Related
I'm not sure how to make this function return the float in two decimal places.
float calcPrice(float a, float b, string x) {
if (x == "X") return (a - b) * 7.5;
else return (a - b) * 9.75;
}
You can't "truncate" a float.
A float does not have something like a "decimal place". what you type into your code is just convencience, the binary representation of floats is completely different: https://en.wikipedia.org/wiki/Single-precision_floating-point_format
If you want to display the float in any way, you can still format it with functions like printf (keep in mind that it is a string after the formatting, not a float).
printf("%.2f", foobar); // prints out foobar with 2 digits
It is also advised to not use floats for monetary calculations. Floats become imprecise with big(ger) numbers due to their small size (even doubles and other floating point formats will eventually run out of precision). Not to mention that floats are prone to rounding errors (again due to their limited size). These errors accumulate quite quickly.
For monetary calculations, you can use fixed point math.
With fixed point math you really do have a fixed number of decimal places and the implementation is similar to basic integer math. You simply have to take care of the carry.
See here for more info about fixed point math:
Fixed Point Arithmetic in C Programming
Comparing two floating point number by something like a_float == b_float is looking for trouble since a_float / 3.0 * 3.0 might not be equal to a_float due to round off error.
What one normally does is something like fabs(a_float - b_float) < tol.
How does one calculate tol?
Ideally tolerance should be just larger than the value of one or two of the least significant figures. So if the single precision floating point number is use tol = 10E-6 should be about right. However this does not work well for the general case where a_float might be very small or might be very large.
How does one calculate tol correctly for all general cases? I am interested in C or C++ cases specifically.
This blogpost contains an example, fairly foolproof implementation, and detailed theory behind it
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
it is also one of a series, so you can always read more.
In short: use ULP for most numbers, use epsilon for numbers near zero, but there are still caveats. If you want to be sure about your floating point math i recommend reading whole series.
As far as I know, one doesn't.
There is no general "right answer", since it can depend on the application's requirement for precision.
For instance, a 2D physics simulation working in screen-pixels might decide that 1/4 of a pixel is good enough, while a 3D CAD system used to design nuclear plant internals might not.
I can't see a way to programmatically decide this from the outside.
The C header file <float.h> gives you the constants FLT_EPSILON and DBL_EPSILON, which is the difference between 1.0 and the smallest number larger than 1.0 that a float/double can represent. You can scale that by the size of your numbers and the rounding error you wish to tolerate:
#include <float.h>
#ifndef DBL_TRUE_MIN
/* DBL_TRUE_MIN is a common non-standard extension for the minimum denorm value
* DBL_MIN is the minimum non-denorm value -- use that if TRUE_MIN is not defined */
#define DBL_TRUE_MIN DBL_MIN
#endif
/* return the difference between |x| and the next larger representable double */
double dbl_epsilon(double x) {
int exp;
if (frexp(x, &exp) == 0.0)
return DBL_TRUE_MIN;
return ldexp(DBL_EPSILON, exp-1);
}
Welcome to the world of traps, snares and loopholes. As mentioned elsewhere, a general purpose solution for floating point equality and tolerances does not exist. Given that, there are tools and axioms that a programmer may use in select cases.
fabs(a_float - b_float) < tol has the shortcoming OP mentioned: "does not work well for the general case where a_float might be very small or might be very large." fabs(a_float - ref_float) <= fabs(ref_float * tol) copes with the variant ranges much better.
OP's "single precision floating point number is use tol = 10E-6" is a bit worrisome for C and C++ so easily promote float arithmetic to double and then it's the "tolerance" of double, not float, that comes into play. Consider float f = 1.0; printf("%.20f\n", f/7.0); So many new programmers do not realize that the 7.0 caused a double precision calculation. Recommend using double though out your code except where large amounts of data need the float smaller size.
C99 provides nextafter() which can be useful in helping to gauge "tolerance". Using it, one can determine the next representable number. This will help with the OP "... the full number of significant digits for the storage type minus one ... to allow for roundoff error." if ((nextafter(x, -INF) <= y && (y <= nextafter(x, +INF))) ...
