Scheme -> Clojure: multimethods with predicates in the methods? - clojure

I'm converting some Scheme code to Clojure. The original uses a dispatching pattern that's very similar to multimethods, but with an inverted approach to the matching predicates. For example, there a generic function "assign-operations". The precise implementation details aren't too important at the moment, but notice that it can take a list of argument-predicates.
(define (assign-operation operator handler . argument-predicates)
(let ((record
(let ((record (get-operator-record operator))
(arity (length argument-predicates)))
(if record
(begin
(if (not (fix:= arity (operator-record-arity record)))
(error "Incorrect operator arity:" operator))
record)
(let ((record (make-operator-record arity)))
(hash-table/put! *generic-operator-table* operator record)
record)))))
(set-operator-record-tree! record
(bind-in-tree argument-predicates
handler
(operator-record-tree record)))))
The dispatched functions supply these predicates, one per argument in the arity of the function.
(assign-operation 'merge
(lambda (content increment) content)
any? nothing?)
(assign-operation 'merge
(lambda (content increment) increment)
nothing? any?)
(assign-operation 'merge
(lambda (content increment)
(let ((new-range (intersect-intervals content increment)))
(cond ((interval-equal? new-range content) content)
((interval-equal? new-range increment) increment)
((empty-interval? new-range) the-contradiction)
(else new-range))))
interval? interval?)
Later, when the generic function "merge" is called, each handler is asked if it works on the operands.
As I understand multimethods, the dispatch function is defined across the set of implementations, with dispatch to a specific method based on the return value of the dispatch-fn. In the Scheme above, new assign-operation functions can define predicates arbitrarily.
What would be an equivalent, idiomatic construct in Clojure?
EDIT: The code above comes from "The Art of the Propagator", by Alexey Radul and Gerald Sussman.

You can do this with Clojure's multimethods fairly easily - the trick is to create a dispatch function that distinguishes between the different sets of predicates.
The easiest way to do this is probably just to maintain a vector of "composite predicates" that apply all of the individual predicates to the full argument list, and use the index of this vector as the dispatch value:
(def pred-list (ref []))
(defn dispatch-function [& args]
(loop [i 0]
(cond
(>= i (count #pred-list)) (throw (Error. "No matching function!"))
(apply (#pred-list i) args) i
:else (recur (inc i)))))
(defmulti handler dispatch-function)
(defn assign-operation [function & preds]
(dosync
(let [i (count #pred-list)]
(alter pred-list conj
(fn [& args] (every? identity (map #(%1 %2) preds args))))
(defmethod handler i [& args] (apply function args)))))
Then you can create operations to handle whatever predicates you like as follows:
(assign-operation (fn [x] (/ x 2)) even?)
(assign-operation (fn [x] (+ x 1)) odd?)
(take 15 (iterate handler 77))
=> (77 78 39 40 20 10 5 6 3 4 2 1 2 1 2)

Related

Writing a lazy-as-possible unfoldr-like function to generate arbitrary factorizations

