OpenGl - Vertex Buffer Object Is Not Drawn To Screen - opengl

I am trying to go from displaying my GL_QUADS with glBegin() to displaying them with a VBO. Unfortunately after my change the program does not display the QUADS anymore. All I see is a black screen. That is what I am doing:
I define two VBOs. One for vertex data, one for indices, and allocate some space in them:
glGenBuffersARB(2, pboIds);
glBindBufferARB(GL_ARRAY_BUFFER_ARB, pboIds[0]);
glBufferDataARB(GL_ARRAY_BUFFER_ARB, 50000*sizeof(GLfloat), 0, GL_STREAM_DRAW_ARB);
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, pboIds[1]);
glBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 50000*sizeof(GLint), 0, GL_STREAM_DRAW_ARB);
Then I map them and write information to them:
float *ptr = (float*)glMapBufferARB(GL_ARRAY_BUFFER_ARB, GL_READ_WRITE_ARB);
int *ptrind = (int*)glMapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_READ_WRITE_ARB);
int nVertexCount=0;
for (...){
*ptr=vertX; ++ptr; *ptrind=nVertexCount; ++ptrind; nVertexCount++;
*ptr=vertY; ++ptr; *ptrind=nVertexCount; ++ptrind; nVertexCount++;
*ptr=vertZ; ++ptr; *ptrind=nVertexCount; ++ptrind; nVertexCount++;
}
glUnmapBufferARB(GL_ARRAY_BUFFER_ARB);
glUnmapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB);
Finally, I try to display them:
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, 0);
glDrawElements(GL_QUADS, nVertexCount, GL_INT, (pboIds+1));
glDisableClientState(GL_VERTEX_ARRAY);
My program compiles just fine. I don't get any crashes when executing it. But all I see - is a black screen. I use the same routine to determine the vertex coordinates as I did with glBegin(GL_QUADS). Back then I could see white quads on the screen. Maybe I am doing something wrong in my VBO code?
EDIT:
Unfortunately I am under windows. Do I have to do something about these to stop using the ARB extension? I have that from an example code:
#ifdef _WIN32
PFNGLGENBUFFERSARBPROC pglGenBuffersARB = 0;
PFNGLBINDBUFFERARBPROC pglBindBufferARB = 0;
PFNGLBUFFERDATAARBPROC pglBufferDataARB = 0;
PFNGLBUFFERSUBDATAARBPROC pglBufferSubDataARB = 0;
PFNGLDELETEBUFFERSARBPROC pglDeleteBuffersARB = 0;
PFNGLGETBUFFERPARAMETERIVARBPROC pglGetBufferParameterivARB = 0;
PFNGLMAPBUFFERARBPROC pglMapBufferARB = 0;
PFNGLUNMAPBUFFERARBPROC pglUnmapBufferARB = 0;
#define glGenBuffersARB pglGenBuffersARB
#define glBindBufferARB pglBindBufferARB
#define glBufferDataARB pglBufferDataARB
#define glBufferSubDataARB pglBufferSubDataARB
#define glDeleteBuffersARB pglDeleteBuffersARB
#define glGetBufferParameterivARB pglGetBufferParameterivARB
#define glMapBufferARB pglMapBufferARB
#define glUnmapBufferARB pglUnmapBufferARB
#endif

glDrawElements(GL_QUADS, nVertexCount, GL_INT, (pboIds+1));
You don't pass the buffer object name to this function. It uses whatever buffer object happens to be bound to GL_ELEMENT_ARRAY_BUFFER at the time. That value is the offset from the beginning of the buffer; it specifies where the first index is.
Also, stop using the ARB extension version of buffer objects. Just use the core stuff.
Unfortunately I am under windows.
I don't see what that has anything to do with it. Use an OpenGL loading library, if you can't do it yourself.