The kind of tol or "tolerance" used is often the crux of the matter. Most often (IMHO) a relative tolerance is important. e. g. "Are x and y within 0.0001%"? Sometimes an absolute tolerance is needed. e.g. "Are x and y within 0.0001"?
The value of the tolerance is often debatable for the best value is often situation dependent. Comparing within 0.01 may work for a financial application for Dollars but not Yen. (Hint: be sure to use a coding style that allows easy updates.)
Rounding error varies according to values used for operations.
Instead of a fixed tolerance, you can probably use a factor of epsilon like:
bool nearly_equal(double a, double b, int factor /* a factor of epsilon */)
{
double min_a = a - (a - std::nextafter(a, std::numeric_limits<double>::lowest())) * factor;
double max_a = a + (std::nextafter(a, std::numeric_limits<double>::max()) - a) * factor;
return min_a <= b && max_a >= b;
}
Although the value of the tolerance depends on the situation, if you are looking for precision comparasion you could used as tolerance the machine epsilon value, numeric_limits::epsilon() (Library limits). The function returns the difference between 1 and the smallest value greater than 1 that is representable for the data type.
http://msdn.microsoft.com/en-us/library/6x7575x3.aspx
The value of epsilon differs if you are comparing floats or doubles. For instance, in my computer, if comparing floats the value of epsilon is 1.1920929e-007 and if comparing doubles the value of epsilon is 2.2204460492503131e-016.
For a relative comparison between x and y, multiply the epsilon by the maximum absolute value of x and y.
The result above could be multiplied by the ulps (units in the last place) which allows you to play with the precision.
#include <iostream>
#include <cmath>
#include <limits>
template<class T> bool are_almost_equal(T x, T y, int ulp)
{
return std::abs(x-y) <= std::numeric_limits<T>::epsilon() * std::max(std::abs(x), std::abs(y)) * ulp
}
When I need to compare floats, I use code like this
bool same( double a, double b, double error ) {
double x;
if( a == 0 ) {
x = b;
} else if( b == 0 ) {
x = a;
} else {
x = (a-b) / a;
}
return fabs(x) < error;
}
Today in my C++ programming lessons, my proff told me that one should never compare two floating point values directly.
So I tried this piece of code and found out the reason for his statement.
double l_Value=94.9;
print("%.20lf",l_Value);
And I found the results as 94.89999999 ( some relative error )
I understand that floating numbers are not stored in the way one presents it to the code. Squeezing those ones and zeros in binary form involves some relative rounding errors.
Iam looking for solutions to two problems.
1. Efficient way to compare two floating values.
2. How to add a floating value to another one. Example. Add 0.1111 to 94.4345 to get the exact value as 94.5456
Thanks in advance.
Efficient way to compare two floating values.
A simple double a,b; if (a == b) is an efficient way to compare two floating values. Yet as OP noticed, this may not meet the overall coding goal. Better ways depend on the context of the compare, something not supplied by OP. See far below.
How to add a floating value to another one. Example. Add 0.1111 to 94.4345 to get the exact value as 94.5456
Floating values as source code have effective unlimited range and precision such as 1.23456789012345678901234567890e1234567. Conversion of this text to a double is limited typically to one of 264 different values. The closest is selected, but that may not be an exact match.
Neither 0.1111, 94.4345, 94.5456 can be representably exactly as a typical double.
OP has choices:
1.) Use another type other than double, float. Various libraries offer decimal floating point types.
2) Limit code to rare platforms that support double to a base 10 form such that FLT_RADIX == 10.
3) Write your own code to handle user input like "0.1111" into a structure/string and perform the needed operations.
4) Treat user input as strings and the convert to some integer type, again with supported routines to read/compute/and write.
