Object factory in C instead of C++ - c++

I am converting a bunch of code from C++ in to C. Is there an equivalent pattern in C for a Object factory?
Consider the following source code. Based on a parameters (int type) the ObjectFactory() function should return a void pointer to an struct of a pedicure type. How can I instantiate the struct in a way that I can have a pointer to it after the function returns.
typedef struct {
unsigned int a;
unsigned int b;
unsigned int c;
} CThings ;
typedef struct {
unsigned int d;
unsigned int e;
unsigned int f;
} CPlaces ;
void * ObjectFactory( int type ) {
switch( type ) {
case 5 : {
return ??? CPlaces ;
break;
}
case 35 : {
return ??? CThings ;
break;
}
default: {
// unknown type
return NULL ;
}
}
return NULL ;
}
int _tmain(int argc, _TCHAR* argv[])
{
void * p = ObjectFactory( 5 );
// Do soemthing with the pointer.
CPlaces * places = (CPlaces*) p ;
places->d = 5 ;
places->e = 6 ;
places->f = 7 ;
return 0;
}

How about using malloc:
case 5: return malloc(sizeof(struct CPlaces));
No need for the break if you already return. If you like, you can add some initialization before returning.
The caller will have to know the actual type so she can cast the pointer back to the correct type. This will probably amount to a duplicate switch statement at the caller's site.

#include <stdlib.h>
typedef enum enum_ObjectType {
CPlaces_Object = 5,
CThings_Object = 35,
} ObjectType;
typedef struct struct_CThings {
unsigned int a;
unsigned int b;
unsigned int c;
} CThings;
typedef struct struct_CPlaces {
unsigned int d;
unsigned int e;
unsigned int f;
} CPlaces ;
void *ObjectFactory(ObjectType type) {
switch( type ) {
case CPlaces_Object: {
return malloc(sizeof(CPlaces));
break;
}
case CThings_Object: {
return malloc(sizeof(CThings));
break;
}
default: { /* unknown type */
return NULL;
}
}
return NULL;
}
int main(void) {
CPlaces *places = ObjectFactory(CPlaces_Object);
CThings *things = ObjectFactory(CThings_Object);
things->a = 2;
things->b = 8;
things->c = 4;
places->d = 5;
places->e = 7;
places->f = 3;
return 0;
}

