Circular Dependencies / Incomplete Types - c++

In C++, I have a problem with circular dependencies / incomplete types. The situation is as follows:
Stuffcollection.h
#include "Spritesheet.h";
class Stuffcollection {
public:
void myfunc (Spritesheet *spritesheet);
void myfuncTwo ();
};
Stuffcollection.cpp
void Stuffcollection::myfunc(Spritesheet *spritesheet) {
unsigned int myvar = 5 * spritesheet->spritevar;
}
void myfunc2() {
//
}
Spritesheet.h
#include "Stuffcollection.h"
class Spritesheet {
public:
void init();
};
Spritesheet.cpp
void Spritesheet::init() {
Stuffcollection stuffme;
myvar = stuffme.myfuncTwo();
}
If I keep the includes as shown above, I get the compiler error
spritesheet has not been declared in Stuffcollection.h (line 4 in
the above). I understand this to be due to a circular dependency.
Now if I change #include "Spritesheet.h" to the Forward
Declaration class Spritesheet; in Stuffcollection.h, I get the
compiler error invalid use of incomplete type 'struct Spritesheet'
in Stuffcollection.cpp (line 2 in the above).
Similarly, if I change #include "Stuffcollection.h" to class
Stuffcollection; in Spritesheet.h, I get the compiler error aggregate
'Stuffcollection stuffme' has incomplete type and cannot be defined
in Spritesheet.cpp (line 2 in the above).
What can I do to solve this problem?

You should include Spritesheet.h in Stuffcollection.cpp
Just use forward declaration in the header file not the cpp file, that solves the circular dependency of the header file. The source file has no circular dependency actually.
Stuffcollection.cpp needs to know the complete layout of class Spritesheet(because you dereference it), So you need to include the header which defines the class Spritesheet in that file.
From your previous Q here, I believe that class Stuffcollection is used in the class declaration of Spritesheet header file and hence the above proposed solution.

Use this form for your nested includes:
Stuffcollection.h
#ifndef STUFFCOLLECTION_H_GUARD
#define STUFFCOLLECTION_H_GUARD
class Spritesheet;
class Stuffcollection {
public:
void myfunc (Spritesheet *spritesheet);
void myfuncTwo ();
};
#endif
Stuffcollection.cpp
#include "Stuffcollection.h"
#include "Spritesheet.h"
void Stuffcollection::myfunc(Spritesheet *spritesheet) {
unsigned int myvar = 5 * spritesheet->spritevar;
}
void Stuffcollection::myfuncTwo() {
//
}
Spritesheet.h
#ifndef SPRITESHEET_H_GUARD
#define SPRITESHEET_H_GUARD
class Spritesheet {
public:
void init();
};
#endif
Spritesheet.cpp
#include "Stuffcollection.h"
#include "Spritesheet.h"
void Spritesheet::init() {
Stuffcollection stuffme;
myvar = stuffme.myfuncTwo();
}
General rules I follow:
Don't include an include from an include, dude. Prefer forward declarations if possible.
Exception: include system includes anywhere you want
Have CPP include everything it needs, not relying upon H recursively including it files.
Always use include guards.
Never use pragma

Spritesheet.h doesn't need to include Stuffcollection.h, since no Stuffcollection is used in the class declaration of Spritesheet. Move that include line to Spritesheet.cpp instead and you should be fine.

Related

Cyclic dependency and inheritance compilation error on c++

I have a problem in C++ that involves circular dependencies and inheritance.
I have implemented the design in parts and I will use pesudocode to ilustrate where the problem happens.
The first part is:
//app.h
include rel.h
class Rel; // forward declaration
class App {
shared_ptr<Rel> //member variable
}
//rel.h
include app.h
class App; //forward declaration
class Rel {
shared_ptr<App> //member variable
}
Until here, the program compiles without warnings
Then, I want to add inheritance as follows:
//app.h
include rel.h
include drel.h
class Rel; // forward declaration
class DRel // forward declaration
class App {
shared_ptr<Rel> //member variable
shared_ptr<DRel> //member variable
}
//rel.h (the same as before)
include app.h
class App; //forward declaration
class Rel {
shared_ptr<App> //member variable
}
//drel.h
include app.h
include rel.h
class App; //forward declaration
class DRel: Rel { // compile error here: expected class name before { token
shared_ptr<App> //member variable
}
As you see, the compiler throws "expected class name before { token" which means that Rel is not resolved, but why the first code without inheritance works and the second one doesn't? How can I fix that? Is that a "wrong" pattern?
I am using c++14
I know there are a lot of questions regarding the issues I am having, but I can't find the answer to my specific problem. Maybe I don't see it...
Since all the variables you declare do not need to know the space occupied by App, Rel and DRel, you don't even need to #include the headers in question, you just have to forward declare the name as you do.
So you have you .h with
class A;
class B;
class C {
std::shared_ptr<A> ptra;
std::shared_ptr<B> ptrb;
};
And then your .cpp with
#include "A"
#include "B"
C::C() { ... }
The original headers files needed to be guarded by #ifdefs like this:
#ifndef CYCLIC_DEPENDECY_1
#define CYCLIC_DEPENDECY_1
#include "cyclic_dependency2.h"
class Rel; // forward declaration
class App {
std::shared_ptr<Rel> test; //member variable
};
#endif
#ifndef CYCLIC_DEPENDECY_2
#define CYCLIC_DEPENDECY_2
#include "cyclic_dependency1.h"
class App; //forward declaration
class Rel {
std::shared_ptr<App> test;//member variable
};
#endif
#include <iostream>
#include <memory>
#include "cyclic_dependency2.h"
class Rel; // forward declaration
class DRel; // forward declaration
class DRel: Rel {
std::shared_ptr<App> test ;//member variable
};
main()
{
}