5) Accept that floating point operations are not mathematically exact and handle round-off error.
double a = 0.1111;
printf("a: %.*e\n", DBL_DECIMAL_DIG -1 , a);
double b = 94.4345;
printf("b: %.*e\n", DBL_DECIMAL_DIG -1 , b);
double sum = a + b;
printf("sum: %.*e\n", DBL_DECIMAL_DIG -1 , sum);
printf("%.4f\n", sum);
Output
a: 1.1110000000000000e-01
b: 9.4434500000000000e+01
sum: 9.4545599999999993e+01
94.5456 // Desired textual output based on a rounded `sum` to the nearest 0.0001
More on #1
If an exact compare is not sought but some sort of "are the two values close enough?", a definition of "close enough" is needed - of which there are many.
The following "close enough" compares the distance by examining the ULP of the two numbers. It is a linear difference when the values are in the same power-of-two and becomes logarithmic other wise. Of course, change of sign is an issue.
float example:
Consider all finite float ordered from most negative to most positive. The following, somewhat-portable code, returns an integer for each float with that same order.
uint32_t sequence_f(float x) {
union {
float f;
uint32_t u32;
} u;
assert(sizeof(float) == sizeof(uint32_t));
u.f = x;
if (u.u32 & 0x80000000) {
u.u32 ^= 0x80000000;
return 0x80000000 - u.u32;
}
return u.u3
}
Now, to determine if two float are "close enough", simple compare two integers.
static bool close_enough(float x, float y, uint32_t ULP_delta) {
uint32_t ullx = sequence_f(x);
uint32_t ully = sequence_f(y);
if (ullx > ully) return (ullx - ully) <= ULP_delta;
return (ully - ullx) <= ULP_delta;
}
The way I've usually done this is is to have a custom equality comparison function. The basic idea, is you have a certain tolerance, say 0.0001 or something. Then you subtract your two numbers and take their absolute value, and if it is less than your tolerance you treat it as equal. There are other strategies that may be more appropriate for certain situations, of course.
Define for yourself a tolerance level e (for example, e=.0001) and check if abs(a-b) <= e
You aren't going to get an "exact" value with floating point. Ever. If you know in advance that you are using four decimals, and you want "exact", then you need to internally treat your numbers as integers and only display them as decimals. 944345 + 1111 = 945456
This question already has answers here:
Comparing float and double
(3 answers)
Closed 7 years ago.
According to this post, when comparing a float and a double, the float should be treated as double.
The following program, does not seem to follow this statement. The behaviour looks quite unpredictable.
Here is my program:
void main(void)
{
double a = 1.1; // 1.5
float b = 1.1; // 1.5
printf("%X %X\n", a, b);
if ( a == b)
cout << "success " <<endl;
else
cout << "fail" <<endl;
}
When I run the following program, I get "fail" displayed.
However, when I change a and b to 1.5, it displays "success".
I have also printed the hex notations of the values. They are different in both the cases. My compiler is Visual Studio 2005
Can you explain this output ? Thanks.
float f = 1.1;
double d = 1.1;
if (f == d)
In this comparison, the value of f is promoted to type double. The problem you're seeing isn't in the comparison, but in the initialization. 1.1 can't be represented exactly as a floating-point value, so the values stored in f and d are the nearest value that can be represented. But float and double are different sizes, so have a different number of significant bits. When the value in f is promoted to double, there's no way to get back the extra bits that were lost when the value was stored, so you end up with all zeros in the extra bits. Those zero bits don't match the bits in d, so the comparison is false. And the reason the comparison succeeds with 1.5 is that 1.5 can be represented exactly as a float and as a double; it has a bunch of zeros in its low bits, so when the promotion adds zeros the result is the same as the double representation.
I found a decent explanation of the problem you are experiencing as well as some solutions.
See How dangerous is it to compare floating point values?
Just a side note, remember that some values can not be represented EXACTLY in IEEE 754 floating point representation. Your same example using a value of say 1.5 would compare as you expect because there is a perfect representation of 1.5 without any loss of data. However, 1.1 in 32-bit and 64-bit are in fact different values because the IEEE 754 standard can not perfectly represent 1.1.
