I have a problem with this Binary Search Tree.
After that i cut a leave, if I try to show the tree VisualStudio answer me this message
An unhandled exception of type 'System.AccessViolationException' occurred in ABR1.exe
Additional information: Attempted to read or write protected memory. This is often an indication that other memory is corrupt.
It's more that 3 days that i try to understand could someone help me???
// ABR1.cpp : main project file.
#include "stdafx.h"
#include <iostream>
using namespace System;
using namespace std;
template <class T>
class ABR{
private:
struct Leaf{
T value;
struct Leaf *DX; //
struct Leaf *SX; //
};
Leaf *root;
public:
//constructors
ABR() { root = NULL; }
//destructor
//~ABR();
void appendLeaf(T);
bool cutLeaf(T);
bool isInTree(T) const;
Leaf* findLeaf(T) const;
void showTreeInOrder() const { showTreeInOrder(root); }
void showTreeInOrder(Leaf *) const;
void showTreePreOrder() const { showTreePreOrder(root); }
void showTreePreOrder(Leaf *) const;
};
template <class T>
void ABR<T>::appendLeaf(T newValue){
if (isInTree(newValue)){
cout << "The value is just present..." << endl;
return;
}
Leaf *newLeaf; // To point to a new leaf
Leaf *ptrLeaf; // To move in the tree
// Allocate the necessary memory
newLeaf = new Leaf; //generate the new leaf
newLeaf-> value = newValue;
newLeaf-> DX = NULL;
newLeaf-> SX = NULL;
if(!root) //if is the first leaf
root = newLeaf;
else{
ptrLeaf = root;
//cout<<ptrLeaf->value<<ptrLeaf->SX<<ptrLeaf->DX<<endl;
while (ptrLeaf != NULL){
//cout << ptrLeaf->value <<"\t";
if (ptrLeaf->value < newValue){
if (ptrLeaf->DX == NULL){
ptrLeaf->DX = newLeaf;
return;
}
else
ptrLeaf = ptrLeaf->DX;
}
else{
if(ptrLeaf->SX == NULL){
ptrLeaf->SX = newLeaf;
return;
}
else
ptrLeaf = ptrLeaf->SX;
}
}
}
}
template <class T>
bool ABR<T>::isInTree(T toFind) const{
Leaf *ptrLeaf;
ptrLeaf = root;
while (ptrLeaf){
if (ptrLeaf->value == toFind)
return true;
else{
if (ptrLeaf->value < toFind)
ptrLeaf = ptrLeaf->DX;
else
ptrLeaf = ptrLeaf->SX;
}
}
return false;
}
template <class T>
typename ABR<T>::Leaf * ABR<T>::findLeaf(T toFind) const
{
Leaf *ptr;
ptr = root;
while(ptr != NULL)
{
//cout << ptr->value << "#" << endl;
if (toFind == ptr->value){
//cout << "Trovato";
return ptr;
}
else if (ptr->value < toFind)
ptr = ptr->DX;
else
ptr = ptr->SX;
} cout << "Element don't find" << endl;
return NULL;
}
template <class T>
void ABR<T>::showTreeInOrder(Leaf *ptr) const
{
if(ptr != NULL)
{
showTreeInOrder(ptr->SX);
cout << ptr->value << endl;
showTreeInOrder(ptr->DX);
}
}
template <class T>
void ABR<T>::showTreePreOrder(Leaf *ptr) const
{
if(ptr != NULL)
{
showTreePreOrder(ptr->DX);
cout << ptr->value << endl;
showTreePreOrder(ptr->SX);
}
}
template <class T>
bool ABR<T>::cutLeaf(T toCut)
{
Leaf *Leafptr, *tempLeafptr;
Leafptr = findLeaf(toCut);
if (Leafptr == NULL)
{
cout << "The element is not present..." << endl;
return false;
}
else if (Leafptr->DX == NULL)
{
tempLeafptr = Leafptr;
Leafptr = Leafptr->SX;
delete tempLeafptr;
return true;
}
else if (Leafptr->SX == NULL)
{
tempLeafptr = Leafptr;
Leafptr = Leafptr->DX;
delete tempLeafptr;
return true;
}
else
{
tempLeafptr = Leafptr->DX;
while (tempLeafptr->SX)
tempLeafptr = tempLeafptr->SX;
tempLeafptr->DX = Leafptr->SX;
tempLeafptr = Leafptr;
Leafptr = Leafptr->DX;
delete tempLeafptr;
return true;
}
}
int main(){
ABR<int> albero;
for(int a = 0.0; a < 100.0; a+= 3)
albero.appendLeaf(a);
albero.appendLeaf(1000);
albero.appendLeaf(1001);
albero.showTreePreOrder();
int b = 75;
albero.cutLeaf(b);
albero.showTreePreOrder(); //ERROR
//albero.showTreeInOrder();//SAME ERROR
system("PAUSE");
return 0;
}
You're recursing in showTreePreOrder and encountering a stack overflow. Running it in the debugger told me this in under one minute.