Related

OpenGL glMultiDrawElementsIndirect with Interleaved Buffers

Originally using glDrawElementsInstancedBaseVertex to draw the scene meshes. All the meshes vertex attributes are being interleaved in a single buffer object. In total there are only 30 unique meshes. So I've been calling draw 30 times with instance counts, etc. but now I want to batch the draw calls into one using glMultiDrawElementsIndirect. Since I have no experience with this command function, I've been reading articles here and there to understand the implementation with little success. (For testing purposes all meshes are instanced only once).
The command structure from the OpenGL reference page.
struct DrawElementsIndirectCommand
{
GLuint vertexCount;
GLuint instanceCount;
GLuint firstVertex;
GLuint baseVertex;
GLuint baseInstance;
};
DrawElementsIndirectCommand commands[30];
// Populate commands.
for (size_t index { 0 }; index < 30; ++index)
{
const Mesh* mesh{ m_meshes[index] };
commands[index].vertexCount = mesh->elementCount;
commands[index].instanceCount = 1; // Just testing with 1 instance, ATM.
commands[index].firstVertex = mesh->elementOffset();
commands[index].baseVertex = mesh->verticeIndex();
commands[index].baseInstance = 0; // Shouldn't impact testing?
}
// Create and populate the GL_DRAW_INDIRECT_BUFFER buffer... bla bla
Then later down the line, after setup I do some drawing.
// Some prep before drawing like bind VAO, update buffers, etc.
// Draw?
if (RenderMode == MULTIDRAW)
{
// Bind, Draw, Unbind
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, m_indirectBuffer);
glMultiDrawElementsIndirect (GL_TRIANGLES, GL_UNSIGNED_INT, nullptr, 30, 0);
glBindBuffer(GL_DRAW_INDIRECT_BUFFER, 0);
}
else
{
for (size_t index { 0 }; index < 30; ++index)
{
const Mesh* mesh { m_meshes[index] };
glDrawElementsInstancedBaseVertex(
GL_TRIANGLES,
mesh->elementCount,
GL_UNSIGNED_INT,
reinterpret_cast<GLvoid*>(mesh->elementOffset()),
1,
mesh->verticeIndex());
}
}
Now the glDrawElements... still works fine like before when switched. But trying glMultiDraw... gives indistinguishable meshes but when I set the firstVertex to 0 for all commands, the meshes look almost correct (at least distinguishable) but still largely wrong in places?? I feel I'm missing something important about indirect multi-drawing?
//Indirect data
commands[index].firstVertex = mesh->elementOffset();
//Direct draw call
reinterpret_cast<GLvoid*>(mesh->elementOffset()),
That's not how it works for indirect rendering. The firstVertex is not a byte offset; it's the first vertex index. So you have to divide the byte offset by the size of the index to compute firstVertex:
commands[index].firstVertex = mesh->elementOffset() / sizeof(GLuint);
The result of that should be a whole number. If it wasn't, then you were doing unaligned reads, which probably hurt your performance. So fix that ;)

Can I call `glDrawArrays` multiple times while updating the same `GL_ARRAY_BUFFER`?

In a single frame, is it "allowed" to update the same GL_ARRAY_BUFFER continuously and keep calling glDrawArrays after each update?
I know this is probably not the best and not the most recommended way to do it, but my question is: Can I do this and expect to get the GL_ARRAY_BUFFER updated before every call to glDrawArrays ?
Code example would look like this:
// setup a single buffer and bind it
GLuint vbo;
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
while (!renderStack.empty())
{
SomeObjectClass * my_object = renderStack.back();
renderStack.pop_back();
// calculate the current buffer size for data to be drawn in this iteration
SomeDataArrays * subArrays = my_object->arrayData();
unsigned int totalBufferSize = subArrays->bufferSize();
unsigned int vertCount = my_object->vertexCount();
// initialise the buffer to the desired size and content
glBufferData(GL_ARRAY_BUFFER, totalBufferSize, NULL, GL_STREAM_DRAW);
// actually transfer some data to the GPU through glBufferSubData
for (int j = 0; j < subArrays->size(); ++j)
{
unsigned int subBufferOffset = subArrays->get(j)->bufferOffset();
unsigned int subBufferSize = subArrays->get(j)->bufferSize();
void * subBufferData = subArrays->get(j)->bufferData();
glBufferSubData(GL_ARRAY_BUFFER, subBufferOffset, subBufferSize, subBufferData);
unsigned int subAttributeLocation = subArrays->get(j)->attributeLocation();
// set some vertex attribute pointers
glVertexAttribPointer(subAttributeLocation, ...);
glEnableVertexAttribArray(subAttributeLocation, ...);
}
glDrawArrays(GL_POINTS, 0, (GLsizei)vertCount);
}
You may ask - why would I want to do that and not just preload everything onto the GPU at once ... well, obvious answer, because I can't do that when there is too much data that can't fit into a single buffer.
My problem is, that I can only see the result of one of the glDrawArrays calls (I believe the first one) or in other words, it appears as if the GL_ARRAY_BUFFER is not updated before each glDrawArrays call, which brings me back to my question, if this is even possible.
I am using an OpenGL 3.2 CoreProfile (under OS X) and link with GLEW for OpenGL setup as well as Qt 5 for setting up the window creation.
Yes, this is legal OpenGL code. It is in no way something that anyone should ever actually do. But it is legal. Indeed, it makes even less sense in your case, because you're calling glVertexAttribPointer for every object.
If you can't fit all your vertex data into memory, or need to generate it on the GPU, then you should stream the data with proper buffer streaming techniques.