See http://www.binaryconvert.com
double a = 1.1 --> 0x3FF199999999999A
Approximate representation = 1.10000000000000008881784197001
float b = 1.1 --> 0x3f8ccccd
Approximate representation = 1.10000002384185791015625
As you can see, the two values are different.
Also, unless you are working in some limited memory type environment, it's somewhat pointless to use floats. Just use doubles and save yourself the headaches.
If you are not clear on why some values can not be accurately represented, consult a tutorial on how to covert a decimal to floating point.
Here's one: http://class.ece.iastate.edu/arun/CprE281_F05/ieee754/ie5.html
I would regard code which directly performs a comparison between a float and a double without a typecast to be broken; even if the language spec says that the float will be implicitly converted, there are two different ways that the comparison might sensibly be performed, and neither is sufficiently dominant to really justify a "silent" default behavior (i.e. one which compiles without generating a warning). If one wants to perform a conversion by having both operands evaluated as double, I would suggest adding an explicit type cast to make one's intentions clear. In most cases other than tests to see whether a particular double->float conversion will be reversible without loss of precision, however, I suspect that comparison between float values is probably more appropriate.
Fundamentally, when comparing floating-point values X and Y of any sort, one should regard comparisons as indicating that X or Y is larger, or that the numbers are "indistinguishable". A comparison which shows X is larger should be taken to indicate that the number that Y is supposed to represent is probably smaller than X or close to X. A comparison that says the numbers are indistinguishable means exactly that. If one views things in such fashion, comparisons performed by casting to float may not be as "informative" as those done with double, but are less likely to yield results that are just plain wrong. By comparison, consider:
double x, y;
float f = x;
If one compares f and y, it's possible that what one is interested in is how y compares with the value of x rounded to a float, but it's more likely that what one really wants to know is whether, knowing the rounded value of x, whether one can say anything about the relationship between x and y. If x is 0.1 and y is 0.2, f will have enough information to say whether x is larger than y; if y is 0.100000001, it will not. In the latter case, if both operands are cast to double, the comparison will erroneously imply that x was larger; if they are both cast to float, the comparison will report them as indistinguishable. Note that comparison results when casting both operands to double may be erroneous not only when values are within a part per million; they may be off by hundreds of orders of magnitude, such as if x=1e40 and y=1e300. Compare f and y as float and they'll compare indistinguishable; compare them as double and the smaller value will erroneously compare larger.
The reason why the rounding error occurs with 1.1 and not with 1.5 is due to the number of bits required to accurately represent a number like 0.1 in floating point format. In fact an accurate representation is not possible.
See How To Represent 0.1 In Floating Point Arithmetic And Decimal for an example, particularly the answer by #paxdiablo.
Just today I came across third-party software we're using and in their sample code there was something along these lines:
// Defined in somewhere.h
static const double BAR = 3.14;
// Code elsewhere.cpp
void foo(double d)
{
if (d == BAR)
...
}
I'm aware of the problem with floating-points and their representation, but it made me wonder if there are cases where float == float would be fine? I'm not asking for when it could work, but when it makes sense and works.
Also, what about a call like foo(BAR)? Will this always compare equal as they both use the same static const BAR?
Yes, you are guaranteed that whole numbers, including 0.0, compare with ==
Of course you have to be a little careful with how you got the whole number in the first place, assignment is safe but the result of any calculation is suspect
ps there are a set of real numbers that do have a perfect reproduction as a float (think of 1/2, 1/4 1/8 etc) but you probably don't know in advance that you have one of these.
Just to clarify. It is guaranteed by IEEE 754 that float representions of integers (whole numbers) within range, are exact.
float a=1.0;
float b=1.0;
a==b // true
But you have to be careful how you get the whole numbers
float a=1.0/3.0;
a*3.0 == 1.0 // not true !!
There are two ways to answer this question:
Are there cases where float == float gives the correct result?
Are there cases where float == float is acceptable coding?