problem formulation
Informally speaking, I want to write a function which, taking as input a function that generates binary factorizations and an element (usually neutral), creates an arbitrary length factorization generator. To be more specific, let us first define the function nfoldr in Clojure.
(defn nfoldr [f e]
(fn rec [n]
(fn [s]
(if (zero? n)
(if (empty? s) e)
(if (seq s)
(if-some [x ((rec (dec n)) (rest s))]
(f (list (first s) x))))))))
Here nil is used with the meaning "undefined output, input not in function's domain". Additionally, let us view the inverse relation of a function f as a set-valued function defining inv(f)(y) = {x | f(x) = y}.
I want to define a function nunfoldr such that inv(nfoldr(f , e)(n)) = nunfoldr(inv(f) , e)(n) when for every element y inv(f)(y) is finite, for each binary function f, element e and natural number n.
Moreover, I want the factorizations to be generated as lazily as possible, in a 2-dimensional sense of laziness. My goal is that, when getting some part of a factorization for the first time, there does not happen (much) computation needed for next parts or next factorizations. Similarly, when getting one factorization for the first time, there does not happen computation needed for next ones, whereas all the previous ones get in effect fully realized.
In an alternative formulation we can use the following longer version of nfoldr, which is equivalent to the shorter one when e is a neutral element.
(defn nfoldr [f e]
(fn [n]
(fn [s]
(if (zero? n)
(if (empty? s) e)
((fn rec [n]
(fn [s]
(if (= 1 n)
(if (and (seq s) (empty? (rest s))) (first s))
(if (seq s)
(if-some [x ((rec (dec n)) (rest s))]
(f (list (first s) x)))))))
n)))))
a special case
This problem is a generalization of the problem of generating partitions described in that question. Let us see how the old problem can be reduced to the current one. We have for every natural number n:
npt(n) = inv(nconcat(n)) = inv(nfoldr(concat2 , ())(n)) = nunfoldr(inv(concat2) , ())(n) = nunfoldr(pt2 , ())(n)
where:
npt(n) generates n-ary partitions
nconcat(n) computes n-ary concatenation
concat2 computes binary concatenation
pt2 generates binary partitions
So the following definitions give a solution to that problem.
(defn generate [step start]
(fn [x] (take-while some? (iterate step (start x)))))
(defn pt2-step [[x y]]
(if (seq y) (list (concat x (list (first y))) (rest y))))
(def pt2-start (partial list ()))
(def pt2 (generate pt2-step pt2-start))
(def npt (nunfoldr pt2 ()))
I will summarize my story of solving this problem, using the old one to create example runs, and conclude with some observations and proposals for extension.
solution 0
At first, I refined/generalized the approach I took for solving the old problem. Here I write my own versions of concat and map mainly for a better presentation and, in the case of concat, for some added laziness. Of course we can use Clojure's versions or mapcat instead.
(defn fproduct [f]
(fn [s]
(lazy-seq
(if (and (seq f) (seq s))
(cons
((first f) (first s))
((fproduct (rest f)) (rest s)))))))
(defn concat' [s]
(lazy-seq
(if (seq s)
(if-let [x (seq (first s))]
(cons (first x) (concat' (cons (rest x) (rest s))))
(concat' (rest s))))))
(defn map' [f]
(fn rec [s]
(lazy-seq
(if (seq s)
(cons (f (first s)) (rec (rest s)))))))
(defn nunfoldr [f e]
(fn rec [n]
(fn [x]
(if (zero? n)
(if (= e x) (list ()) ())
((comp
concat'
(map' (comp
(partial apply map)
(fproduct (list
(partial partial cons)
(rec (dec n))))))
f)
x)))))
In an attempt to get inner laziness we could replace (partial partial cons) with something like (comp (partial partial concat) list). Although this way we get inner LazySeqs, we do not gain any effective laziness because, before consing, most of the computation required for fully realizing the rest part takes place, something that seems unavoidable within this general approach. Based on the longer version of nfoldr, we can also define the following faster version.