OpenGL - Drawing Large Amounts of Information stored in VBO's

I have fairly large C++ objects which load mesh data into memory and then draws based on an OnDisplay callback.
The problem is that the refresh rate is really slow which I suspect is because my code is poorly written.
Anyway; here is what my class looks like (function prototypes shown to give you an idea of how my class is set up).
What I want to know is if it is possible to just call the "glDrawElements" function somehow on what is in memory if most of my VBOs haven't changed and skip my Begin and end draw functions as shown below.
OR, even better,
If there is a magic OpenGL function I can call that, with one pass, OpenGL can render all of my unchanged Buffer IDs and I can simply focus on drawing the ones that have changed and the camera?
Mostly I will just have the camera moving through the scene.
I set these functions up based on tutorials and documentation so I know they work; I just want to speed up the drawing, especially when the meshes I am loading in are 100MB + in size.
First, here is my class prototype:
class MyMeshData
{
public:
MyMeshData();
~MyMeshData();
// Save up data into GPU buffers.
bool Initialize(const MeshDataFromFileClass * StaticMeshData);
// Update vertex positions for deformed meshes.
void UpdateVertexPosition(const MeshDataFromFileClass * StaticMeshData, const MyVector4Class * pVertices) const;
// Bind buffers, set vertex arrays, turn on lighting and texture.
void BeginDraw(ShadingMode pShadingMode) const;
// Draw all the faces with specific material with given shading mode.
void Draw(int pMaterialIndex, ShadingMode pShadingMode) const;
// Unbind buffers, reset vertex arrays, turn off lighting and texture.
void EndDraw() const;
// Get the count of material groups
int GetSubMeshCount() const { return mSubMeshes.GetCount(); }
private:
enum
{
VERTEX_VBO,
NORMAL_VBO,
UV_VBO,
INDEX_VBO,
VBO_COUNT,
};
// For every material, record the offsets in every VBO and triangle counts
struct SubMesh
{
SubMesh() : IndexOffset(0), TriangleCount(0) {}
int IndexOffset;
int TriangleCount;
};
GLuint mVBONames[VBO_COUNT];
MyMeshArray<SubMesh*> mSubMeshes;
bool mHasNormal;
bool mHasUV;
bool mAllByControlPoint; // Save data in VBO by control point or by polygon vertex.
};
And here is my Initialize Function:
bool Initialize(const MeshDataFromFileClass * StaticMeshData) {
[...]
/*
Earlier code that retrieves data from file removed.
Only the point where the data is transferred to the GPU is shown.
*/
// Create VBOs
glGenBuffers(VBO_COUNT, mVBONames);
// Save vertex attributes into GPU
glBindBuffer(GL_ARRAY_BUFFER, mVBONames[VERTEX_VBO]);
glBufferData(GL_ARRAY_BUFFER, lPolygonVertexCount * VERTEX_STRIDE * sizeof(float), lVertices, GL_STATIC_DRAW);
delete [] lVertices;
if (mHasNormal)
{
glBindBuffer(GL_ARRAY_BUFFER, mVBONames[NORMAL_VBO]);
glBufferData(GL_ARRAY_BUFFER, lPolygonVertexCount * NORMAL_STRIDE * sizeof(float), lNormals, GL_STATIC_DRAW);
delete [] lNormals;
}
if (mHasUV)
{
glBindBuffer(GL_ARRAY_BUFFER, mVBONames[UV_VBO]);
glBufferData(GL_ARRAY_BUFFER, lPolygonVertexCount * UV_STRIDE * sizeof(float), lUVs, GL_STATIC_DRAW);
delete [] lUVs;
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mVBONames[INDEX_VBO]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, lPolygonCount * TRIANGLE_VERTEX_COUNT * sizeof(unsigned int), lIndices, GL_STATIC_DRAW);
delete [] lIndices;
}
Here is my BeginDraw Function:
void MyMeshData::BeginDraw(ShadingMode pShadingMode) const
{