The answer to (1) is: Yes, sometimes. But it's going to be fragile, which leads to the answer to (2): No. Don't do that. You're begging for bizarre bugs in the future.
As for a call of the form foo(BAR): In that particular case the comparison will return true, but when you are writing foo you don't know (and shouldn't depend on) how it is called. For example, calling foo(BAR) will be fine but foo(BAR * 2.0 / 2.0) (or even maybe foo(BAR * 1.0) depending on how much the compiler optimises things away) will break. You shouldn't be relying on the caller not performing any arithmetic!
Long story short, even though a == b will work in some cases you really shouldn't rely on it. Even if you can guarantee the calling semantics today maybe you won't be able to guarantee them next week so save yourself some pain and don't use ==.
To my mind, float == float is never* OK because it's pretty much unmaintainable.
*For small values of never.
The other answers explain quite well why using == for floating point numbers is dangerous. I just found one example that illustrates these dangers quite well, I believe.
On the x86 platform, you can get weird floating point results for some calculations, which are not due to rounding problems inherent to the calculations you perform. This simple C program will sometimes print "error":
#include <stdio.h>
void test(double x, double y)
{
const double y2 = x + 1.0;
if (y != y2)
printf("error\n");
}
void main()
{
const double x = .012;
const double y = x + 1.0;
test(x, y);
}
The program essentially just calculates
x = 0.012 + 1.0;
y = 0.012 + 1.0;
(only spread across two functions and with intermediate variables), but the comparison can still yield false!
The reason is that on the x86 platform, programs usually use the x87 FPU for floating point calculations. The x87 internally calculates with a higher precision than regular double, so double values need to be rounded when they are stored in memory. That means that a roundtrip x87 -> RAM -> x87 loses precision, and thus calculation results differ depending on whether intermediate results passed via RAM or whether they all stayed in FPU registers. This is of course a compiler decision, so the bug only manifests for certain compilers and optimization settings :-(.
For details see the GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
Rather scary...
Additional note:
Bugs of this kind will generally be quite tricky to debug, because the different values become the same once they hit RAM.
So if for example you extend the above program to actually print out the bit patterns of y and y2 right after comparing them, you will get the exact same value. To print the value, it has to be loaded into RAM to be passed to some print function like printf, and that will make the difference disappear...
I'll provide more-or-less real example of legitimate, meaningful and useful testing for float equality.
#include <stdio.h>
#include <math.h>
/* let's try to numerically solve a simple equation F(x)=0 */
double F(double x) {
return 2 * cos(x) - pow(1.2, x);
}
/* a well-known, simple & slow but extremely smart method to do this */
double bisection(double range_start, double range_end) {
double a = range_start;
double d = range_end - range_start;
int counter = 0;
while (a != a + d) // <-- WHOA!!
{
d /= 2.0;
if (F(a) * F(a + d) > 0) /* test for same sign */
a = a + d;
++counter;
}
printf("%d iterations done\n", counter);
return a;
}
int main() {
/* we must be sure that the root can be found in [0.0, 2.0] */
printf("F(0.0)=%.17f, F(2.0)=%.17f\n", F(0.0), F(2.0));
double x = bisection(0.0, 2.0);
printf("the root is near %.17f, F(%.17f)=%.17f\n", x, x, F(x));
}
I'd rather not explain the bisection method used itself, but emphasize on the stopping condition. It has exactly the discussed form: (a == a+d) where both sides are floats: a is our current approximation of the equation's root, and d is our current precision. Given the precondition of the algorithm — that there must be a root between range_start and range_end — we guarantee on every iteration that the root stays between a and a+d while d is halved every step, shrinking the bounds.