EDIT:
Your problem is in this section of cutLeaf(). First, you're assuming Leafptr->SX isn't null and you're deleting it, but it is null for the last leaf. Second, when you delete the leaf you don't set its parent's DX pointer to null. Therefore, when you traverse the list, you traverse into leaves that have been freed.
else if (Leafptr->DX == NULL)
{
tempLeafptr = Leafptr;
Leafptr = Leafptr->SX;
delete tempLeafptr;
return true;
}
The same problems exist in the else clause.
Related
This question already has answers here:
What is a debugger and how can it help me diagnose problems?
(2 answers)
What is a segmentation fault?
(18 answers)
Why dereferencing a null pointer is undefined behaviour?
(13 answers)
Closed 7 months ago.
I have an implementation of a binary tree using pointers. I am trying to print its nodes using preorder depth first traversal using recursion. When the program gets to right nodes it says segmentation fault. The problem is that I cannot find the error/mistake in the binary tree implementation. Program works when i use different btree implementation, so I assume the problem is in this btree implementation using pointers.
Below is my binary tree implementation
#include "../data-structures/trees/binary-tree-pointers/tree.h"
using namespace std;
void PrintTree(BinaryTree<int> tree, BinaryTree<int>::node node) {
cout << tree.Label(node) << endl;
if (tree.LeftChild(node) != tree.lambda) PrintTree(tree, tree.LeftChild(node));
if (tree.RightChild(node) != tree.lambda) PrintTree(tree, tree.RightChild(node));
}
int main() {
BinaryTree<int> tree;
BinaryTree<int>::node node;
tree.CreateRoot(1);
tree.CreateLeftChild(tree.Root(), 2);
tree.CreateRightChild(tree.Root(), 3);
node = tree.Root();
node = tree.LeftChild(node);
tree.CreateLeftChild(node, 4);
tree.CreateRightChild(node, 5);
node = tree.LeftChild(node);
tree.CreateLeftChild(node, 7);
node = tree.Root();
node = tree.RightChild(node);
tree.CreateRightChild(node, 8);
PrintTree(tree, tree.Root());
return 0;
}
Here is my binary tree implementation:
#include <iostream>
#include <cstdlib>
template <typename nodeType>
class BinaryTree {
private:
struct Tnode {
Tnode *parent, *left, *right;
nodeType label;
};
Tnode *B;
public:
typedef Tnode* node;
const node lambda = NULL;
void Del(node n) {
if (n->left != NULL) Del(n->left);
if (n->right != NULL) Del(n->right);
delete n;
}
void Prnt(node n) {
std::cout << n->label << " ";
if (n->left != NULL) Prnt(n->left);
if (n->right != NULL) Prnt(n->right);
}
BinaryTree() {
B = NULL;
}
BinaryTree(nodeType x) {
B = new Tnode;
B->parent = B->left = B->right = NULL;
B->label = x;
}
bool IsEmpty() {
return B == lambda;
}
nodeType Label(node n) {
if (n == lambda) {
std::cout << "That node doesn't exist!" << std::endl;
exit(EXIT_FAILURE);
}
return n->label;
}
node Root() {
return B;
}
node Parent(node n) {
if (n == lambda) {
std::cout << "That node doesn't exist!" << std::endl;
exit(EXIT_FAILURE);
}
return n->parent;
}
node LeftChild(node n) {
if (n == lambda) {
std::cout << "That node doesn't exist!" << std::endl;
exit(EXIT_FAILURE);
}
return n->left;
}
node RightChild(node n) {
if (n == lambda) {
std::cout << "That node doesn't exist!" << std::endl;
exit(EXIT_FAILURE);
}
return n->right;
}
void ChangeLabel(node n, nodeType x) {
if (n == lambda) {
std::cout << "That node doesn't exist!" << std::endl;
exit(EXIT_FAILURE);
}
n->label = x;
}
void CreateRoot(nodeType x) {
if (!this->IsEmpty()) {
std::cout << "Can't create root! Tree is not empty!" << std::endl;
exit(EXIT_FAILURE);
}
B = new Tnode;
B->parent = B->left = B->right = NULL;
B->label = x;
}
void CreateLeftChild(node n, nodeType x) {
if (n == lambda) {
std::cout << "That node doesn't exist!" << std::endl;
exit(EXIT_FAILURE);
}
if (n->left != lambda) {
std::cout << "Can't create left node! It already exists" << std::endl;
exit(EXIT_FAILURE);
}
Tnode *newNode = new Tnode;
newNode->left = newNode->right = NULL;
newNode->parent = n;
newNode->label = x;
n->left = newNode;
}
void CreateRightChild(node n, nodeType x) {
if (n == lambda) {
std::cout << "That node doesn't exist!" << std::endl;
exit(EXIT_FAILURE);
}
if (n->right != lambda) {
std::cout << "Can't create right node! It already exists" << std::endl;
exit(EXIT_FAILURE);
}
Tnode *newNode = new Tnode;
newNode->label = x;
newNode->left = newNode->right = NULL;
newNode->parent = n;
n->right = newNode;
}
void Delete(node n) {
if (n == lambda) {
std::cout << "That node doesn't exist!" << std::endl;
exit(EXIT_FAILURE);
}
if (n->parent != NULL) {
if (n->parent->left == n) n->parent->left = NULL;
else n->parent->right = NULL;
Del(n);
}
else {
Del(n);
B = NULL;
}
}
void Print() {
Prnt(B);
std::cout << std::endl;
}
~BinaryTree() {
if (B != lambda) Del(B);
}
};
Consider the following AVL-tree implementation. Each node contains a list of numbers.The key is named workload, but consider it as a plain double variable. If a key is equal to the key of an already existing node, the number gets pushed into the list. Every time I pop a number from a list, I perform a check, if the node's list is empty -> remove the node. But, after the element with key=3 gets removed completely, the list of the node with key=4 is suddenly empty. I've been trying to solve it for over 10 hours now, it's actually the first time I ever needed to ask something here. Pardon me if I miss a few things.