(defn nunfoldr [f e]
(fn [n]
(fn [x]
(if (zero? n)
(if (= e x) (list ()) ())
(((fn rec [n]
(fn [x] (println \< x \>)
(if (= 1 n)
(list (list x))
((comp
concat'
(map' (comp
(partial apply map)
(fproduct (list
(partial partial cons)
(rec (dec n))))))
f)
x))))
n)
x)))))
Here I added a println call inside the main recursive function to get some visualization of eagerness. So let us demonstrate the outer laziness and inner eagerness.
user=> (first ((npt 5) (range 3)))
< (0 1 2) >
< (0 1 2) >
< (0 1 2) >
< (0 1 2) >
< (0 1 2) >
(() () () () (0 1 2))
user=> (ffirst ((npt 5) (range 3)))
< (0 1 2) >
< (0 1 2) >
< (0 1 2) >
< (0 1 2) >
< (0 1 2) >
()
solution 1
Then I thought of a more promising approach, using the function:
(defn transpose [s]
(lazy-seq
(if (every? seq s)
(cons
(map first s)
(transpose (map rest s))))))
To get the new solution we replace the previous argument in the map' call with:
(comp
(partial map (partial apply cons))
transpose
(fproduct (list
repeat
(rec (dec n)))))
Trying to get inner laziness we could replace (partial apply cons) with #(cons (first %) (lazy-seq (second %))) but this is not enough. The problem lies in the (every? seq s) test inside transpose, where checking a lazy sequence of factorizations for emptiness (as a stopping condition) results in realizing it.
solution 2
A first way to tackle the previous problem that came to my mind was to use some additional knowledge about the number of n-ary factorizations of an element. This way we can repeat a certain number of times and use only this sequence for the stopping condition of transpose. So we will replace the test inside transpose with (seq (first s)), add an input count to nunfoldr and replace the argument in the map' call with:
(comp
(partial map #(cons (first %) (lazy-seq (second %))))
transpose
(fproduct (list
(partial apply repeat)
(rec (dec n))))
(fn [[x y]] (list (list ((count (dec n)) y) x) y)))
Let us turn to the problem of partitions and define:
(defn npt-count [n]
(comp
(partial apply *)
#(map % (range 1 n))
(partial comp inc)
(partial partial /)
count))
(def npt (nunfoldr pt2 () npt-count))
Now we can demonstrate outer and inner laziness.
user=> (first ((npt 5) (range 3)))
< (0 1 2) >
(< (0 1 2) >
() < (0 1 2) >
() < (0 1 2) >
() < (0 1 2) >
() (0 1 2))
user=> (ffirst ((npt 5) (range 3)))
< (0 1 2) >
()
However, the dependence on additional knowledge and the extra computational cost make this solution unacceptable.
solution 3
Finally, I thought that in some crucial places I should use a kind of lazy sequences "with a non-lazy end", in order to be able to check for emptiness without realizing. An empty such sequence is just a non-lazy empty list and overall they behave somewhat like the lazy-conss of the early days of Clojure. Using the definitions given below we can reach an acceptable solution, which works under the assumption that always at least one of the concat'ed sequences (when there is one) is non-empty, something that holds in particular when every element has at least one binary factorization and we are using the longer version of nunfoldr.
(def lazy? (partial instance? clojure.lang.IPending))
(defn empty-eager? [x] (and (not (lazy? x)) (empty? x)))
(defn transpose [s]
(lazy-seq
(if-not (some empty-eager? s)
(cons
(map first s)
(transpose (map rest s))))))
(defn concat' [s]
(if-not (empty-eager? s)
(lazy-seq
(if-let [x (seq (first s))]
(cons (first x) (concat' (cons (rest x) (rest s))))
(concat' (rest s))))
()))
(defn map' [f]
(fn rec [s]
(if-not (empty-eager? s)
(lazy-seq (cons (f (first s)) (rec (rest s))))
())))