glBindBuffer(GL_ARRAY_BUFFER, mVBONames[VERTEX_VBO]);
/*
glVertexPointer(VERTEX_STRIDE, GL_FLOAT, 0, 0);
glEnableClientState(GL_VERTEX_ARRAY);
*/
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, VERTEX_STRIDE, GL_FLOAT, GL_FALSE, 0, 0);
// Set normal array.
if (mHasNormal && pShadingMode == SHADING_MODE_SHADED)
{
glBindBuffer(GL_ARRAY_BUFFER, mVBONames[NORMAL_VBO]);
glNormalPointer(GL_FLOAT, 0, 0);
glEnableClientState(GL_NORMAL_ARRAY);
}
// Set UV array.
if (mHasUV && pShadingMode == SHADING_MODE_SHADED)
{
glBindBuffer(GL_ARRAY_BUFFER, mVBONames[UV_VBO]);
glTexCoordPointer(UV_STRIDE, GL_FLOAT, 0, 0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mVBONames[INDEX_VBO]);
if (pShadingMode != SHADING_MODE_SHADED)
{
glColor4fv(DEFAULT_WIREFRAME_COLOR);
}
}
My Draw function ...
void MyMeshData::Draw(int pMaterialIndex, ShadingMode pShadingMode) const
{
// Where to start.
GLsizei lOffset = mSubMeshes[pMaterialIndex]->IndexOffset * sizeof(unsigned int);
if ( pShadingMode == SHADING_MODE_SHADED)
{
const GLsizei lElementCount = mSubMeshes[pMaterialIndex]->TriangleCount * 3;
glDrawElements(GL_TRIANGLES, lElementCount, GL_UNSIGNED_INT, reinterpret_cast<const GLvoid *>(lOffset));
}
else
{
for (int lIndex = 0; lIndex < mSubMeshes[pMaterialIndex]->TriangleCount; ++lIndex)
{
glDrawElements(GL_LINE_LOOP, TRIANGLE_VERTEX_COUNT, GL_UNSIGNED_INT, reinterpret_cast<const GLvoid *>(lOffset));
lOffset += sizeof(unsigned int) * TRIANGLE_VERTEX_COUNT;
}
}
}
And finally my End Draw Function....
void VBOMesh::EndDraw() const
{
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
What I want to know is if it is possible to just call the
"glDrawElements" function somehow on what is in memory if most of my
VBOs haven't changed and skip my Begin and end draw functions as shown
below.
There is a feature in opengl that exactly does that, called Vertex Array Buffer (VAO). This feature allows you to save what you have in your begin draw into an object ( much like a VBO ) bind it, unbind it, saving you time so you don't have to bind all buffers by hand each time. I don't really remember since when it is supported, it is a core feature since opengl3 I'm sure about that, as far as I know even OpenGL ES 2.0 supports this via extension.
If there is a magic OpenGL function I can call that, with one pass,
OpenGL can render all of my unchanged Buffer IDs and I can simply
focus on drawing the ones that have changed and the camera?
If I understand this correctly, you want something like a cached rendering so instead of manually calling glDrawElements each time you want a function where you can throw in all your buffer id's and tell it to 'render these'. As far as I know the closest thing to this is instanced rendering, but that comes with it's limitations.
Altho I think there might be something else here since VBOs already make your rendering fast, and GPUs don't like small models, large models are really good for the GPU since it gets a chance to use its nifty features, super duper caching and what not to make it fast, where with small models there is not chance since before caches start to fill up the model is already rendered. So if this runs slow in your case it might be something else since what you are doing is almost ideal for a GPU to reach its top performance, I would suggest running something like gDebugger to profile which is the function or code piece that takes the most time and if that seems okay, then try a GPU debugger/profiler to see what takes the most time ( like NVPerfKit for nVidia ).