#include<iostream>
#include <list>
using namespace std;
class BST
{
struct node
{
double workload;
list<int> numbers;
node* left;
node* right;
int height;
};
node* root;
unsigned long long size;
bool empty;
void makeEmpty(node* t)
{
if(t == NULL)
return;
makeEmpty(t->left);
makeEmpty(t->right);
delete t;
}
node* insert(double workload,int number, node* t)
{
if(t == NULL)
{
t = new node;
t->workload = workload;
t->numbers.push_back(number);
t->height = 0;
t->left = t->right = NULL;
}
else if(t->workload == workload){
t->numbers.push_back(number);
}
else if(workload < t->workload)
{
t->left = insert(workload, number, t->left);
if(height(t->left) - height(t->right) == 2)
{
if(workload < t->left->workload)
t = singleRightRotate(t);
else
t = doubleRightRotate(t);
}
}
else if(workload > t->workload)
{
t->right = insert(workload, number, t->right);
if(height(t->right) - height(t->left) == 2)
{
if(workload > t->right->workload)
t = singleLeftRotate(t);
else
t = doubleLeftRotate(t);
}
}
//if x == t->workload instead of using int workload. its a list and we push into it.
t->height = max(height(t->left), height(t->right))+1;
return t;
}
node* singleRightRotate(node* &t)
{
node* u = t->left;
t->left = u->right;
u->right = t;
t->height = max(height(t->left), height(t->right))+1;
u->height = max(height(u->left), t->height)+1;
return u;
}
node* singleLeftRotate(node* &t)
{
node* u = t->right;
t->right = u->left;
u->left = t;
t->height = max(height(t->left), height(t->right))+1;
u->height = max(height(t->right), t->height)+1 ;
return u;
}
node* doubleLeftRotate(node* &t)
{
t->right = singleRightRotate(t->right);
return singleLeftRotate(t);
}
node* doubleRightRotate(node* &t)
{
t->left = singleLeftRotate(t->left);
return singleRightRotate(t);
}
node* findMin(node* t)
{
if(t == NULL)
return NULL;
else if(t->left == NULL)
return t;
else
return findMin(t->left);
}
node* findMax(node* t)
{
if(t == NULL)
return NULL;
else if(t->right == NULL)
return t;
else
return findMax(t->right);
}
node* find(node* t,double workload){
if (t->workload == workload){
return t;
}
else if(workload < t->workload && t->left!=NULL)
return find(t->left,workload);
else if(workload > t->workload && t->right!=NULL)
return find(t->right,workload);
else{
cout << "Null node encountered" << endl;
return t;
}
}
node* remove(double x, node* t)
{
node* temp;
// Element not found
if(t == NULL)
return NULL;
// Searching for element
if(x < t->workload)
t->left = remove(x, t->left);
else if(x > t->workload)
t->right = remove(x, t->right);
// Element found
// With 2 children
else if(t->left && t->right)
{
temp = findMin(t->right);
t->workload = temp->workload;
t->right = remove(t->workload, t->right);
}
// With one or zero child
else
{
temp = t;
if(t->left == NULL)
t = t->right;
else if(t->right == NULL)
t = t->left;
delete temp;
}
if(t == NULL)
return t;
t->height = max(height(t->left), height(t->right))+1;
// If node is unbalanced
// If left node is deleted, right case
if(height(t->left) - height(t->right) == -2)
{
// right right case
if(height(t->right->right) - height(t->right->left) == 1)
return singleLeftRotate(t);
// right left case
else
return doubleLeftRotate(t);
}
// If right node is deleted, left case
else if(height(t->right) - height(t->left) == 2)
{
// left left case
if(height(t->left->left) - height(t->left->right) == 1){
return singleRightRotate(t);
}
// left right case
else
return doubleRightRotate(t);
}
return t;
}
int height(node* t)
{
return (t == NULL ? -1 : t->height);
}
int getBalance(node* t)
{
if(t == NULL)