Note that in this approach the input function f should produce lazy sequences of the new kind and the resulting n-ary factorizer will also produce such sequences. To take care of the new input requirement, for the problem of partitions we define:
(defn pt2 [s]
(lazy-seq
(let [start (list () s)]
(cons
start
((fn rec [[x y]]
(if (seq y)
(lazy-seq
(let [step (list (concat x (list (first y))) (rest y))]
(cons step (rec step))))
()))
start)))))
Once again, let us demonstrate outer and inner laziness.
user=> (first ((npt 5) (range 3)))
< (0 1 2) >
< (0 1 2) >
(< (0 1 2) >
() < (0 1 2) >
() < (0 1 2) >
() () (0 1 2))
user=> (ffirst ((npt 5) (range 3)))
< (0 1 2) >
< (0 1 2) >
()
To make the input and output use standard lazy sequences (sacrificing a bit of laziness), we can add:
(defn lazy-end->eager-end [s]
(if (seq s)
(lazy-seq (cons (first s) (lazy-end->eager-end (rest s))))
()))
(defn eager-end->lazy-end [s]
(lazy-seq
(if-not (empty-eager? s)
(cons (first s) (eager-end->lazy-end (rest s))))))
(def nunfoldr
(comp
(partial comp (partial comp eager-end->lazy-end))
(partial apply nunfoldr)
(fproduct (list
(partial comp lazy-end->eager-end)
identity))
list))
observations and extensions
While creating solution 3, I observed that the old mechanism for lazy sequences in Clojure might not be necessarily inferior to the current one. With the transition, we gained the ability to create lazy sequences without any substantial computation taking place but lost the ability to check for emptiness without doing the computation needed to get one more element. Because both of these abilities can be important in some cases, it would be nice if a new mechanism was introduced, which would combine the advantages of the previous ones. Such a mechanism could use again an outer LazySeq thunk, which when forced would return an empty list or a Cons or another LazySeq or a new LazyCons thunk. This new thunk when forced would return a Cons or perhaps another LazyCons. Now empty? would force only LazySeq thunks while first and rest would also force LazyCons. In this setting map could look like this:
(defn map [f s]
(lazy-seq
(if (empty? s) ()
(lazy-cons
(cons (f (first s)) (map f (rest s)))))))
I have also noticed that the approach taken from solution 1 onwards lends itself to further generalization. If inside the argument in the map' call in the longer nunfoldr we replace cons with concat, transpose with some implementation of Cartesian product and repeat with another recursive call, we can then create versions that "split at different places". For example, using the following as the argument we can define a nunfoldm function that "splits in the middle" and corresponds to an easy-to-imagine nfoldm. Note that all "splitting strategies" are equivalent when f is associative.
(comp
(partial map (partial apply concat))
cproduct
(fproduct (let [n-half (quot n 2)]
(list (rec n-half) (rec (- n n-half))))))
Another natural modification would allow for infinite factorizations. To achieve this, if f generated infinite factorizations, nunfoldr(f , e)(n) should generate the factorizations in an order of type ω, so that each one of them could be produced in finite time.
Other possible extensions include dropping the n parameter, creating relational folds (in correspondence with the relational unfolds we consider here) and generically handling algebraic data structures other than sequences as input/output. This book, which I have just discovered, seems to contain valuable relevant information, given in a categorical/relational language.
Finally, to be able to do this kind of programming more conveniently, we could transfer it into a point-free, algebraic setting. This would require constructing considerable "extra machinery", in fact almost making a new language. This paper demonstrates such a language.

