the phase when you do a build using the pre-compiled header. In this phase, the compiler simply ignores everything in the the file up to the #pragma hdrstop. When it gets to that, it reads the compiler's internal state from the .pch file, and then starts compiling that individual file.
This means each source file typically includes a lot of headers it doesn't actually need. That, in turn, means that if you don't use pre-compiled headers, you end up with compilation that's much slower than if you hadn't done anything to support pre-compiled headers at all.
In other words, although the only part that's absolutely required is the #pragma hdrstop, which is fairly innocuous, a great deal more file re-structuring is needed to get much benefit from them--and those changes are likely to actively harmful to compilation time if you're using anything that doesn't support pre-compiled headers (and in the same way VC++ does them at that).
When precompiled headers is on every cpp source file must start with #include "stdafx.h"
So you would turn it off if you do not want to edit all the boost source files.
When precompiled headers is on stdafx.cpp "creates" the precompiled header. All other files "use" the precompiled header.
how to include certain header files by default so that i don't have to type them in every programs:
In dev c++ and code::blocks
Make a global header file that in turn includes whatever files you need in every project, and then you only have to include that single file.
However I would recommend against it, unless all your different project are very similar. Different projects have different needs and also need different header files.
You could issue a compiler directive in your project file or make script to do "per project" includes, but in general I would avoid that.
Source code should be as clear as possible to any reader just by its content. Whenever I have source code that dramatically changes its semantics, eg. by headers that are unknown to me, this can be quite confusing.
On top of that, if you "inject" those headers for certain compilation units that don't need them, that will negatively impact compile time.
As a substitution, what about introducing a common.h/hpp header that includes those certain header files? You can then include your common header in all files that need them and change this common set of headers for all depending files at once. It also opens the door to use precompiled header files, which may be worth a look for you.
From GCC documentation (AFAIK GCC is default compiler used by the development environment you are citing)
-include file
Process file as if #include "file" appeared as the first line of the primary source file. However, the first directory searched for
file is the preprocessor's working directory instead of the directory
containing the main source file. If not found there, it is searched
for in the remainder of the #include "..." search chain as normal.
If multiple -include options are given, the files are included in the order they appear on the command line.
-imacros file
Exactly like -include, except that any output produced by scanning file is thrown away. Macros it defines remain defined. This allows you
to acquire all the macros from a header without also processing its
declarations.
All files specified by -imacros are processed before all files specified by -include.
But it is usually a bad idea to use these.
Dev c++ works with MingW compiler, which is gcc compiler for Windows. Gcc supports precompiled headers, so you can try that. Precompiled headers are header files that you want compiled and added to every object file in a project. Try searching for that in Google for some information.
Code::blocks supports them too, when used with gcc, even better, so there it may even be easier.
If your editor of choice supports macros, make one that adds your preferred set of include files. Once made, all you have to do is invoke your macro to save yourself the repetitive typing and you're golden.
Hope this helps.
Is there a way for the preprocessor to detect if the code in current
translation unit uses(or is creating) precompiled headers?
---
The actual problem I'm facing right now is that I'm on a project that is
abusing PCH by precompiling virtually all header files. That means there is none of
the clear dependency management you can get from #includes and the compile times is awful.
Practically every change will trigger a full rebuild.
The application is way to big to just fix it in one go, and some of the old guys refuses
to belive that precompiling everyting is bad in any way. I will have to prove it first.
So I must do it step by step and make sure my changes does not affect
code that is compiled the old PCH way.
My plan is to do ifdef out the PCH.h and work on the non PCH version whenever I have some time to spare.
#ifdef USES_PCH
#include "PCH.h"
#elif
// include only whats needed
#endif
I would like to avoid defining USES_PCH at command line and manually keep it in
sync with /Y that, besides from not being very elegant, would be a pain. There is a lot of configurations
and modules to juggle with and a lot of files that don't follow project defaults.
If Visual C++ defined a constant to indicate whether precompiled headers were in use, it would probably be listed in Predefined Macros. And it's not documented there, so it probably doesn't exist. (If it does exist, it's probably undocumented and may change in a future version.)