Learning to use VBOs properly

So I've been trying to teach myself to use VBOs, in order to boost the performance of my OpenGL project and learn more advanced stuff than fixed-function rendering. But I haven't found much in the way of a decent tutorial; the best ones I've found so far are Songho's tutorials and the stuff at OpenGL.org, but I seem to be missing some kind of background knowledge to fully understand what's going on, though I can't tell exactly what it is I'm not getting, save the usage of a few parameters.
In any case, I've forged on ahead and come up with some cannibalized code that, at least, doesn't crash, but it leads to bizarre results. What I want to render is this (rendered using fixed-function; it's supposed to be brown and the background grey, but all my OpenGL screenshots seem to adopt magenta as their favorite color; maybe it's because I use SFML for the window?).
What I get, though, is this:
I'm at a loss. Here's the relevant code I use, first for setting up the buffer objects (I allocate lots of memory as per this guy's recommendation to allocate 4-8MB):
GLuint WorldBuffer;
GLuint IndexBuffer;
...
glGenBuffers(1, &WorldBuffer);
glBindBuffer(GL_ARRAY_BUFFER, WorldBuffer);
int SizeInBytes = 1024 * 2048;
glBufferData(GL_ARRAY_BUFFER, SizeInBytes, NULL, GL_STATIC_DRAW);
glGenBuffers(1, &IndexBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, IndexBuffer);
SizeInBytes = 1024 * 2048;
glBufferData(GL_ELEMENT_ARRAY_BUFFER, SizeInBytes, NULL, GL_STATIC_DRAW);
Then for uploading the data into the buffer. Note that CreateVertexArray() fills the vector at the passed location with vertex data, with each vertex contributing 3 floats for position and 3 floats for normal (one of the most confusing things about the various tutorials was what format I should store and transfer my actual vertex data in; this seemed like a decent approximation):
std::vector<float>* VertArray = new std::vector<float>;
pWorld->CreateVertexArray(VertArray);
unsigned short Indice = 0;
for (int i = 0; i < VertArray->size(); ++i)
{
std::cout << (*VertArray)[i] << std::endl;
glBufferSubData(GL_ARRAY_BUFFER, i * sizeof(float), sizeof(float), &((*VertArray)[i]));
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, i * sizeof(unsigned short), sizeof(unsigned short), &(Indice));
++Indice;
}
delete VertArray;
Indice -= 1;
After that, in the game loop, I use this code:
glBindBuffer(GL_ARRAY_BUFFER, WorldBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, IndexBuffer);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, 0);
glNormalPointer(GL_FLOAT, 0, 0);
glDrawElements(GL_TRIANGLES, Indice, GL_UNSIGNED_SHORT, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
I'll be totally honest - I'm not sure I understand what the third parameter of glVertexPointer() and glNormalPointer() ought to be (stride is the offset in bytes, but Songho uses an offset of 0 bytes between values - what?), or what the last parameter of either of those is. The initial value is said to be 0; but it's supposed to be a pointer. Passing a null pointer in order to get the first coordinate/normal value of the array seems bizarre. This guy uses BUFFER_OFFSET(0) and BUFFER_OFFSET(12), but when I try that, I'm told that BUFFER_OFFSET() is undefined.
Plus, the last parameter of glDrawElements() is supposed to be an address, but again, Songho uses an address of 0. If I use &IndexBuffer instead of 0, I get a blank screen without anything rendering at all, except the background.
Can someone enlighten me, or at least point me in the direction of something that will help me figure this out? Thanks!
The initial value is said to be 0; but it's supposed to be a pointer.
The context (not meaning the OpenGL one) matters. If one of the gl*Pointer functions is called with no Buffer Object being bound to GL_ARRAY_BUFFER, then it is a pointer into client process address space. If a Buffer Object is bound to GL_ARRAY_BUFFER it's an offset into the currently bound buffer object (you may thing the BO forming a virtual address space, to which the parameter to gl*Pointer is then an pointer into that server side address space).
Now let's have a look at your code
std::vector<float>* VertArray = new std::vector<float>;
You shouldn't really mix STL containers and new, learn about the RAII pattern.
pWorld->CreateVertexArray(VertArray);
This is problematic, since you'll delete VertexArray later on, leaving you with a dangling pointer. Not good.
unsigned short Indice = 0;
for (int i = 0; i < VertArray->size(); ++i)
{
std::cout << (*VertArray)[i] << std::endl;
glBufferSubData(GL_ARRAY_BUFFER, i * sizeof(float), sizeof(float), &((*VertArray)[i]));
You should submit large batches of data with glBufferSubData, not individual data points.
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, i * sizeof(unsigned short), sizeof(unsigned short), &(Indice));
You're passing just incrementing indices into the GL_ELEMENT_ARRAY_BUFFER, thus enumerating the vertices. Why? You can have this, without the extra work using glDrawArrays insteaf of glDrawElements.
++Indice;
}
delete VertArray;
You're deleting VertArray, thus keeping a dangling pointer.
Indice -= 1;
Why didn't you just use the loop counter i?
So how to fix this? Like this:
std::vector<float> VertexArray;
pWorld->LoadVertexArray(VertexArray); // World::LoadVertexArray(std::vector<float> &);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*VertexArray->size(), &VertexArray[0] );
And using glDrawArrays; of course if you're not enumerating vertices, but have a list of faces→vertex indices, using a glDrawElements is mandatory.
Don't call glBufferSubData for each vertex. It misses the point of VBO. You are supposed to create big buffer of your vertex data, and then pass it to OpenGL in a single go.
Read http://www.opengl.org/sdk/docs/man/xhtml/glVertexPointer.xml
When using VBOs those pointers are relative to VBO data. That's why it's usually 0 or small offset value.
stride = 0 means the data is tightly packed and OpenGL can calculate the stride from other parameters.
I usually use VBO like this:
struct Vertex
{
vec3f position;
vec3f normal;
};
Vertex[size] data;
...
glBufferData(GL_ARRAY_BUFFER, size*sizeof(Vertex), data, GL_STATIC_DRAW);
...
glVertexPointer(3,GL_FLOAT,sizeof(Vertex),offsetof(Vertex,position));
glNormalPointer(3,GL_FLOAT,sizeof(Vertex),offsetof(Vertex,normal));
Just pass a single chunk of vertex data. And then use gl*Pointer to describe how the data is packed using offsetof macro.
For knowing about the offset of the last parameter just look at this post....
What's the "offset" parameter in GLES20.glVertexAttribPointer/glDrawElements, and where does ptr/indices come from?