Is there a simpler way to memoize a recursive let fn?

Let's say you have a recursive function defined in a let block:
(let [fib (fn fib [n]
(if (< n 2)
n
(+ (fib (- n 1))
(fib (- n 2)))))]
(fib 42))
This can be mechanically transformed to utilize memoize:
Wrap the fn form in a call to memoize.
Move the function name in as the 1st argument.
Pass the function into itself wherever it is called.
Rebind the function symbol to do the same using partial.
Transforming the above code leads to:
(let [fib (memoize
(fn [fib n]
(if (< n 2)
n
(+ (fib fib (- n 1))
(fib fib (- n 2))))))
fib (partial fib fib)]
(fib 42))
This works, but feels overly complicated. The question is: Is there a simpler way?
I take risks in answering since I am not a scholar but I don't think so. You pretty much did the standard thing which in fine is a partial application of memoization through a fixed point combinator.
You could try to fiddle with macros though (for simple cases it could be easy, syntax-quote would do name resolution for you and you could operate on that). I'll try once I get home.
edit: went back home and tried out stuff, this seems to be ok-ish for simple cases
(defmacro memoize-rec [form]
(let [[fn* fname params & body] form
params-with-fname (vec (cons fname params))]
`(let [f# (memoize (fn ~params-with-fname
(let [~fname (partial ~fname ~fname)] ~#body)))]
(partial f# f#))))
;; (clojure.pprint/pprint (macroexpand '(memoize-rec (fn f [x] (str (f x))))))
((memoize-rec (fn fib [n]
(if (< n 2)
n
(+ (fib (- n 1))
(fib (- n 2)))))) 75) ;; instant
((fn fib [n]
(if (< n 2)
n
(+ (fib (- n 1))
(fib (- n 2))))) 75) ;; slooooooow
simpler than what i thought!
I'm not sure this is "simpler" per se, but I thought I'd share an approach I took to re-implement letfn for a CPS transformer I wrote.
The key is to introduce the variables, but delay assigning them values until they are all in scope. Basically, what you would like to write is:
(let [f nil]
(set! f (memoize (fn []
<body-of-f>)))
(f))
Of course this doesn't work as is, because let bindings are immutable in Clojure. We can get around that, though, by using a reference type — for example, a promise:
(let [f (promise)]
(deliver! f (memoize (fn []
<body-of-f>)))
(#f))
But this still falls short, because we must replace every instance of f in <body-of-f> with (deref f). But we can solve this by introducing another function that invokes the function stored in the promise. So the entire solution might look like this:
(let [f* (promise)]
(letfn [(f []
(#f*))]
(deliver f* (memoize (fn []
<body-of-f>)))
(f)))
If you have a set of mutually-recursive functions:
(let [f* (promise)
g* (promise)]
(letfn [(f []
(#f*))
(g []
(#g*))]
(deliver f* (memoize (fn []
(g))))
(deliver g* (memoize (fn []
(f))))
(f)))
Obviously that's a lot of boiler-plate. But it's pretty trivial to construct a macro that gives you letfn-style syntax.
Yes, there is a simpler way.
It is not a functional transformation, but builds on the impurity allowed in clojure.
(defn fib [n]
(if (< n 2)
n
(+ (#'fib (- n 1))
(#'fib (- n 2)))))
(def fib (memoize fib))
First step defines fib in almost the normal way, but recursive calls are made using whatever the var fib contains. Then fib is redefined, becoming the memoized version of its old self.
I would suppose that clojure idiomatic way will be using recur
(def factorial
(fn [n]
(loop [cnt n acc 1]
(if (zero? cnt)
acc
(recur (dec cnt) (* acc cnt))
;; Memoized recursive function, a mash-up of memoize and fn
(defmacro mrfn
"Returns an anonymous function like `fn` but recursive calls to the given `name` within
`body` use a memoized version of the function, potentially improving performance (see
`memoize`). Only simple argument symbols are supported, not varargs or destructing or
multiple arities. Memoized recursion requires explicit calls to `name` so the `body`
should not use recur to the top level."
[name args & body]
{:pre [(simple-symbol? name) (vector? args) (seq args) (every? simple-symbol? args)]}
(let [akey (if (= (count args) 1) (first args) args)]
;; name becomes extra arg to support recursive memoized calls
`(let [f# (fn [~name ~#args] ~#body)
mem# (atom {})]
(fn mr# [~#args]
(if-let [e# (find #mem# ~akey)]
(val e#)
(let [ret# (f# mr# ~#args)]
(swap! mem# assoc ~akey ret#)
ret#))))))
;; only change is fn to mrfn
(let [fib (mrfn fib [n]
(if (< n 2)
n
(+ (fib (- n 1))
(fib (- n 2)))))]
(fib 42))
Timings on my oldish Mac:
original, Elapsed time: 14089.417441 msecs
mrfn version, Elapsed time: 0.220748 msecs

