I have googled alot to learn how to convert my unsigned char* to a printable hex string. So far I am slightly understanding how it all works & the difference between signed & unsigned chars.
Can you tell me what this function I found does? And help me devlop a function that converts a unsigned char*(which is a hashed string) to a printable string?
Does the following function do this:
- it iterates over every second character of the char array string
- on each loop it reads the char at the position string[x], converts it to an unsigned number(with a precision of 2 decimal places) then copies that converted char(number?) to the variables uChar.
- finally it stores the unsigned char uChar in hexstring
void AppManager :: stringToHex( unsigned char* hexString, char* string, int stringLength )
{
// Post:
unsigned char uChar = 0;
for ( int x = 0; x<stringLength; x+=2 )
{
sscanf_s(&string[x], "%02x", &uChar);
hexString[x] = uChar;
}
}
So I guess that means that it converts the character in string to unsigned(& 2dcp) to ensure that it can be correctly stored the hexstring. Why to 2 decimal places, & wont a simple conversion from signed(if that character is signed) to unsigned result in a completely different string?
If I have a unsigned char* how can I go about converting it to something that will let me print it out on screen?
Those aren't decimal places, they're digits. You're saying "don't give me a string shorter than 2; if it's shorter than 2 digits, then pad it with a zero."
This is so that if you have a hex sequence 0x0A it'll actually print 0A and not just A.
Also, there is no signed/unsigned conversion here. Hex strings are hex strings - they don't have a sign. They're a binary representation of the data, and depending on how they're interpreted may be read as two's complement signed integers, unsigned integers, strings, or anything else.
Related
I try to create a program that can evaluate simple math expression like "4+4". The expression is given from the user.
The program saves it in a char* and then searches for binary operation (+,-,*,:) and does the operation.
The problem is that I can't figure out how to convert the single char into a double value.
I know there is the atof function but I want to convert single char.
There is a way to do that without creating a char*?
A char usually represents a character. However, a single char is simply an integer in range of at least [-127,+127] (signed version) or at least [0,255] (unsigned version).
If you obtained a character looking as a digit, the value stored in it is an ASCII number representing it. Digits start at code 48 (for zero) and go up incrementally till code 57 (for nine). Thus, if you take the code and subtract 48, you get the integer value. From there, converting it to double is a matter of casting.
Thus:
char digit = ...
double value = double(digit - 48);
or even better, for convenience:
char digit = ...
double value = double(digit - '0'); //'0' has a built-in value 48
There is a way to do that without creating a char* ???
Sure. You can extract the digit number from a single char as follows:
char c = '4';
double d = c - '0';
// ^^^^^^^ this expression results in a numeric value that can be converted
// to double
This uses the circumstance that certain character tables like ASCII or EBCDIC encode the digits in a continuous set of values starting at '0'.
I'm reading binary data in character format from an accelerometer and it consists of higher byte and lower byte. It's a long time since I worked with C++ and usually only used higher level stuff.
I have the following function:
short char2short(char* hchar, char* lchar)
{
char temp[2];
temp[0] = *hchar;
temp[1] = *lchar;
How can I get that values converted to an integer?
atoi works different as far as I know (e.g. "21" = 21).
Can I just typecast char to int? But how does it work with higher bit and lower bit?
Thanks in advance for any help!
You should store the bytes as unsigned to avoid issues with shifting sign bits.
short char2short(unsigned char hchar, unsigned char lchar)
{
return static_cast<short>(lchar | (hchar << 8));
}
You may also want to use unsigned short. It depends what you expect.
I have code where the user inputs two chars into a string variable. I have a function that verifies that the user input is only two chars long, and that it only contains valid hexadecimal digits.
I want to write these digits to a binary file that's 32 bytes long. I tried:
outFile.write((char*)&string[0], 1);
In a loop that runs 32 times (I want to write one byte at a time) to test, but it just writes the ascii code for the char, not the actual char itself. I expected it to write a nybble and skip a nybble, but it wrote a full byte of ascii information instead. So I tried:
outFile.write((unsigned char*)&string[0], 1);
But my compiler complains about it being an invalid cast.