return 0;
else
return height(t->left) - height(t->right);
}
void inorder(node* t)
{
if(t == NULL)
return;
inorder(t->left);
cout << t->workload<< " ";
inorder(t->right);
}
//Reverse inorder (Sorted highest to lowest)
void rinorder(node* t)
{
if(t == NULL)
return;
rinorder(t->right);
cout << t->workload << " ";
rinorder(t->left);
}
void preorder(node* t)
{
if (t == NULL)
return;
cout << t->workload << " ";
preorder(t->left);
preorder(t->right);
}
void postorder(node* t)
{
if (t == NULL)
return;
postorder(t->left);
postorder(t->right);
cout << t->workload << " ";
}
public:
BST()
{
root = NULL;
}
void insert(double workload, int number)
{
root = insert(workload, number, root);
}
void remove(double workload)
{
root = remove(workload, root);
}
void displayrin()
{
cout << "Rinorder: ";
rinorder(root);
cout << endl;
}
void displayin()
{
cout << "Inorder: ";
inorder(root);
cout << endl;
}
void displaypost()
{
cout << "Postorder: ";
postorder(root);
cout << endl;
}
void displaypre()
{
cout << "Preorder: ";
preorder(root);
cout << endl;
}
double getMax(){
return findMax(root)->workload;
}
int getMaxNum(){
return find(root,getMax())->numbers.front();
}
int getNum(double workload){
return find(root,workload)->numbers.front();
}
//We pop a Num from a node
void popnumber(double workload){
node *t = find(root,workload);
if(t!=NULL){
if(!t->numbers.empty()){
t->numbers.pop_front();
//If the Num list of the node is empty, remove node
if(t->numbers.empty()){
remove(t->workload);
}
}
}
}
};
int main()
{
BST t;
//key value pairs
t.insert(2,1);
t.insert(3,1);
t.insert(3,2);
t.insert(4,7);
cout << t.getNum(4) << endl;
cout << t.getNum(3)<<endl;
t.popnumber(3);
cout << t.getNum(3)<<endl;
t.popnumber(3);
t.displayin();
t.displaypost();
t.displaypre();
t.displayrin();
cout << t.getNum(4) << endl;
cout << "The max is : " << t.getMax() << endl;
cout << "The top Num of the Max is : " << t.getMaxNum() << endl;
return 0;
}
As mentioned in the comments, the problem is in the "Element found With 2 children" section of remove.
To remove the element, you find the next element in the tree. Your implementation then wants to copy the contents of the found node (temp). You copy the workload value, so that both t and temp have the same workload value (4). You do not copy the numbers list. The t node has a workload of 4 and an empty numbers list, while temp has a workload of 4 and a numbers list consisting of one element, 7. You then delete temp, losing the list.
One fix would be to copy (or move) numbers from temp to t before removing it from the tree. Adding a MoveData method to node that would move the data fields (while not altering the tree specific fields) would make it easier to add new data fields.
Another fix would be to change how you're doing the data update. If you update all pointers (and other tree related fields like height), then you don't have to worry about the data (and any pointers/iterators to the nodes would not be invalidated).
Im trying to figure out how to calculate the number of leaf nodes in a binary search tree.
I keep getting a run-time error and CodeBlocks keeps crashing at the final return statement. I've seen multiple examples on here and I still can't seem to understand where I'm going wrong.
I'm trying to do this recursively however as i stated previously as soon as i add the function number_of_leaves(p -> left)+ number_of_leaves(p-> right)
CodeBlocks stops working after it prints out:
Empty tree has 0 leaf nodes. Answer:0
Single node has 1 leaf node. Answer 1
Crashes here
.