c++ interface tells me that my argument has not been declared

I have a generic class for many states for an automaton. It's declared as follows:
#ifndef STATE_H_
#define STATE_H_
#include "Automat.h"
class State {
public:
virtual void readChar(char c, Automat* automat) = 0;
virtual ~State(){};
};
#endif /* STATE_H_ */
I get this error in eclipse:
Multiple markers at this line
no known conversion for argument 2 from ‘Automat* const’ to ‘int*’
virtual void State::readChar(char, int*)
‘Automat’ has not been declared
My automat is as follows:
#ifndef Automat_H_
#define Automat_H_
#include "../../Scanner/src/IScanner.h"
#include "./States/State.h"
class Automat {
public:
int count;
State* current;
IScanner* scanner;
Automat(IScanner *s);
void readChar(char c);
void setState(State *s);
void error();
~Automat();
};
#endif /* Automat_H_ */
And finally the implementation of Automat, i will leave out some methods.
#include "Automat.h"
#include "./States/StartState.h"
Automat::Automat(IScanner *s) {
current = StartState::makeStartState();
scanner = s;
count = 0;
}
void Automat::readChar(char c) {
current->readChar(c, this);
}
I do not know what causes this. do i need to declare things in an interface? Why does it want to convert the arguments?
Thank you all in advance.
Both headers try to include each other, which is impossible.
Luckily, neither class definition needs the full definition of the other. Each only deals with pointers to the other, for which only a declaration is needed. So replace
#include "Automat.h"
with
class Automat;
and likewise for State.
IMO, I would do that preprocessor stuff in the main file, and just define in each header file one variable, so you know that it's included only once. Also you could do that in "StdAfx.h" if given.
This is just a header mess, please be sure to include it only once. #pragma once may help also.

C++ Method declaration using another class

I'm starting to learn C++ (coming from Java), so bear with me.
I can't seem to get my method declaration to accept a class I've made.
'Context' has not been declared
I think I'm not understanding a fundamental concept, but I don't know what.
Expression.h
#include "Context.h"
class Expression {
public:
void interpret(Context *); // This line has the error
Expression();
virtual ~Expression();
};
Context.h
#include <stack>
#include <vector>
#include "Expression.h"
class Context {
private:
std::stack<Expression*,std::vector<Expression*> > theStack;
public:
Context();
virtual ~Context();
};
You have to forward declare Expression in Context or vice versa (or both), otherwise you have a cyclic dependency. For example,
Expression.h:
class Context; // no include, we only have Context*.
class Expression {
public:
void interpret(Context *); // This line has the error
Expression();
virtual ~Expression();
};
Context.h:
#include <stack>
#include <vector>
class Expression; // No include, we only have Expression*
class Context {
private:
std::stack<Expression*,std::vector<Expression*> > theStack;
public:
Context();
virtual ~Context();
};
You can perform the forward declarations because the full definition of the classes isn't needed, since you are only referring to pointers to the other class in each case. It is likely that you will need the includes in the implementation files (that is, #include "Context.h" in Expression.cpp and #include Expression.h in Context.cpp).
Finally, remember to put include guards in your header files.
In C++, class definitions always have to end with a semi-colon ;
so example:
class foo {};
Java and C# doesn't require that, so I can see your confusion.
Also it looks like both your header files include each other. Thus it's kind of like a snake eating it's tail: Where does it start? Thus in your Expression.h you can replace the 'include' with a forward declaration instead:
class Context;
class Expression {
public:
void interpret(Context *); // This line has the error
Expression();
virtual ~Expression();
}
And last but not least, you should put a compiler guard to prevent the header from getting included more than once into a .cpp file. You can put a #pragma once in the top of the header file. That is useful if you are using visual studio and the microsoft compiler. I don't know if GCC supports it or not. Or you can wrap your header file like this:
#ifndef EXPRESSION_H_
#define EXPRESSION_H_
class Context;
class Expression {
public:
void interpret(Context *); // This line has the error
Expression();
virtual ~Expression();
}
#endif
you might need to forward declare the classes Context and Expression in the header files before the #include
e.g.
#include <stack>
#include <vector>
// forward declaration
class Context;
class Expression;
#include "Expression.h"
class Context {
private:
std::stack<Expression*,std::vector<Expression*> > theStack;
public:
Context();
virtual ~Context();
}