I want to solve this problem without converting the string into a c-style string. In other words, I want string to contain two chars and represent one byte of information. Not four (plus null characters).
You have a string that represents an integer. So convert the string to an integer:
unsigned char byte = (unsigned char)std::stoi(string, 0, 16);
outFile:write(static_cast<const char*>(&byte), 1);
As a workaround for your missing stoi you can do this:
#include <iostream>
#include <sstream>
#include <ios>
char hexnum[]{"2F"}; // or whatever, upper or lowercase hex digits allowed.
std::istringstream input(hexnum);
int num=0;
input >> std::hex >> num;
unsigned char byte = num;
outFile.write(static_cast<const char*>(&byte), 1);
I have a char a[] of hexadecimal characters like this:
"315c4eeaa8b5f8aaf9174145bf43e1784b8fa00dc71d885a804e5ee9fa40b16349c146fb778cdf2d3aff021dfff5b403b510d0d0455468aeb98622b137dae857553ccd8883a7bc37520e06e515d22c954eba5025b8cc57ee59418ce7dc6bc41556bdb36bbca3e8774301fbcaa3b83b220809560987815f65286764703de0f3d524400a19b159610b11ef3e"
I want to convert it to letters corresponding to each hexadecimal number like this:
68656c6c6f = hello
and store it in char b[] and then do the reverse
I don't want a block of code please, I want explanation and what libraries was used and how to use it.
Thanks
Assuming you are talking about ASCII codes. Well, first step is to find the size of b. Assuming you have all characters by 2 hexadecimal digits (for example, a tab would be 09), then size of b is simply strlen(a) / 2 + 1.
That done, you need to go through letters of a, 2 by 2, convert them to their integer value and store it as a string. Written as a formula you have:
b[i] = (to_digit(a[2*i]) << 4) + to_digit(a[2*i+1]))
where to_digit(x) converts '0'-'9' to 0-9 and 'a'-'z' or 'A'-'Z' to 10-15.
Note that if characters below 0x10 are shown with only one character (the only one I can think of is tab, then instead of using 2*i as index to a, you should keep a next_index in your loop which is either added by 2, if a[next_index] < '8' or added by 1 otherwise. In the later case, b[i] = to_digit(a[next_index]).
The reverse of this operation is very similar. Each character b[i] is written as:
a[2*i] = to_char(b[i] >> 4)
a[2*i+1] = to_char(b[i] & 0xf)
where to_char is the opposite of to_digit.
Converting the hexadecimal string to a character string can be done by using std::substr to get the next two characters of the hex string, then using std::stoi to convert the substring to an integer. This can be casted to a character that is added to a std::string. The std::stoi function is C++11 only, and if you don't have it you can use e.g. std::strtol.
To do the opposite you loop over each character in the input string, cast it to an integer and put it in an std::ostringstream preceded by manipulators to have it presented as a two-digit, zero-prefixed hexadecimal number. Append to the output string.
Use std::string::c_str to get an old-style C char pointer if needed.
No external library, only using the C++ standard library.
Forward:
Read two hex chars from input.
Convert to int (0..255). (hint: sscanf is one way)
Append int to output char array
Repeat 1-3 until out of chars.
Null terminate the array
Reverse:
Read single char from array
Convert to 2 hexidecimal chars (hint: sprintf is one way).
Concat buffer from (2) to final output string buffer.
Repeat 1-3 until out of chars.
Almost forgot to mention. stdio.h and the regular C-runtime required only-assuming you're using sscanf and sprintf. You could alternatively create a a pair of conversion tables that would radically speed up the conversions.