#include <queue>
#include <stack>
#include <iostream>
#include <vector>
#include <stdlib.h>
#ifndef BINARY_SEARCH_TREE
#define BINARY_SEARCH_TREE
template<class T>
class Stack: public std::stack<T> {
public:
T pop() { T tmp = std::stack<T>::top(); std::stack<T>::pop(); return tmp; }
};
template<class T>
class Queue: public std::queue<T> {
public:
T dequeue() { T tmp = std::queue<T>::front(); std::queue<T>::pop(); return tmp; }
void enqueue(const T& el) { push(el); }
};
template<class T>
class BSTNode {
public:
BSTNode() { left = right = 0; }
BSTNode(const T& e, BSTNode<T> *l = 0, BSTNode<T> *r = 0)
{ el = e, left = l, right = r; }
T el;
BSTNode<T> *left, *right;
};
template<class T>
class BST {
public:
BST() { root = 0; }
~BST() { clear(); }
void clear() { clear(root), root = 0; }
bool is_empty() const { return root == 0; }
void preorder() { preorder(root); }
void inorder() { inorder(root); }
void postorder() { postorder(root); }
void insert(const T&);
T* search(const T& el) const { return search(root, el); }
void find_and_delete_by_copying(const T&);
void find_and_delete_by_merging(const T&);
void breadth_first();
void balance(std::vector<T>, int, int);
bool is_perfectly_balanced() const { return is_perfectly_balanced(root) >= 0; }
int number_of_leaves() const { return number_of_leaves(root); }
T* recursive_search(const T& el) const { return recursive_search(root, el); }
void recursive_insert(const T& el) { recursive_insert(root, el); }
protected:
void clear(BSTNode<T>*);
T* search(BSTNode<T>*, const T&) const;
void preorder(BSTNode<T>*);
void inorder(BSTNode<T>*);
void postorder(BSTNode<T>*);
virtual void visit(BSTNode<T>* p) // virtual allows re-definition in derived classes
{ std::cout << p->el << " "; }
void delete_by_copying(BSTNode<T>*&);
void delete_by_merging(BSTNode<T>*&);
int is_perfectly_balanced(BSTNode<T>*) const; // To be provided (A4)
int number_of_leaves(BSTNode<T>*) const; // To be provided (A4)
void recursive_insert(BSTNode<T>*&, const T&); // To be provided (P6)
T* recursive_search(BSTNode<T>*, const T&) const; // To be provided (P6)
BSTNode<T>* root;
};
#endif
template<class T>
void BST<T>::clear(BSTNode<T> *p)
{
if (p != 0) {
clear(p->left);
clear(p->right);
delete p;
}
}
template<class T>
void BST<T>::insert(const T& el)
{
BSTNode<T> *p = root, *prev = 0;
while (p != 0) { // find a place for inserting new node;
prev = p;
if (el < p->el)
p = p->left;
else
p = p->right;
}
if (root == 0) // tree is empty;
root = new BSTNode<T>(el);
else if (el < prev->el)
prev->left = new BSTNode<T>(el);
else
prev->right = new BSTNode<T>(el);
}
template<class T>
T* BST<T>::search(BSTNode<T>* p, const T& el) const
{
while (p != 0) {
if (el == p->el)
return &p->el;
else if (el < p->el)
p = p->left;
else
p = p->right;
}
return 0;
}
template<class T>
void BST<T>::inorder(BSTNode<T> *p)
{
if (p != 0) {
inorder(p->left);
visit(p);
inorder(p->right);
}
}
template<class T>
void BST<T>::preorder(BSTNode<T> *p)
{
if (p != 0) {
visit(p);
preorder(p->left);
preorder(p->right);
}
}
template<class T>
void BST<T>::postorder(BSTNode<T>* p)
{
if (p != 0) {
postorder(p->left);
postorder(p->right);
visit(p);
}
}
template<class T>
void BST<T>::delete_by_copying(BSTNode<T>*& node)
{
BSTNode<T> *previous, *tmp = node;
if (node->right == 0) // node has no right child;
node = node->left;
else if (node->left == 0) // node has no left child;
node = node->right;
else {
tmp = node->left; // node has both children;
previous = node; // 1.
while (tmp->right != 0) { // 2.
previous = tmp;
tmp = tmp->right;
}
node->el = tmp->el; // 3.
if (previous == node)
previous->left = tmp->left;
else
previous->right = tmp->left; // 4.
}
delete tmp; // 5.
}
// find_and_delete_by_copying() searches the tree to locate the node containing
// el. If the node is located, the function delete_by_copying() is called.
template<class T>
void BST<T>::find_and_delete_by_copying(const T& el)
{
BSTNode<T> *p = root, *prev = 0;
while (p != 0 && !(p->el == el)) {
prev = p;
if (el < p->el)
p = p->left;
else p = p->right;
}
if (p != 0 && p->el == el) {
if (p == root)
delete_by_copying(root);
else if (prev->left == p)
delete_by_copying(prev->left);
else
delete_by_copying(prev->right);
}
else if (root != 0)
std::cout << "el " << el << " is not in the tree" << std::endl;
else
std::cout << "the tree is empty" << std::endl;
}
template<class T>
void BST<T>::delete_by_merging(BSTNode<T>*& node)
{
BSTNode<T> *tmp = node;
if (node != 0) {
if (!node->right) // node has no right child: its left
node = node->left; // child (if any) is attached to its parent;
else if (node->left == 0) // node has no left child: its right
node = node->right; // child is attached to its parent;
else { // be ready for merging subtrees;
tmp = node->left; // 1. move left
while (tmp->right != 0) // 2. and then right as far as possible;
tmp = tmp->right;
tmp->right = // 3. establish the link between the
node->right; // the rightmost node of the left
// subtree and the right subtree;
tmp = node; // 4.
node = node->left; // 5.
}
delete tmp; // 6.
