Avoid calling constructor of member variable - c++

I have the following C++-class:
// Header-File
class A
{
public:
A();
private:
B m_B;
C m_C;
};
// cpp-File
A::A()
: m_B(1)
{
m_B.doSomething();
m_B.doMore();
m_C = C(m_B.getSomeValue());
}
I now would like to avoid the class A to call any constructor of C m_C. Because on the last line in A::A(), I'm anyways going to initialize m_C myself because I need to prepare m_B first. I could provide an empty default constructor for class B. But that's not the idea.
I have already tried to add m_C(NULL) to the init-list of A::A(). Sometimes it worked, sometimes it said there was no constructor taking NULL as an argument.
So how can I have m_C left uninitialized? I know that with pointers, the m_C(NULL)-way works. And I don't want to allocate it dynamically using new.
Any idea is appreciated.

How about using technique described in this QA?
Prevent calls to default constructor for an array inside class
std::aligned_storage<sizeof(T[n]), alignof(T)>::type
Or, you also can consider using of union. AFAIK, unions will be initialized only with first named member's constructor.
For example,
union
{
uint8_t _nothing = 0;
C c;
};
According to the standard mentioned in the QA, c will be zero-initialized, and its constructor will not be called.

You can't.
All member variables are full constructed when the construcotr code block is entered. This means there constructors must be called.
But you can work around this restriction.
// Header-File
class A
{
struct Initer
{
Initer(B& b)
: m_b(b)
{
m_b.doSomething();
m_b.doMore();
}
operator int() // assuming getSomeValue() returns int.
{
return m_b.getSomeValue();
}
B& m_b;
};
public:
A();
private: // order important.
B m_B;
C m_C;
};
// cpp-File
A::A()
: m_B(1)
, m_C(Initer(m_B))
{
}

I don't see a good way to achieve what you want. This must be a workaround:
// Header-File
class A
{
public:
A();
private:
B m_B;
C m_C;
static int prepareC(B& b);
};
// cpp-File
A::A()
: m_B(1)
, m_C(prepareC(m_B))
{
}
int A::prepareC(B& b)
{
b.doSomething();
b.doMore();
return b.getSomeValue();
}
Please ensure that m_B.doSomething(), m_B.doMore() and m_B.getSomeValue() don't touch m_C (directly or indirectly).
As #Tobias correctly mentions, this solution depends on the order of initialization. You need to ensure that the definitions of m_B and m_C are in this order.
Updated the code according to #Loki's idea.

What you ask is forbidden - and correctly so. This ensures that every member is correctly initialized. Do not try to work around it - try to structure your classes that they work with it.
Idea:
C has a constructor that does nothing
C has an initialization method that makes the class usable
C tracks whether it has been initialized correctly or not and returns appropriate errors if used without initialization.

The pointer sounds like the only clean solution to me. The only other solution I see is to have a default constructor for C that does nothing and have an initialising method in C you call yourself later.
m_C.Initialise( m_B.getSomeValue() );

Easiest is storing pointers to a B and a C. These can be initialized to 0, omitting any construction. Be careful not to dereference a null pointer and delete it in the destructor of A (or use std::unique_ptr/boost::scoped_ptr).
But why not initialize m_B first (through a proper constructor call, not in A::A(), and then use that initialized B instance to initialize m_C? It will call for a small rewrite, but I bet it'll be worth the code cleanup.

If you don't want to allocate it dynamically using new for code clutter/exception safety reasons, you can use a std::unique_ptr or std::auto_ptr to solve this problem.
A solution that avoids new is to edit C to have a two-step initialization process. The constructor would then construct a "zombie" object, and you'd have to call an Initialize method on that m_C instance to finish your initialization. This is similar to the existing cases you found where you could pass NULL to the constructor, and later go back to initialize the object.
Edit:
I thought of this earlier (even though it looks much like other people's solutions). But I had to get some confirmation that this wouldn't break before I added this solution - C++ can be quite tricky, and I don't use it very often :)
This is cleaner than my other suggestions, and doesn't require you to mess with any implementation but that of A.
Simply use a static method as the middle-man on your initialization:
class A
{
public:
A();
private:
static int InitFromB(B& b)
{
b.doSomething();
b.doMore();
return b.getSomeValue();
}
// m_B must be initialized before m_C
B m_B;
C m_C;
};
A::A()
: m_B(1)
, m_C(InitFromB(m_B))
{
}
Note that this means you can't allow m_B to depend on the instance of A or C at all, whereas the solutions at the top of this answer might allow you to pass A or m_C into m_B's methods.

Just use comma expressions:
A::A()
: m_B(1)
, m_c(m_B.doSomething(), m_B.doMore(), m_B.getSomeValue())
{
}
Obviously, as others have explained, m_B better be declared before m_C else m_B.doSomething() invokes undefined behavior.