Related

function pointer for different functions with different data types or parameter

i have this code which uses a function pointer to point 3 functions sum, subtract, mul. it works well. but now the problem is that i have functions with different no.of parameters and different data types. how to implement this.
int add(int a, int b)
{
cout<<a+b;
}
int subtract(int a, int b)
{
cout<<a-b;
}
int mul(int a, int b)
{
cout<<a*b;
}
int main()
{
int (*fun_ptr_arr[])(int, int) = {add, subtract, mul};
unsigned int ch, a = 15, b = 10,c=9;
ch=2;
if (ch > 4) return 0;
(*fun_ptr_arr[ch])(a, b);
return 0;
}
The simple answer is that technically you can't do this. You could do some manipulations using an array as input for all these functions, but you will still have to know exactly what to pass to each function. From a software engineering perspective, you should not do this - I suggest you take a look at the nice answers here: C++ Function pointers with unknown number of arguments
A slightly different approach using objects to implement the required behavior. In order to have a truly generic kind of solution, we need to use Interfaces.
Dismantle the data and operation i.e keep them separately.
//Interface which describes any kind of data.
struct IData
{
virtual ~IData()
{
}
};
//Interface which desribes any kind of operation
struct IOperation
{
//actual operation which will be performed
virtual IData* Execute(IData *_pData) = 0;
virtual ~IOperation()
{
}
};
Now, every operation knows the kind of data it work on and will expect that kind of data only.
struct Operation_Add : public IOperation
{
//data for operation addition.
struct Data : public IData
{
int a;
int b;
int result;
};
IData* Execute(IData *_pData)
{
//expected data is "Operation_Add::Data_Add"
Operation_Add::Data *pData = dynamic_cast<Operation_Add::Data*>(_pData);
if(pData == NULL)
{
return NULL;
}
pData->result = pData->a + pData->b;
return pData;
}
};
struct Operation_Avg : public IOperation
{
//data for operation average of numbers.
struct Data : public IData
{
int a[5];
int total_numbers;
float result;
};
IData* Execute(IData *_pData)
{
//expected data is "Operation_Avg::Data_Avg"
Operation_Avg::Data *pData = dynamic_cast<Operation_Avg::Data*>(_pData);
if(pData == NULL)
{
return NULL;
}
pData->result = 0.0f;
for(int i = 0; i < pData->total_numbers; ++i)
{
pData->result += pData->a[i];
}
pData->result /= pData->total_numbers;
return pData;
}
};
Here, is the operation processor, the CPU.
struct CPU
{
enum OPERATION
{
ADDITION = 0,
AVERAGE
};
Operation_Add m_stAdditionOperation;
Operation_Avg m_stAverageOperation;
map<CPU::OPERATION, IOperation*> Operation;
CPU()
{
Operation[CPU::ADDITION] = &m_stAdditionOperation;
Operation[CPU::AVERAGE] = &m_stAverageOperation;
}
};
Sample:
CPU g_oCPU;
Operation_Add::Data stAdditionData;
stAdditionData.a = 10;
stAdditionData.b = 20;
Operation_Avg::Data stAverageData;
stAverageData.total_numbers = 5;
for(int i = 0; i < stAverageData.total_numbers; ++i)
{
stAverageData.a[i] = i*10;
}
Operation_Add::Data *pResultAdd = dynamic_cast<Operation_Add::Data*>(g_oCPU.Operation[CPU::ADDITION]->Execute(&stAdditionData));
if(pResultAdd != NULL)
{
printf("add = %d\n", pResultAdd->result);
}
Operation_Avg::Data *pResultAvg = dynamic_cast<Operation_Avg::Data*>(g_oCPU.Operation[CPU::AVERAGE]->Execute(&stAverageData));
if(pResultAvg != NULL)
{
printf("avg = %f\n", pResultAvg->result);
}
If you have the following functions
int f1(int i);
int f2(int i, int j);
You can define a generic function type like this
typedef int (*generic_fp)(void);
And then initialize your function array
generic_fp func_arr[2] = {
(generic_fp) f1,
(generic_fp) f2
};
But you will have to cast the functions back
int result_f1 = ((f1) func_arr[0]) (2);
int result_f2 = ((f2) func_arr[1]) (1, 2);
Obviously, it does not look like a good way to build a program
To make code look a little bit better you can define macros
#define F1(f, p1) ((f1)(f))(p1)
#define F2(f, p1, p2) ((f2)(f))(p1, p2)
int result_f1 = F1(func_arr[0], 2);
int result_f2 = F2(func_arr[1], 1, 2);
EDIT
Forgot to mention, you also have to define a type for every type of function
typedef int (*fi)(int); // type for function of one int param
typedef int (*fii)(int, int); // type for function of two int params
And to then cast stored pointers to those types
int result_f1 = ((fi) func_arr[0]) (2);
int result_f2 = ((fii) func_arr[1]) (1, 2);
Here is a complete example
#include <iostream>
typedef int (*generic_fp)(void);
typedef int (*fi)(int); // type for function of one int param
typedef int (*fii)(int, int); // type for function of two int params
#define F1(f, p1) ((fi)(f))(p1)
#define F2(f, p1, p2) ((fii)(f))(p1, p2)
int f1(int i);
int f2(int i, int j);
int main()
{
generic_fp func_arr[2] = {
(generic_fp) f1,
(generic_fp) f2
};
int result_f1_no_macro = ((fi) func_arr[0]) (2);
int result_f2_no_macro = ((fii) func_arr[1]) (1, 2);
int result_f1_macro = F1(func_arr[0], 2);
int result_f2_macro = F2(func_arr[1], 1, 2);
std::cout << result_f1_no_macro << ", " << result_f2_no_macro << std::endl;
std::cout << result_f1_macro << ", " << result_f2_macro << std::endl;
return 0;
}
int f1(int i)
{
return i * 2;
}
int f2(int i, int j)
{
return i + j;
}
The code above produces the following output
4, 3
4, 3