}
}
template<class T>
void BST<T>::find_and_delete_by_merging(const T& el)
{
BSTNode<T> *node = root, *prev = 0;
while (node != 0) {
if (node->el == el)
break;
prev = node;
if (el < node->el)
node = node->left;
else
node = node->right;
}
if (node != 0 && node->el == el) {
if (node == root)
delete_by_merging(root);
else if (prev->left == node)
delete_by_merging(prev->left);
else
delete_by_merging(prev->right);
}
else if (root != 0)
std::cout << "el " << el << " is not in the tree" << std::endl;
else
std::cout << "the tree is empty" << std::endl;
}
template<class T>
void BST<T>::breadth_first()
{
Queue<BSTNode<T>*> queue;
BSTNode<T> *p = root;
if (p != 0) {
queue.enqueue(p);
while (!queue.empty())
{
p = queue.dequeue();
visit(p);
if (p->left != 0)
queue.enqueue(p->left);
if (p->right != 0)
queue.enqueue(p->right);
}
}
}
template<class T>
void BST<T>::balance (std::vector<T> data, int first, int last)
{
if (first <= last) {
int middle = (first + last)/2;
insert(data[middle]);
balance(data,first,middle-1);
balance(data,middle+1,last);
}
}
template<class T>
void BST<T>::recursive_insert(BSTNode<T>*& p, const T& el)
{
if (p == 0) // Anchor case, tail recursion
p = new BSTNode<T>(el);
else if (el < p->el)
recursive_insert(p->left, el);
else
recursive_insert(p->right, el);
}
template<class T>
T* BST<T>::recursive_search(BSTNode<T>* p, const T& el) const
{
if (p != 0) {
if (el == p->el) // Anchor case, tail recursion
return &p->el;
else if (el < p->el)
return recursive_search(p->left, el);
else
return recursive_search(p->right, el);
}
else
return 0;
}
Problem is here***
I've tryed having a seperate counter to count the nodes, but it just prints all 0s. As soon as i add in the number_of_leaves() it crashes
template<class T>
int BST<T>::number_of_leaves(BSTNode<T>*) const {
BSTNode<T> *p = root;
if(p == NULL){
return 0;
}
if(p->left == NULL && p->right==NULL){
return 1;
}
else
return number_of_leaves(p->left) + number_of_leaves(p-> right);
}
Testing file below:
#include "BST.h"
#include <iostream>
using namespace std;
int main()
{
BST<int> a;
cout << "Empty tree has 0 leaf nodes. Answer: " << a.number_of_leaves() << endl;
a.insert(4);
cout << "Single node has 1 leaf node. Answer: " << a.number_of_leaves() << endl;
a.insert(2);
cout << "Linked list of 2 nodes has 1 leaf node. Answer: "
<< a.number_of_leaves() << endl;
a.insert(6);
cout << "Full binary tree of 3 nodes has 2 leaf nodes. Answer: "
<< a.number_of_leaves() << endl;
a.insert(3), a.insert(1), a.insert(5), a.insert(7);
cout << "Full binary tree of 7 nodes has 4 leaf nodes. Answer: "
<< a.number_of_leaves() << endl;
return 0;
}
In number_of_leaves(BSTNode<T>*), you discard the passed argument and always start from root. You then go down recursively and always do precisely the same operations, which leads to StackOverflow (sorry, I couldn't resist :p). You reach the maximum number of function calls and program is terminated.
template<class T>
int BST<T>::number_of_leaves(BSTNode<T>* start) const
{
if(start == NULL)
{
return 0;
}
if(start->left == NULL && start->right==NULL)
{
return 1;
}
return number_of_leaves(start->left) + number_of_leaves(start-> right);
}
First off code:
`int main(int argc, char** argv)
{
fstream inFile;
inFile.open(argv[1]);
//where 'filename' is a string variable containing the filename
if (inFile.fail())
{
cerr<<"Error opening "<<argv[1]<<endl;
exit(1); //terminate the program
}
else{
string word;
AVLTree<WordStat> avl;
BSTree<WordStat> binary;
while(inFile >> word) {
WordStat a(word, 0);
avl.insert(a);
binary.insert(a);
}
cout << "Table 1:Binary Search Tree [" << argv[1] << "]" << endl;
cout << "In-order Traversal" << endl;
cout << "===================================" << endl;
cout << "Word Frequency" << endl;
cout << "----------------------------------" << endl;
while (binary.isEmpty() != true){
binary.traverse(printResults);
}`
Binary tree implementation:
template <typename E>
BSTree<E>::Node::Node(E s)
{
data = s;
left = NULL;
right = NULL;
}
/* Outer BSTree class definitions */
template <typename E>
BSTree<E>::BSTree()
{
root = NULL;
count = 0;
}
template <typename E>
BSTree<E>::~BSTree()
{
recDestroy(root);
}
template <typename E>
bool BSTree<E>::isEmpty() const
{
return root == NULL;
}
template<typename E>
void BSTree<E>::insert(E item)
{
Node* tmp;
Node* newnode = new Node(item);
/* If it is the first node in the tree */
if (isEmpty())
{
root = newnode;
count++;
return;