Rendering with glDrawRangeElements() not working properly

This is a followup to my previous question. All of my questions were answered in my last thread but this is a new error that I am having. When rendering in intermediate mode, everything looks great.
In fact:
http://i.imgur.com/OFV6i.png
Now, I am rendering with the glDrawRangeElements() and look what happens:
http://i.imgur.com/mEmH5.png
Has anyone seen something like this before? It looks as if some of the indices are simply in the middle, which makes no sense at all.
This is the function I am using to render my level.
void WLD::renderIntermediate(GLuint* textures, long curRegion, CFrustum cfrustum)
{
// Iterate through all of the regions in the PVS
for(int i = 0; i < regions[curRegion].visibility.size(); i++)
{
// Grab a visible region
int vis = regions[curRegion].visibility[i];
// Make sure it points to a mesh
if(regions[vis].meshptr == NULL)
continue;
// Make sure it is in our PVS
if(!cfrustum.BoxInFrustum(regions[vis].meshptr->minX, regions[vis].meshptr->minY, regions[vis].meshptr->minZ, regions[vis].meshptr->maxX, regions[vis].meshptr->maxY, regions[vis].meshptr->maxZ))
continue;
// Optional: Only render the region we are in (for testing)
//if(vis != curRegion)
// continue;
// Now find the ID of the zone mesh in the array
int id = regions[vis].meshptr->id;
// Figure out how many calls we will have to do to render it (different textures)
int calls = zmeshes[id].numPolyTex;
int count = 0;
// Render each call in batches
for(int j = 0; j < calls; j++)
{
// Bind the correct texture
glBindTexture(GL_TEXTURE_2D, textures[zmeshes[id].polyTexs[j].texIndex]);
// Set up rendering states
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
errorLog.writeSuccess("Drawing debug: ID: %i - Min: %i - Max: %i - Polys in this call %i - Count: %i - Location: %i", id, zmeshes[id].minmax[j].min, zmeshes[id].minmax[j].max, zmeshes[id].polyTexs[j].polyCount, zmeshes[id].polyTexs[j].polyCount * 3, count);
glVertexPointer(3, GL_FLOAT, sizeof(Vertex), &zmeshes[id].vertices[0].x);
glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), &zmeshes[id].vertices[0].u);
// Draw
glDrawRangeElements(GL_TRIANGLES, zmeshes[id].minmax[j].min, zmeshes[id].minmax[j].max, zmeshes[id].polyTexs[j].polyCount * 3, GL_UNSIGNED_SHORT, zmeshes[id].indices + count);
// End of rendering - disable states
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
// Add the number of indices rendered
count += zmeshes[id].polyTexs[j].polyCount * 3;
}
}
}
I've done a ton of debug information indicating that my min/max values are set up correctly. At this point, I think it might be an error with the indices so I am going to go ahead an look over/rewrite that function.
Managed to get it to work. Very thankful that someone on another forum labeled his question accurately where a third vertex was being drawn at the origin.
http://www.gamedev.net/topic/583558-gldrawelements-is-drawing-all-of-my-vertices-with-one-vertex-at-the-origin-solved/page_gopid_4867052#entry4867052
Seems I needed to change my indices datatype from int to short. Works like a charm and I am getting a %1500 increase in FPS.