Here we have the building blocks:
#include <iostream>
class C
{
public:
C(int i){std::cout << "C::C(" << i << ")" << std::endl;}
};
class B
{
public:
B(int i){std::cout << "B::B(" << i << ")" << std::endl;}
void doSomething(){std::cout << "B::doSomething()" << std::endl;}
void doMore(){std::cout << "B::doMore()" << std::endl;}
int getSomeValue(){return 42;}
};
If you want to make a new kind of construction for B consider making a derived class:
class B1 : public B
{
public:
B1() : B(1)
{
doSomething();
doMore();
}
};
Now use the class B1 that is derived from B:
class A
{
private:
B1 _b;
C _c;
public:
A() : _c(_b.getSomeValue()){std::cout << "A::A()" << std::endl;}
};
And then:
int main()
{
A a;
}
Output:
B::B(1)
B::doSomething()
B::doMore()
C::C(42)
A::A()

Related

What's the purpose of using a union with only one member?

When I was reading seastar source code, I noticed that there is a union structure called tx_side which has only one member. Is this some hack to deal with a certain problem?
FYI, I paste the tx_side structure below:
union tx_side {
tx_side() {}
~tx_side() {}
void init() { new (&a) aa; }
struct aa {
std::deque<work_item*> pending_fifo;
} a;
} _tx;
Because tx_side is a union, tx_side() doesn't automatically initialize/construct a, and ~tx_side() doesn't automatically destruct it.
This allows a fine-grained control over the lifetime of a and pending_fifo, via placement-new and manual destructor calls (a poor man's std::optional).
Here's an example:
#include <iostream>
struct A
{
A() {std::cout << "A()\n";}
~A() {std::cout << "~A()\n";}
};
union B
{
A a;
B() {}
~B() {}
};
int main()
{
B b;
}
Here, B b; prints nothing, because a is not constructed nor destructed.
If B was a struct, B() would call A(), and ~B() would call ~A(), and you wouldn't be able to prevent that.
In simple words, unless explicitly assigned/initialized a value the single member union does not initialize the allocated memory. This functionality can be achieved with std:: optional in c++17.

the usage of copy-constructor method?

In my code, I used inner-class as an iterator for another class.
To simplify the situation, the code can be shown as follows:
class A {
public:
class B {
public:
explicit B(void):idx(3){}
B(const B&b) {
idx = 4; // never be called
}
private:
int idx=0;
};
B getB()
{ return A::B(); }
};
void test2(){
A a;
A::B b = a.getB(); // b.idx ends with value of 3
}
The problem is that, in test2() , while running A::B b = a.getB();, the copy-constructor method wasn't called. And the b ends with value 3.
Why is this?
For another problem confused me
class A {
public:
class B {
public:
explicit B(void):idx(3){}
explicit B(const B&b) {} // C2440, cannot convert from "A::B" to "A::B"
private:
int idx=0;
};
B getB()
{ return A::B(); }
};
Why will C2440 ocurrs with two types exactly the same?
What you are seeing is copy elision. In order to make it easier for optimizers to speed up the generated code, the C++ standard allows copy constructors to be skipped in certain situations.
C++ language does not guarantee the side effects of copy (nor of move) constructors to be observable in the abstract machine. This non-guarantee lets the compiler avoid temporary objects when they are not necessary, thereby avoiding copying of those objects in the concrete machine.
Your program relies on the side effects of a copy constructor. This is bad; Don't do it.