And then, after a number of iterations, d becomes so small that during addition with a it gets rounded to zero! That is, a+d turns out to be closer to a then to any other float; and so the FPU rounds it to the closest representable value: to a itself. Calculation on a hypothetical machine can illustrate; let it have 4-digit decimal mantissa and some large exponent range. Then what result should the machine give to 2.131e+02 + 7.000e-3? The exact answer is 213.107, but our machine can't represent such number; it has to round it. And 213.107 is much closer to 213.1 than to 213.2 — so the rounded result becomes 2.131e+02 — the little summand vanished, rounded up to zero. Exactly the same is guaranteed to happen at some iteration of our algorithm — and at that point we can't continue anymore. We have found the root to maximum possible precision.
Addendum
No you can't just use "some small number" in the stopping condition. For any choice of the number, some inputs will deem your choice too large, causing loss of precision, and there will be inputs which will deem your choiсe too small, causing excess iterations or even entering infinite loop. Imagine that our F can change — and suddenly the solutions can be both huge 1.0042e+50 and tiny 1.0098e-70. Detailed discussion follows.
Calculus has no notion of a "small number": for any real number, you can find infinitely many even smaller ones. The problem is, among those "even smaller" ones might be a root of our equation. Even worse, some equations will have distinct roots (e.g. 2.51e-8 and 1.38e-8) — both of which will get approximated by the same answer if our stopping condition looks like d < 1e-6. Whichever "small number" you choose, many roots which would've been found correctly to the maximum precision with a == a+d — will get spoiled by the "epsilon" being too large.
It's true however that floats' exponent has finite limited range, so one actually can find the smallest nonzero positive FP number; in IEEE 754 single precision, it's the 1e-45 denorm. But it's useless! while (d >= 1e-45) {…} will loop forever with single-precision (positive nonzero) d.
At the same time, any choice of the "small number" in d < eps stopping condition will be too small for many equations. Where the root has high enough exponent, the result of subtraction of two neighboring mantissas will easily exceed our "epsilon". For example, 7.00023e+8 - 7.00022e+8 = 0.00001e+8 = 1.00000e+3 = 1000 — meaning that the smallest possible difference between numbers with exponent +8 and 6-digit mantissa is... 1000! It will never fit into, say, 1e-4. For numbers with relatively high exponent we simply have not enough precision to ever see a difference of 1e-4. This means eps = 1e-4 will be too small!
My implementation above took this last problem into account; you can see that d is halved each step — instead of getting recalculated as difference of (possibly huge in exponent) a and b. For reals, it doesn't matter; for floats it does! The algorithm will get into infinite loops with (b-a) < eps on equations with huge enough roots. The previous paragraph shows why. d < eps won't get stuck, but even then — needless iterations will be performed during shrinking d way down below the precision of a — still showing the choice of eps as too small. But a == a+d will stop exactly at precision.
Thus as shown: any choice of eps in while (d < eps) {…} will be both too large and too small, if we allow F to vary.
... This kind of reasoning may seem overly theoretical and needlessly deep, but it's to illustrate again the trickiness of floats. One should be aware of their finite precision when writing arithmetic operators around.
Perfect for integral values even in floating point formats
But the short answer is: "No, don't use ==."
Ironically, the floating point format works "perfectly", i.e., with exact precision, when operating on integral values within the range of the format. This means that you if you stick with double values, you get perfectly good integers with a little more than 50 bits, giving you about +- 4,500,000,000,000,000, or 4.5 quadrillion.
In fact, this is how JavaScript works internally, and it's why JavaScript can do things like + and - on really big numbers, but can only << and >> on 32-bit ones.
Strictly speaking, you can exactly compare sums and products of numbers with precise representations. Those would be all the integers, plus fractions composed of 1 / 2n terms. So, a loop incrementing by n + 0.25, n + 0.50, or n + 0.75 would be fine, but not any of the other 96 decimal fractions with 2 digits.
So the answer is: while exact equality can in theory make sense in narrow cases, it is best avoided.
The only case where I ever use == (or !=) for floats is in the following:
if (x != x)
{
// Here x is guaranteed to be Not a Number
}
and I must admit I am guilty of using Not A Number as a magic floating point constant (using numeric_limits<double>::quiet_NaN() in C++).