This will not work, when using precompiled headers in Visual C++, you cannot even have any code before including a precompiled header. I was trying to do something similar, when I came across your question. After a little trial and error, I have found that there can be no code prior to the #include directive for the precompiled header when using the /Yu compiler option.
#ifdef USES_PCH
#include "stdafx.h"
#endif
result: fatal error C1020: unexpected #endif
As far as I know, it can't, but there are some heuristics: VC++ uses StdAfx.h, Borland uses #pragma hdrstop, etc.
I am working on a large C++ project in Visual Studio 2008, and there are a lot of files with unnecessary #include directives. Sometimes the #includes are just artifacts and everything will compile fine with them removed, and in other cases classes could be forward declared and the #include could be moved to the .cpp file. Are there any good tools for detecting both of these cases?
While it won't reveal unneeded include files, Visual studio has a setting /showIncludes (right click on a .cpp file, Properties->C/C++->Advanced) that will output a tree of all included files at compile time. This can help in identifying files that shouldn't need to be included.
You can also take a look at the pimpl idiom to let you get away with fewer header file dependencies to make it easier to see the cruft that you can remove.
PC Lint works quite well for this, and it finds all sorts of other goofy problems for you too. It has command line options that can be used to create External Tools in Visual Studio, but I've found that the Visual Lint addin is easier to work with. Even the free version of Visual Lint helps. But give PC-Lint a shot. Configuring it so it doesn't give you too many warnings takes a bit of time, but you'll be amazed at what it turns up.
There's a new Clang-based tool, include-what-you-use, that aims to do this.
!!DISCLAIMER!! I work on a commercial static analysis tool (not PC Lint). !!DISCLAIMER!!
There are several issues with a simple non parsing approach:
1) Overload Sets:
It's possible that an overloaded function has declarations that come from different files. It might be that removing one header file results in a different overload being chosen rather than a compile error! The result will be a silent change in semantics that may be very difficult to track down afterwards.
2) Template specializations:
Similar to the overload example, if you have partial or explicit specializations for a template you want them all to be visible when the template is used. It might be that specializations for the primary template are in different header files. Removing the header with the specialization will not cause a compile error, but may result in undefined behaviour if that specialization would have been selected. (See: Visibility of template specialization of C++ function)
As pointed out by 'msalters', performing a full analysis of the code also allows for analysis of class usage. By checking how a class is used though a specific path of files, it is possible that the definition of the class (and therefore all of its dependnecies) can be removed completely or at least moved to a level closer to the main source in the include tree.
I don't know of any such tools, and I have thought about writing one in the past, but it turns out that this is a difficult problem to solve.
Say your source file includes a.h and b.h; a.h contains #define USE_FEATURE_X and b.h uses #ifdef USE_FEATURE_X. If #include "a.h" is commented out, your file may still compile, but may not do what you expect. Detecting this programatically is non-trivial.
Whatever tool does this would need to know your build environment as well. If a.h looks like:
#if defined( WINNT )
#define USE_FEATURE_X
#endif
Then USE_FEATURE_X is only defined if WINNT is defined, so the tool would need to know what directives are generated by the compiler itself as well as which ones are specified in the compile command rather than in a header file.
Like Timmermans, I'm not familiar with any tools for this. But I have known programmers who wrote a Perl (or Python) script to try commenting out each include line one at a time and then compile each file.
It appears that now Eric Raymond has a tool for this.
Google's cpplint.py has an "include what you use" rule (among many others), but as far as I can tell, no "include only what you use." Even so, it can be useful.
If you're interested in this topic in general, you might want to check out Lakos' Large Scale C++ Software Design. It's a bit dated, but goes into lots of "physical design" issues like finding the absolute minimum of headers that need to be included. I haven't really seen this sort of thing discussed anywhere else.
Give Include Manager a try. It integrates easily in Visual Studio and visualizes your include paths which helps you to find unnecessary stuff.
Internally it uses Graphviz but there are many more cool features. And although it is a commercial product it has a very low price.
You can build an include graph using C/C++ Include File Dependencies Watcher, and find unneeded includes visually.