Function returning function pointer from table as a parameter

I have been reading for a while, but today I can't figure someting out and find a solution.
How to return a function pointer from a function table as parameter? All similair solutions don't work for this one and end up not compiling.
I have tried a lot of methods but the compiler always returns with errors like:
function returning function is not allowed solution (when using typedef void (*func)();)
As NO parameters have to be passed into the final routine it should be possible.
My simplified example:
void PrintOne(void) { printf("One")};
void PrintTwo(void) { printf("Two")};
struct ScanListStruct
{
int Value;
void (*Routine)(void);
}
const ScanListStruct DoList[] =
{
{1, PrintOne},
{2, PrintTwo}
}
bool GetRoutine(void *Ptr, int Nr)
{
for (int x =0; x<=1; x++)
{
if (DoList[x].Value = Nr)
{
Ptr = DoList[(x)].Routine;
//((*DoList[(x)].Routine)()); // Original Working and executing version!
return true;
}
}
return false;
}
void main(void)
{
int y = 1;
void (*RoutineInMain)(); // Define
if (GetRoutine( RoutineInMain, y) == true) // get the address
{
RoutineInMain(); // Execute the function
}
}
There a few things wrong with the code;
Syntax errors (missing ; etc.)
main must return int
GetRoutine should accept the function pointer by reference, not just a void* pointer to anything
if condition should contain an equality test, not an assignment
As follows, works as expected;
void PrintOne(void) { printf("One"); };
void PrintTwo(void) { printf("Two"); };
struct ScanListStruct
{
int Value;
void (*Routine)(void);
};
const ScanListStruct DoList[] =
{
{1, &PrintOne},
{2, &PrintTwo}
};
bool GetRoutine(void (*&Ptr)(), int Nr)
{
for (int x =0; x<=1; x++)
{
if (DoList[x].Value == Nr)
{
Ptr = *DoList[(x)].Routine;
//((*DoList[(x)].Routine)()); // Original Working and executing version!
return true;
}
}
return false;
}
int main(void)
{
int y = 1;
void (*RoutineInMain)(); // Define
if (GetRoutine( RoutineInMain, y) == true) // get the address
{
RoutineInMain(); // Execute the function
}
}
Prints One.
You have lots of errors in your code. Like here you put the comas at the wrong place:
void PrintOne(void) { printf("One")};
void PrintTwo(void) { printf("Two")};
It should be
void PrintOne(void) { printf("One");}
void PrintTwo(void) { printf("Two");}
And here you are using the wrong operator, = instead of ==.
if (DoList[x].Value = Nr)
When the argument Ptr is a pointer, and that is passed by value, so the value assigned in the function will not be available when the function returns.
This is how your code should be:
void PrintOne(void) { printf("One"); }
void PrintTwo(void) { printf("Two"); }
typedef void(*prototype)();
struct ScanListStruct
{
int Value;
prototype Routine;
};
const ScanListStruct DoList[] =
{
{ 1, PrintOne },
{ 2, PrintTwo }
};
bool GetRoutine(prototype &Ptr, int Nr)
{
for (int x = 0; x <= 1; x++)
{
if (DoList[x].Value == Nr)
{
Ptr = DoList[(x)].Routine;
return true;
}
}
return false;
}
int main()
{
int y = 1;
prototype RoutineInMain; // Define
if (GetRoutine(RoutineInMain, y) == true) // get the address
{
RoutineInMain(); // Execute the function
}
return 0;
}