Here's a simple piece of code to do the trick:
unsigned int hex_digit_value(char c)
{
if ('0' <= c && c <= '9') { return c - '0'; }
if ('a' <= c && c <= 'f') { return c + 10 - 'a'; }
if ('A' <= c && c <= 'F') { return c + 10 - 'A'; }
return -1;
}
std::string dehexify(std::string const & s)
{
std::string result(s.size() / 2);
for (std::size_t i = 0; i != s.size(); ++i)
{
result[i] = hex_digit_value(s[2 * i]) * 16
+ hex_digit_value(s[2 * i + 1]);
}
return result;
}
Usage:
char const a[] = "12AB";
std::string s = dehexify(a);
Notes:
A proper implementation would add checks that the input string length is even and that each digit is in fact a valid hex numeral.
Dehexifying has nothing to do with ASCII. It just turns any hexified sequence of nibbles into a sequence of bytes. I just use std::string as a convenient "container of bytes", which is exactly what it is.
There are dozens of answers on SO showing you how to go the other way; just search for "hexify".
Each hexadecimal digit corresponds to 4 bits, because 4 bits has 16 possible bit patterns (and there are 16 possible hex digits, each standing for a unique 4-bit pattern).
So, two hexadecimal digits correspond to 8 bits.
And on most computers nowadays (some Texas Instruments digital signal processors are an exception) a C++ char is 8 bits.
This means that each C++ char is represented by 2 hex digits.
So, simply read two hex digits at a time, convert to int using e.g. an istringstream, convert that to char, and append each char value to a std::string.
The other direction is just opposite, but with a twist.
Because char is signed on most systems, you need to convert to unsigned char before converting that value again to hex digits.
Conversion to and from hexadecimal can be done using hex, like e.g.
cout << hex << x;
cin >> hex >> x;
for a suitable definition of x, e.g. int x
This should work for string streams as well.
The bit of code below is extracting ASCII codes from characters.
When I convert characters in the normal ASCII region I get the value I expect.
When I convert £ and € from the extened region I get a load of 1's padding the INT that I'm storing the character in.
e.g. the output of the below is:
45 (ascii E as expected)
FFFFFF80 (extended ascii € as expected but padded with ones)
It's not causing me an issue but I'm just wondering why this happens.
Here's the code...
unsigned int asciichar[3];
string cTextToEncode = "E€";
for (unsigned int i = 0; i < cTextToEncode.length(); i++)
{
asciichar[i] = (unsigned int)cTextToEncode[i];
cout << hex << asciichar[i] << "\n";
}
Can anyone explain why this is?
Thanks
depending on the implementation a char can be either signed or unsigned. In your case they appear to be signed, so 0x80 is interpreted as -128 instead of 128, hence when cast to an integer it becomes 0xffffff80.
btw, this has nothing at all to do with ASCII
First, there's no € in ASCII (extended or otherwise) because the euro didn't exist when ASCII was created. However, several ASCII-friendly 8-bit encodings do support the € character, but the conversion is done by your source code editor (the compiler merely sees a byte which happens to represent € in your editor, but might be something else entirely on, say, a computer in Israel).
Second, (unsigned int) casts do not extract the ASCII encoding of a character. They merely convert the value of the underlying numeric char type to an unsigned integer. This causes strange things to happen when the converted value is negative - on your compiler, char happens to be signed char and thus characters with an ASCII value larger than 127 end up being negative char values.
You should convert to an unsigned char first, and then to an unsigned int.
You should be careful when promoting signed values.
When promoting signed char to signed int a first bit (sign bit) is taken into account. The algorithm is roughly look like this:
1) If you have 1X-XX-XX-XX (char in binary, X - any binary digit) then int will be (starts with 24 ones) 1...1-1X-XX-XX-XX (binary) -> 0xFFFFFFYY (hex)
2) if you have 0X-XX-XX-XX (binary), then you'll have (starts with 24 zeroes) 0...0-0X-XX-XX-XX (binary) -> 0x000000YY (hex).
In your case you want to force rule #2 all the time. In order to do this, you need to tell compiler to ignore first bit (sign bit). For this you need to use unsigned char.