There is no point in comparing floating point numbers for strict equality. Floating point numbers have been designed with predictable relative accuracy limits. You are responsible for knowing what precision to expect from them and your algorithms.
It's probably ok if you're never going to calculate the value before you compare it. If you are testing if a floating point number is exactly pi, or -1, or 1 and you know that's the limited values being passed in...
I also used it a few times when rewriting few algorithms to multithreaded versions. I used a test that compared results for single- and multithreaded version to be sure, that both of them give exactly the same result.
Let's say you have a function that scales an array of floats by a constant factor:
void scale(float factor, float *vector, int extent) {
int i;
for (i = 0; i < extent; ++i) {
vector[i] *= factor;
}
}
I'll assume that your floating point implementation can represent 1.0 and 0.0 exactly, and that 0.0 is represented by all 0 bits.
If factor is exactly 1.0 then this function is a no-op, and you can return without doing any work. If factor is exactly 0.0 then this can be implemented with a call to memset, which will likely be faster than performing the floating point multiplications individually.
The reference implementation of BLAS functions at netlib uses such techniques extensively.
In my opinion, comparing for equality (or some equivalence) is a requirement in most situations: standard C++ containers or algorithms with an implied equality comparison functor, like std::unordered_set for example, requires that this comparator be an equivalence relation (see C++ named requirements: UnorderedAssociativeContainer).
Unfortunately, comparing with an epsilon as in abs(a - b) < epsilon does not yield an equivalence relation since it loses transitivity. This is most probably undefined behavior, specifically two 'almost equal' floating point numbers could yield different hashes; this can put the unordered_set in an invalid state.
Personally, I would use == for floating points most of the time, unless any kind of FPU computation would be involved on any operands. With containers and container algorithms, where only read/writes are involved, == (or any equivalence relation) is the safest.
abs(a - b) < epsilon is more or less a convergence criteria similar to a limit. I find this relation useful if I need to verify that a mathematical identity holds between two computations (for example PV = nRT, or distance = time * speed).
In short, use == if and only if no floating point computation occur;
never use abs(a-b) < e as an equality predicate;
Yes. 1/x will be valid unless x==0. You don't need an imprecise test here. 1/0.00000001 is perfectly fine. I can't think of any other case - you can't even check tan(x) for x==PI/2
The other posts show where it is appropriate. I think using bit-exact compares to avoid needless calculation is also okay..
Example:
float someFunction (float argument)
{
// I really want bit-exact comparison here!
if (argument != lastargument)
{
lastargument = argument;
cachedValue = very_expensive_calculation (argument);
}
return cachedValue;
}
I would say that comparing floats for equality would be OK if a false-negative answer is acceptable.
Assume for example, that you have a program that prints out floating points values to the screen and that if the floating point value happens to be exactly equal to M_PI, then you would like it to print out "pi" instead. If the value happens to deviate a tiny bit from the exact double representation of M_PI, it will print out a double value instead, which is equally valid, but a little less readable to the user.
I have a drawing program that fundamentally uses a floating point for its coordinate system since the user is allowed to work at any granularity/zoom. The thing they are drawing contains lines that can be bent at points created by them. When they drag one point on top of another they're merged.
In order to do "proper" floating point comparison I'd have to come up with some range within which to consider the points the same. Since the user can zoom in to infinity and work within that range and since I couldn't get anyone to commit to some sort of range, we just use '==' to see if the points are the same. Occasionally there'll be an issue where points that are supposed to be exactly the same are off by .000000000001 or something (especially around 0,0) but usually it works just fine. It's supposed to be hard to merge points without the snap turned on anyway...or at least that's how the original version worked.
It throws of the testing group occasionally but that's their problem :p
So anyway, there's an example of a possibly reasonable time to use '=='. The thing to note is that the decision is less about technical accuracy than about client wishes (or lack thereof) and convenience. It's not something that needs to be all that accurate anyway. So what if two points won't merge when you expect them to? It's not the end of the world and won't effect 'calculations'.