Pointers, Struct, C++,Writing a new structure in a function

Could someone explain me the following mistakes and tell me how to fix them (written as comments)?
The structure I have:
const int max = 1000;
const int MAX = 30;
struct student_t
{
int k;
char* name[MAX];
char** bez[MAX];
};
With this function I must write a member of this structure(members<=1000) and bez. (<=30) for every member:
int write (student_t *field[max], int i)
{
student_t *pointerfield= new student_t;
printf("Number:....");
std::cin>>pointerfield->number;
if (pointerfield->number>1 && pointerfield->k<999999)
{
if (binarsearch(&field[max],i,(pointerfield->number))!=-1)
{
return i;
}
else
{
printf("\nName:.....");
readstr();
pointerfield->name=readstr();
// insupportable types of allocation of int to char* [30]
std::cout<<std::endl;
int counter=0;
std::cout<<"Do you want to add bez.? j,n"<<std::endl;
char a;
std::cin>>a;
if(a=='j' && counter<MAX)
{
std::cout<<"Bez.:";
readstr();
pointerfield->bez[MAX]=readstr();
// char * can not be converted into assignment to char **
counter++;
}
// ...

I can't display variables of different types included in array

I have to do a program for college.
I have 3 classes already declared in the statement of the problem.
First class:
class piesa_a{
protected:
int id;
char *tip;
int pret;
};
Second class:
class piesa_b:public piesa_a
{
private:
float lungime;
bool bw;
};
Third class:
class piesa_c:public piesa_a
{
private:
int nr;
piesa_b *buf;
};
In main I need to create an array in which to store items such piesa_a, piesa_b, piesa_c. Then I have to sort items by price.
I have this code so far: http://pastebin.com/nx2FGSfe
The program is incomplete because it does not displays each item in the array.
I got stuck here. But if you display the array's elements when they are outside of it, it works.
SHORT: I have an error on line 143 and I want to solve it.
main.cpp:143:18: error: request for member ‘afisare’ in ‘*(v + ((unsigned int)(((unsigned int)i) * 4u)))’, which is of non-class type ‘piesa_a*’
The code is here:
#include <cstdlib>
#include<iostream>
#include<string.h>
using namespace std;
class piesa_a{
protected:
int id;
char *tip;
int pret;
public:
piesa_a()
{
id = 0;
tip = new char[1];
pret = 0;
}
piesa_a(int aidi, char *typ, int pretz)
{
id = aidi;
tip = new char[strlen(typ)+1];
strcpy(tip,typ);
pret = pretz;
}
piesa_a&operator =(piesa_a alta)
{
id = alta.id;
tip = new char[strlen(alta.tip)+1];
strcpy(tip,alta.tip);
pret = alta.pret;
return *this;
}
virtual void afisare()
{
cout<<"\n Piesa A: "<<id<<" "<<tip<<" "<<pret;
}
};
class piesa_b:public piesa_a
{
private:
float lungime;
bool bw;
public:
piesa_b():piesa_a(){lungime = 0;bw = 0;}
piesa_b(float lg,bool bl, int aid, char *tipi, int pretzz):piesa_a(aid,tipi,pretzz)
{
lungime = lg;
bw = bl;
}
piesa_b&operator =(piesa_b &c)
{
id = c.id;
tip = new char[strlen(c.tip)+1];
strcpy(tip,c.tip);
pret = c.pret;
lungime = c.lungime;
bw = c.bw;
return *this;
}
void afisare()
{
piesa_a::afisare();
cout<<"impreuna cu piesa B: "<<lungime<<" "<<bw<<"\n";
}
};
class piesa_c:public piesa_a
{
private:
int nr;
piesa_b *buf;
public:
piesa_c():piesa_a(){nr=0; buf = new piesa_b[nr];}
piesa_c(int n, piesa_b *bu,int aid, char *tipi, int pretzz):piesa_a(aid,tipi,pretzz)
{
nr = n;
buf = new piesa_b[nr];
for(int i=0;i<nr;i++)
buf[i]= bu[i];
}
piesa_c&operator =(piesa_c &alta)
{
id = alta.id;
tip = new char[strlen(alta.tip)+1];
strcpy(tip,alta.tip);
pret = alta.pret;
nr = alta.nr;
for(int i=0;i<alta.nr;i++)
buf[i] = alta.buf[i];
}
void afisare()
{
for(int i=0;i<nr;i++)
buf[i].afisare();
}
};
int main(int argc, char** argv) {
piesa_b *H;
H = new piesa_b[2];
piesa_a A(4,"TIPA",120);
piesa_b B(100,1,3,"TIPA",120);
H[0]=B;
H[1]=B;
piesa_c C(2, H,14,"TIPC",20);
piesa_a** v = new piesa_a*[3];
v[0] = &A;
v[1] = &B;
v[2] = &C;
for(int i=0;i<3;i++)
v[i].afisare();
return 0;
}
What's wrong?
In C++ (and current C), casts are almost always a sign that the programmer didn't know how to use the language as it is supposed to be used. If you need an array of 3 types of data, the cleanest solution is an array of objects of a class that is base to the 3. And if you want to display each item differently, you'll want to overload the << operator, so you just iterate over the array and go << on each item. Sorted by price means that the class includes a price field, and you use the sort from the standard template library, passing a comparison operation that just compares prices.