Apply a list of functions to a value

I'm looking for something that is probably very well defined in Clojure (in the Lisp world at large in fact) but I don't have enough experience or culture to get on the right track and Google hasn't been very helpful so far.
Let's say I have three simple forms:
(defn add-one [v] (+ v 1))
(defn add-two [v] (+ v 2))
(defn add-three [v] (+ v 3))
Out of convenience, they are stored in a vector. In the real world, that vector would vary depending on the context:
(def operations
[add-one
add-two
add-three])
And I also have an initial value:
(def value 42)
Now, I would like to apply all the functions in that vector to that value and get the result of the combined operations:
(loop [ops operations
val value]
(if (empty? ops)
val
(recur (rest ops)
((first ops) val))))
While this does work, I'm surprised there isn't a higher level form just for that. I've looked all over the place but couldn't find anything.
The functional phrase you are searching for is (apply comp operations):
((apply comp operations) 42)
;48
Your loop does work if you feed it 42 for value:
(loop [ops operations
val 42]
(if (empty? ops)
val
(recur (rest ops)
((first ops) val))))
;48
This applies the operations in the opposite order from comp.
... As does using reduce:
(reduce (fn [v f] (f v)) 42 operations)
;48
If you look at the source code for comp, you'll find that the general case essentially executes a loop similar to yours upon a reversed list of the supplied functions.
'In Lisp world at large' you can use reduce:
user> (reduce (fn [x y] (y x)) 5 [inc inc inc inc])
;; => 9
This may look not so sexy, but it works everywhere with minor variations (this is Common Lisp, for example):
CL-USER> (reduce (lambda (x y) (funcall y x))
'(1+ 1+ 1+ 1+)
:initial-value 5)
9

working with variadic arguments

I am playing around and trying to create my own reductions implementation, so far I have this which works with this test data:
((fn [func & args]
(reduce (fn [acc item]
(conj acc (func (last acc) item))
)[(first args)] (first (rest args)))) * 2 [3 4 5]
What I don't like is how I am separating the args.
(first args) is what I would expect, i.e. 2 but (rest args) is ([3 4 5]) and so I am getting the remainder like this (first (rest args)) which I do not like.
Am I missing some trick that makes it easier to work with variadic arguments?
Variadic arguments are just about getting an unspecified number of arguments in a list, so all list/destructuring operations can be applied here.
For example:
(let [[fst & rst] a-list]
; fst is the first element
; rst is the rest
)
This is more readable than:
(let [fst (first a-list)
rst (rest a-list)]
; ...
)
You can go further to get the first and second elements of a list (assuming it has >1 elements) in one line:
(let [fst snd & rst]
; ...
)
I originally misread your question and thought you were trying to reimplement the reduce function. Here is a sample implementation I wrote for this answer which does’t use first or rest:
(defn myreduce
;; here we accept the form with no initial value
;; like in (myreduce * [2 3 4 5]), which is equivalent
;; to (myreduce * 2 [3 4 5]). Notice how we use destructuring
;; to get the first/rest of the list passed as a second
;; argument
([op [fst & rst]] (myreduce op fst rst))
;; we take an operator (function), accumulator and list of elements
([op acc els]
;; no elements? give the accumulator back
(if (empty? els)
acc
;; all the function's logic is in here
;; we're destructuring els to get its first (el) and rest (els)
(let [[el & els] els]
;; then apply again the function on the same operator,
;; using (op acc el) as the new accumulator, and the
;; rest of the previous elements list as the new
;; elements list
(recur op (op acc el) els)))))
I hope it helps you see how to work with list destructuring, which is probably what you want in your function. Here is a relevant blog post on this subject.
Tidying up your function.
As #bfontaine commented, you can use (second args) instead of (first (rest args)):
(defn reductions [func & args]
(reduce
(fn [acc item] (conj acc (func (last acc) item)))
[(first args)]
(second args)))
This uses
func
(first args)
(second args)
... but ignores the rest of args.
So we can use destructuring to name the first and second elements of args - init and coll seem suitable - giving
(defn reductions [func & [init coll & _]]
(reduce
(fn [acc item] (conj acc (func (last acc) item)))
[init]
coll))
... where _ is the conventional name for the ignored argument, in this case a sequence.
We can get rid of it, simplifying to
(defn reductions [func & [init coll]] ... )
... and then to
(defn reductions [func init coll] ... )
... - a straightforward function of three arguments.
Dealing with the underlying problems.
Your function has two problems:
slowness
lack of laziness.
Slowness
The flashing red light in this function is the use of last in
(fn [acc item] (conj acc (func (last acc) item)))
This scans the whole of acc every time it is called, even if acc is a vector. So this reductions takes time proportional to the square of the length of coll: hopelessly slow for long sequences.
A simple fix is to replace (last acc) by (acc (dec (count acc))), which takes effectively constant time.
Lack of laziness
We still can't lazily use what the function produces. For example, it would be nice to encapsulate the sequence of factorials like this:
(def factorials (reductions * 1N (next (range)))))
With your reductions, this definition never returns.
You have to entirely recast your function to make it lazy. Let's modify the standard -lazy -reductions to employ destructuring:
(defn reductions [f init coll]
(cons
init
(lazy-seq
(when-let [[x & xs] (seq coll)]
(reductions f (f init x) xs)))))
Now we can define
(def factorials (reductions * 1N (next (range))))
Then, for example,
(take 10 factorials)
;(1N 1N 2N 6N 24N 120N 720N 5040N 40320N 362880N)
Another approach is to derive the sequence from itself, like a railway locomotive laying the track it travels on:
(defn reductions [f init coll]
(let [answer (lazy-seq (reductions f init coll))]
(cons init (map f answer coll))))
But this contains a hidden recursion (hidden from me, at least):
(nth (reductions * 1N (next (range))) 10000)
;StackOverflowError ...