If your header files generally start with
#ifndef __SOMEHEADER_H__
#define __SOMEHEADER_H__
// header contents
#endif
(as opposed to using #pragma once) you could change that to:
#ifndef __SOMEHEADER_H__
#define __SOMEHEADER_H__
// header contents
#else
#pragma message("Someheader.h superfluously included")
#endif
And since the compiler outputs the name of the cpp file being compiled, that would let you know at least which cpp file is causing the header to be brought in multiple times.
PC-Lint can indeed do this. One easy way to do this is to configure it to detect just unused include files and ignore all other issues. This is pretty straightforward - to enable just message 766 ("Header file not used in module"), just include the options -w0 +e766 on the command line.
The same approach can also be used with related messages such as 964 ("Header file not directly used in module") and 966 ("Indirectly included header file not used in module").
FWIW I wrote about this in more detail in a blog post last week at http://www.riverblade.co.uk/blog.php?archive=2008_09_01_archive.xml#3575027665614976318.
Adding one or both of the following #defines
will exclude often unnecessary header files and
may substantially improve
compile times especially if the code that is not using Windows API functions.
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
See http://support.microsoft.com/kb/166474
If you are looking to remove unnecessary #include files in order to decrease build times, your time and money might be better spent parallelizing your build process using cl.exe /MP, make -j, Xoreax IncrediBuild, distcc/icecream, etc.
Of course, if you already have a parallel build process and you're still trying to speed it up, then by all means clean up your #include directives and remove those unnecessary dependencies.
Start with each include file, and ensure that each include file only includes what is necessary to compile itself. Any include files that are then missing for the C++ files, can be added to the C++ files themselves.
For each include and source file, comment out each include file one at a time and see if it compiles.
It is also a good idea to sort the include files alphabetically, and where this is not possible, add a comment.
If you aren't already, using a precompiled header to include everything that you're not going to change (platform headers, external SDK headers, or static already completed pieces of your project) will make a huge difference in build times.
http://msdn.microsoft.com/en-us/library/szfdksca(VS.71).aspx
Also, although it may be too late for your project, organizing your project into sections and not lumping all local headers to one big main header is a good practice, although it takes a little extra work.
If you would work with Eclipse CDT you could try out http://includator.com to optimize your include structure. However, Includator might not know enough about VC++'s predefined includes and setting up CDT to use VC++ with correct includes is not built into CDT yet.
The latest Jetbrains IDE, CLion, automatically shows (in gray) the includes that are not used in the current file.
It is also possible to have the list of all the unused includes (and also functions, methods, etc...) from the IDE.
Some of the existing answers state that it's hard. That's indeed true, because you need a full compiler to detect the cases in which a forward declaration would be appropriate. You cant parse C++ without knowing what the symbols mean; the grammar is simply too ambiguous for that. You must know whether a certain name names a class (could be forward-declared) or a variable (can't). Also, you need to be namespace-aware.
Maybe a little late, but I once found a WebKit perl script that did just what you wanted. It'll need some adapting I believe (I'm not well versed in perl), but it should do the trick:
http://trac.webkit.org/browser/branches/old/safari-3-2-branch/WebKitTools/Scripts/find-extra-includes
(this is an old branch because trunk doesn't have the file anymore)
If there's a particular header that you think isn't needed anymore (say
string.h), you can comment out that include then put this below all the
includes:
#ifdef _STRING_H_
# error string.h is included indirectly
#endif
Of course your interface headers might use a different #define convention
to record their inclusion in CPP memory. Or no convention, in which case
this approach won't work.
Then rebuild. There are three possibilities:
It builds ok. string.h wasn't compile-critical, and the include for it
can be removed.
The #error trips. string.g was included indirectly somehow
You still don't know if string.h is required. If it is required, you
should directly #include it (see below).
You get some other compilation error. string.h was needed and isn't being
included indirectly, so the include was correct to begin with.
Note that depending on indirect inclusion when your .h or .c directly uses
another .h is almost certainly a bug: you are in effect promising that your
code will only require that header as long as some other header you're using
requires it, which probably isn't what you meant.
The caveats mentioned in other answers about headers that modify behavior
rather that declaring things which cause build failures apply here as well.