Working with a void pointer

Given the following scenario where my data might be of different type based on some condition.
class myClass {
public:
myclass() {
if (condition1) {
bool boolValue = false;
data = boolValue;
} else if (condition2) {
int intValue = 0;
data = intValue;
} else if (condition3) {
unsigned int unsignedIntValue = 0;
data = unsignedIntValue;
} else if (condition4) {
long longValue = 0;
data = longValue;
} else if (condition5) {
double doubleValue = 0.0;
data = doubleValue;
} else if (condition6) {
float floatValue = 0.0;
data = floatValue;
} else if (condition7) {
char *buffer = new char[10];
data = buffer;
}
}
void* getData() const { return data; }
private:
void *data;
}
As it happens the value that my void pointer points to is strictly within each statement. Therefore what is returned with getData() might not be valid. If I do get the data it is simply because the memory location where I point to is not yet written over.
The solution I have come up with is this:
class myClass {
public:
myclass() {
if (condition1) {
boolValue = false;
data = boolValue;
} else if (condition2) {
intValue = 0;
data = intValue;
} else if (condition3) {
unsignedIntValue = 0;
data = unsignedIntValue;
} else if (condition4) {
longValue = 0;
data = longValue;
} else if (condition5) {
doubleValue = 0.0;
data = doubleValue;
} else if (condition6) {
floatValue = 0.0;
data = floatValue;
} else if (condition7) {
buffer = new char[10];
data = buffer;
}
}
void* getData() const { return data; }
private:
void *data;
bool boolValue;
int intValue;
unsigned int unsignedIntValue;
long longValue;
double doubleValue;
float floatValue;
char *buffer;
}
I was thinking there must be a more elegant way to do this. Any suggestions?
You could use a union to save a few bits in memory, and then use pointer casting to get the value from the union:
#include<iostream>
using namespace std;
class myClass {
public:
myClass(char *str){
data.str = str;
}
myClass(double d){
data.d = d;
}
myClass(float f){
data.f = f;
}
void *getData() { return (void*)&data; }
private:
union {
double d;
float f;
char *str;
} data;
};
int main(){
myClass c(2.0);
cout << *(double*)c.getData() << endl;
myClass f(3.0f);
cout << *(float*)f.getData() << endl;
myClass s("test");
cout << *(char**)s.getData() << endl;
system("pause");
}
/* prints
2
3
test
*/
If you don't need to change the type of the data after you create an object, then you could use a template class:
template <typename T>
class myBaseClass {
public:
// Declare common functions here.
T getData()
{ return data; }
protected:
T data;
protected:
// Disallow constructing instances of this class outside the child classes.
myBaseClass(T val) : data(val) { }
};
template <typename T>
class myClass: public myBaseClass<T> {
public:
myClass() : myBaseClass<T>(0) { }
};
You then specialize for char*:
template <>
class myClass<char*>: public myBaseClass<char*> {
public:
myClass() : myBaseClass(new char[10]) { }
};
You then create instances like this:
myClass<int> a;
myClass<float> b;
myClass<char*> c;
// etc.
int i = a.getData();
float f = b.getData();
char* str = c.getData();