Is there a function similar to "andmap" in clojure?

I want to apply a series of tests on my list and make sure that all the tests are passed.
Is there a function similar to "andmap" in Clojure?
You could use every?:
user=> (every? string? '("hi" 1))
false
Here's the documentation on every?.
Clojure 1.3 will add every-pred (and the related some-fn for the "or" version).
clojure.core/every-pred
([p] [p1 p2] [p1 p2 p3] [p1 p2 p3 & ps])
Takes a set of predicates and returns a function f that returns true if all of its
composing predicates return a logical true value against all of its arguments, else it returns
false. Note that f is short-circuiting in that it will stop execution on the first
argument that triggers a logical false result against the original predicates.
A naive implementation might be:
(defn every-pred [& preds] (fn [& args] (every? #(every? % args) preds)))
but the actual implementation will have better performance.
I wrote andmap as a macro which takes predicates as its arguments and builds a function that "wraps an and around the predicates", i.e.,
(andmap integer? odd?)
==>
(fn [x] (and (integer? x)
(odd? x)))
(it doesn't expand to exactly this, but it expands to something equivalent to this)
This has the advantage that it shortcuircuts on the predicates so you can write
(every? (andmap integer? odd?) [1 3 "a string"])
without getting a runtime exception as you would get with Arthurs answer.
Here is the definition of andmap:
(defmacro andmap
([] `(fn [& x#] true))
([p & ps] `(fn [& x#] (and (apply ~p x#)
(apply (andmap ~#ps) x#)))))
It is also possible to define andmap as an function which also short-circuits on it's predicates due to lazyness:
(defn andmap [& ps]
(fn [& x]
(every? true? (map (fn [p] (apply p x)) ps))))
The predicates to andmap can take an arbitrary number of arguments, so it is possible to write
(map (andmap #(and (integer? %1)
(integer? %2))
#(and (odd? %1)
(even? %2))
<)
[1 3 9]
[2 6 "string"])
which evaluates to (true true false).
every? will ask "Does this one function return true for each member of the seq", which is close to what I think you are asking for. An improvement on every? would take a list of functions and ask "Are all these predicates true for every member of this seq".
Here is a first attempt:
(defn andmap? [data tests]
(every? true? (for [d data, f tests]
(f d))))
user> (andmap? '(2 4 8) [even? pos?])
true
user> (andmap? '(2 4 8) [even? odd?])
false