}
/*find where it should go */
tmp = root;
while (1)
{
if (tmp->data == item)
{ /* Key already exists. */
tmp->data = item;
delete newnode; /* don’t need it */
return;
}
else if (tmp->data > item)
{
if (!(tmp->left))
{
/* If the key is less than tmp */
tmp->left = newnode;
count++;
return;
}
else
{
/* continue searching for insertion pt. */
tmp = tmp->left;
}
}
else
{
if (!(tmp->right))
{
/* If the key is greater than tmp */
tmp->right = newnode;
count++;
return;
}
else
/* continue searching for insertion point*/
tmp = tmp->right;
}
}
}
template<typename E>
bool BSTree<E>::inTree(E item) const
{
Node* tmp;
if (isEmpty())
return false;
/*find where it is */
tmp = root;
while (1)
{
if (tmp->data == item)
return true;
if (tmp->data > item)
{
if (!(tmp->left))
return false;
/* continue searching */
tmp = tmp->left;
}
else
{
if (!(tmp->right))
return false;
/* continue searching for insertion pt. */
tmp = tmp->right;
}
}
}
template<typename E>
void BSTree<E>::remove(const E& item)
{
Node* nodeptr;
nodeptr = search(item);
if (nodeptr)
{
remove(nodeptr);
count--;
}
}
template<typename E>
const E& BSTree<E>::retrieve(const E& key) const throw (BSTreeException)
{
Node* tmp;
if (isEmpty())
throw BSTreeException("Binary Search Tree Exception: tree empty on retrieve()");
tmp = root;
while(tmp)
{
if (tmp->data == key)
return tmp->data;
if (tmp->data > key)
tmp = tmp->left;
else
tmp = tmp->right;
}
if (tmp == NULL)
throw BSTreeException("Binary Search Tree Exception: key does not exist on retrieve()");
return tmp->data;
}
template<typename E>
void BSTree<E>::traverse(FuncType func)
{
traverse(root,func);
}
template<typename E>
int BSTree<E>::size() const
{
return count;
}
template<typename E>
int BSTree<E>::height() const
{
return height(root);
}
template<typename E>
int BSTree<E>::depth(const E& item) const
{
Node* tmp;
tmp = root;
int depth;
while(tmp != NULL)
{
if (tmp->data == item)
return tmp->data;
if (tmp->data > item)
{
if (tmp->left == NULL)
break;
tmp = tmp->left;
depth++;
}
else
{
if (tmp->right == NULL)
break;
tmp = tmp->right;
depth++;
}
}
return depth;
}
template<typename E>
void BSTree<E>::recDestroy(Node* root)
{
if (root)
{
if (root->left) recDestroy(root->left);
if (root->right) recDestroy(root->right);
delete root;
}
}
template<typename E>
typename BSTree<E>::Node* BSTree<E>::findParent(Node* node)
{
Node* tmp;
tmp = root;
if (tmp == node)
return NULL;
while(1)
{
assert(tmp->data != node->data);
if (tmp->data > node->data)
{
assert(tmp->left != NULL);
if (tmp->left == node)
return tmp;
tmp = tmp->left;
}
else
{
assert(tmp->right != NULL);
if (tmp->right == node)
return tmp;
tmp = tmp->right;
}
}
}
template<typename E>
void BSTree<E>::traverse(Node* node, FuncType func)
{
if (node)
{
traverse(node->left,func);
func(node->data);
traverse(node->right,func);
}
}
template<typename E>
typename BSTree<E>::Node* BSTree<E>::search(const E& item)
{
Node* tmp;
tmp = root;
while(tmp)
{
if (tmp->data == item)
return tmp;
if (tmp->data > item)
tmp = tmp->left;
else
tmp = tmp->right;
}
return tmp;
}
template<typename E>
bool BSTree<E>::remove(Node* node)
{
E data;
Node* parent;
Node* replacement;
parent = findParent(node);
if (node->left && node->right)
{
replacement = node->right;
while (replacement->left)
replacement = replacement->left;
data = replacement->data;
remove(replacement);
node->data = data;
return true;
}
else
{
if (node->left)
replacement = node->left;
else if (node->right)
replacement = node->right;
else
replacement = NULL;
if (!parent)
root = replacement;
else if (parent->left == node)
parent->left = replacement;
else
parent->right = replacement;
delete node;
return true;
}
}
template<typename E>
int BSTree<E>::height(Node* node) const
{
int h = 0;
if (node != NULL)
{
int l_height = height(node->left);
int r_height = height(node->right);
int max_height = max(l_height, r_height);
h = max_height + 1;
}
return h;
}
template<typename E>
void BSTree<E>::levelTraverse(FuncType func)
{
queue<E> q;
q.push(root);
while (q.empty() != true){
Node *tmp = q.pop();
func(tmp);
q.push(tmp->left);
q.push(tmp->right);
}
}
When running the main above, it causes an error with the transverse function in the binary tree as follows "main.cpp:67:36: error: invalid conversion from 'void ()(WordStat)' to 'BSTree::FuncType {aka void ()(const WordStat&)}' [-fpermissive]
binary.traverse(printResults);"
Was wondering if anyone had any leads on fixing this. Thanks!