How to avoid #include dependency to external library

If I'm creating a static library with a header file such as this:
// Myfile.h
#include "SomeHeaderFile.h" // External library
Class MyClass
{
// My code
};
Within my own project I can tell the compiler (in my case, Visual Studio) where to look for SomeHeaderFile.h. However, I don't want my users to be concerned with this - they should be able to include my header without having to inform their compiler about the location of SomeHeaderFile.h.
How is this type of situation normally handled?
This is a classic "compilation firewall" scenario. There are two simple solutions to do:
Forward-declare any classes or functions that you need from the external library. And then include the external library's header file only within your cpp file (when you actually need to use the classes or functions that you forward-declared in your header).
Use the PImpl idiom (or Cheshire Cat) where you forward-declare an "implementation" class that you declare and define only privately (in the cpp file). You use that private class to put all the external-library-dependent code to avoid having any traces of it in your public class (the one declared in your header file).
Here is an example using the first option:
#ifndef MY_LIB_MY_HEADER_H
#define MY_LIB_MY_HEADER_H
class some_external_class; // forward-declare external dependency.
class my_class {
public:
// ...
void someFunction(some_external_class& aRef); // declare members using the forward-declared incomplete type.
};
#endif
// in the cpp file:
#include "my_header.h"
#include "some_external_header.h"
void my_class::someFunction(some_external_class& aRef) {
// here, you can use all that you want from some_external_class.
};
Here is an example of option 2:
#ifndef MY_LIB_MY_HEADER_H
#define MY_LIB_MY_HEADER_H
class my_class_impl; // forward-declare private "implementation" class.
class my_class {
private:
std::unique_ptr<my_class_impl> pimpl; // a vanishing facade...
public:
// ...
};
#endif
// in the cpp file:
#include "my_header.h"
#include "some_external_header.h"
class my_class_impl {
private:
some_external_class obj;
// ...
public:
// some functions ...
};
my_class::my_class() : pimpl(new my_class_impl()) { };
Say the external header file contains the following:
external.h
class foo
{
public:
foo();
};
And in your library you use foo:
myheader.h:
#include "external.h"
class bar
{
...
private:
foo* _x;
};
To get your code to compile, all you have to do is to forward declare the foo class (after that you can remove the include):
class foo;
class bar
{
...
private:
foo* _x;
};
You would then have to include external.h in your source file.

c++ class from other file

Im having a little problem with classes.
Here is some of my code:
//GameMap.h
#ifndef GAMEMAP_H
#define GAMEMAP_H
#include "apath.h"
class GameMap
{
/*class definition here*/
};
#endif
and
//apath.h
#ifndef APATH_H
#define APATH_H
class path
{
//some code...
void DoSomething(GameMap map);
//rest of class body
};
#endif
I cant use GameMap in apath.h, when I try to include "GameMap.h in this file I get some stupid errors... I also tried to add class GameMap; before definition of path class. Nothing helped... I really need to use it here...
If needed I can post some more code.
Thanx for any replies!
You should use forward declaration of class GameMap in apath.h:
class GameMap; // forward declaration
class path
{
//some code...
void DoSomething(GameMap map);
//rest of class body
};
Check: When can I use a forward declaration?
In following example I use forward declaration of class A so that I'm able to declare function useA that uses it:
// file a.h
class A;
void useA(A a);
and then in main.cpp I have:
#include "a.h"
class A
{
public:
void foo() { cout << "A"; }
};
void useA(A a)
{
a.foo();
}
which is absolutely correct, since class A is already defined here.
Hope this helps.
You should check PIMPL idiom.
In path header:
class GameMap;
class Path
{
public:
void useMap( GameMap * map );
};
In path source:
#include "Path.h"
#include "GameMap.h"
void Path::useMap( GameMap * map )
{
// Use map class
}
More links: link and connected topic.
You have a circular include problem. GamePath.h includes apath.h, so trying to include GamePath.h in apath.h is brittle at best and gives errors (your case) at worst. The best bet is to find which pieces of apath.h are used by GamePath.h, and refactor those into a common header file, say common.h, and include common.h in both GamePath.h and apath.h. That way you don't have a circular include anymore, and you can draw a graph of includes as a nice beautiful DAG.
You're trying to do circular includes, which are obviously forbidden.
I'd suggest you forward declare GameMap in apath.h and pass it as a const reference:
class GameMap; // forward declaration
class path
{
//some code...
void DoSomething(const GameMap &map);
//rest of class body
};
const ref is better than simple ref since it tells explicitly that the object cannot change during the function call.
make external declaration in apath.h
class GameMap;
After it change signature of method:
void DoSomething(GameMap& map);
Or
void DoSomething(GameMap* map);