I think changing printResults interface to void printResults(const WordStat&) will solve the problem
tree.h file that implements all the methods. The insert function is in this file. Everything I try requires a the use of a tree pointer node to be passed as a parameter but we cant change the method headers at all for this assignment so Im lost as to how to implement it. Any help is greatly appreciated thanks!!
#include "treeNode.h"
#include <iomanip>
template <class V>
class tree {
TreeNode<V> * root;
int size;
public:
// default constructor
// by default, the tree is empty
tree(){
root = nullptr;
size = 0;
}
// search value x in tree rooted at node t
bool treeSearch(V x, TreeNode<V>* t){
if(t == nullptr) return false;
if(t->getDatum() == x) return true;
return treeSearch(x, t->getLeft()) || treeSearch(x, t->getRight());
}
bool treeSearch(V x){
treeSearch(x, root);
}
// binary search value x in tree rooted at node t
bool treeBSearch(V x, TreeNode<V>* t){
if(t == nullptr) return false;
if(t->getDatum() == x) return true;
if(t->getDatum() > x)
return treeBSearch(x, t->getLeft());
else
return treeBSearch(x, t->getRight());
}
bool treeBSearch(V x){
return treeBSearch(x, root);
}
// check node t is leaf
bool isLeaf(TreeNode<V>* t){
if(t != nullptr && t->getLeft() == nullptr && t->getRight() == nullptr){
return true;
}else{
return false;
}
}
// find the height of the tree rooted at node t
int height(TreeNode<V>* t){
if(t == nullptr) return -1;
if(isLeaf(t)) return 0;
return 1 + std :: max(height(t->getLeft()), height(t->getRight()));
}
int height(){
return height(root);
}
// find the number of nodes of tree rooted at t
int nNodes(TreeNode<V>* t){
if(t == nullptr) return 0;
return 1 + nNodes(t->getLeft()) + nNodes(t->getRight());
}
int nNodes(){
return nNodes(root);
}
// insert value x to the current tree object
void insert(V x){
}
// print out the values of tree rooted at x
// it shows the hierarchy of the tree
// it will be useful for debugging
void print(TreeNode<V> * x, int indent){
if(x == nullptr) return;
if (x->getRight() != nullptr) {
print(x->getRight(), indent+4);
}
if (indent != 0) {
cout << std::setw(indent) << ' ';
}
if(x->getRight() != nullptr){
cout << " /\n" << std::setw(indent) << ' ';
}
cout << x->getDatum() << endl;
if (x->getLeft() != nullptr) {
cout << std::setw(indent) << ' ' <<" \\\n";
print(x->getLeft(), indent+4);
}
}
void print(){
int count = 0;
print(root, count);
}
};
treeNode.h file that has declares methods
#include
#include
#include
using namespace std;
template <class T>
class TreeNode{
T datum;
TreeNode<T>* left, * right;
public:
// constructor with datum value, left and right are nullptr
TreeNode(T x){
datum=x;
left = nullptr;
right = nullptr;
}
// constructor with datum value, left and right values
TreeNode(T x, TreeNode<T>* lft, TreeNode<T>* rgt){
datum = x;
left = lft;
right = rgt;
}
//destructor releases left and right nodes, if not nullptr
~TreeNode(){
if (left) {
delete left;
}
if (right) {
delete right;
}
}
// get datum value
T getDatum(){
return datum;
}
// get left pointer
TreeNode<T>* getLeft(){
return left;
}
// get right pointer
TreeNode<T>* getRight(){
return right;
}
// set the left pointer
void setLeft(TreeNode<T>* p){
left = p;
}
// set the right pointer
void setRight(TreeNode<T>* p){
right = p;
}
};
test.cpp file that tests whether or not the methods work
#include "tree.h"
int main(){
tree<int> myTree;
myTree.insert(5);
myTree.insert(3);
myTree.insert(2);
myTree.insert(4);
myTree.insert(8);
myTree.insert(6);
myTree.insert(7);
myTree.insert(9);
cout << myTree.treeBSearch(9) << endl;
cout << myTree.treeBSearch(11) << endl;
cout << myTree.nNodes() << endl;
cout << "The Tree Looks Like: " << endl;
myTree.print();
tree<int> myTree2;
myTree2.insert(4);
myTree2.insert(2);
myTree2.insert(1);
myTree2.insert(3);
myTree2.insert(7);
myTree2.insert(5);
// myTree2.print();
}