How to Initialize Member Variables

Probably an easy question for someone out there, but what am I doing wrong in the below example? I'm trying to build a global class which contains instantiations of other classes within... I think where I'm going wrong boils down to the below example. Getting a seg fault, as if *b is never created. Thanks in advance!!
#include <iostream>
using namespace std;
class A;
class B;
class B
{
public:
B()
{
b = 99;
}
~B();
int Getb() {return b; }
void Setb (int x) { b = x; }
private:
int b;
};
class A
{
public:
A()
{
B *b = new B;
}
~A();
B * b;
void Printout()
{
cout<<b->Getb()<<endl;
}
private:
};
int main()
{
A *a = new A;
a->Printout();
cin.get();
}
A() {
B *b = new B;
}
B * b;
In the constructor you're declaring a new local variable that gets assigned the address of the freshly allocated B, and then forgotten!
The instance field b is never assigned to because it is shadowed by the local variable of the same name in the constructor.
You probably mean to do
A() {
b = new B;
}
A()
{
B *b = new B;
}
should be
A()
{
b = new B;
}
In your version there a variable called b in the A constructor. This variable hides the A class member also called b (which was obviously the one you wanted to use).
In the cosntructor A::A() you don't initilize the A::b member, but a local variable instead. Try doing:
A() {
b = new B;
}
or better:
A():b(new B) {}
And even better, don't use the raw pointer at all.
B *b = new B;
Creates a local variable named b which shadows the class member b. You need to initialize the class member, and you should do it in an initialization list.
A() : b(new B) {}
Your next step is to fix the memory leak caused by never calling delete on the pointers you dynamically allocate, but since this is a learning exercise it's probably not terribly important (yet).
Although quite a few people have pointed out one way of fixing the problem you're seeing, none seems (to me, anyway) to be giving advice about how to really make the code better.
Your definition of B is what's called a quasi-class. To make a long story short, your B can be simplified a lot without losing anything:
struct B {
int b;
B() : b(99) {}
};
Everything else you've done (get/set, destructor) are accomplishing absolutely nothing. Your A class not only accomplishes just about as little, but does it even more poorly. Others have already pointed out the problem with A's constructor defining a local B object, and then leaking that object. None (that I've seen yet, anyway) has pointed out that even when you fix that, your definition of A will leak the B object anyway, because even though it creates a B object as part of creating an A object, it does not destroy the B object when the A object that contains it is destroyed.
I don't see any reason for your A class to dynamically allocate the B object at all (or, when you get down to it, to even exist). I'd define A more like this:
class A {
B b;
public:
void print() { std::cout << b.b << "\n";
};
It would be better, however, if a B object knew how to insert itself into a stream -- and if it used the normal syntax for that as well:
std::ostream &operator<<(std::ostream &os, B const &b) {
return os << b.b;
}
With this in place, your A class adds nothing at all, so your entire program becomes something like this:
struct B {
int b;
B() : b(99) {}
};
std::ostream &operator<<(std::ostream &os, B const &b) {
return os << b.b;
}
int main() {
std::cout << B() << "\n";
return 0;
}
Great tips guys, even though in retrospect I obfuscated my issue with naming the int variable b (should've been anything but b!!). That said, you guys "pointed" me in the direction to initialization lists, destructors, and ultimately to the topic of composition. Many thanks How to implement class composition in C++?

C++ OOP basics (assigning an object as a member)

I'm a PHP developer trying to write some C++.
I'm having trouble with assigning an object as an another object's property. In PHP, I'd write this:
class A {
public $b;
}
class B {
}
$a = new A;
$a->b = new B;
How do I do that in C++? I got this so far:
class A {
B b;
public:
void setB(&B);
};
class B {
};
void A::setB(B &b)
{
this->b = b;
};
A * a = new A();
B * b = new B();
a->setB(b);
What am I doing wrong?
Just do this:
class B
{
};
class A
{
B b;
};
int main()
{
A anA; // creates an A. With an internal member of type B called b.
// If you want a pointer (ie using new.
// Then put it in a smart pointer.
std::auto_ptr<A> aPtr = new A();
}
You don't actually need to create the B separately. The B b is part of the class and is created (using the default constructor) automatically when the A object is created. Creating the two objects seprately and then combining them is a bad idea.
If you want to pass some parameters to the B object as it is constructed. That is easy to do by creating a constructor for A that calls B's constructor:
class B
{
public:
B(std::string const& data) // The B type takes a string as it is constructed.
:myData(data) // Store the input data in a member variable.
{}
private:
std::string myData;
};
class A
{
public:
A(std::string const& bData) // parameter passed to A constructor
:b(bData); // Forward this parameter to `b` constructor (see above)
{}
private:
B b;
};
int main()
{
A a("Hi there"); // "Hi there" now stored in a.b.myData
}
Instead of &B, you mean B&.
class A {
B b;
public:
void setB(B&); //<--
};
A pointer cannot be implicitly dereferenced. So a->setB(b) won't compile. You need to write a->setB(*b).
You don't need new to construct an object. For example, this works:
A a;
B b;
a.setB(b);
Don't use idioms from other languages directly in C++. For example, setters and getters are seldom needed. In fact, your A class could just be a simple struct.
A couple changes will make it compile:
1. class B needs to be declared before A so that it can be used in class A
2. The declaration setB(&B) needs a minor change to setB(B&)
class B {
};
class A {
B b;
public:
void setB(B&);
};
void A::setB(B &b)
{
this->b = b;
};
int main ()
{
A * a = new A();
B * b = new B();
a->setB(*b);
}
To make it more efficient consider the adding the following constructor that accepts B as an argument and the initializes the member variable 'b'. This will use a copy constructor on the 'b' member variable instead of using the default constructor and then the assignment operator.
A(B& b_) : b(b_)
{
}
There are a lot of things wrong with this code:
As KennyTM notes, the ampersand is in the wrong place.
You are passing a B* to a function that takes a B&, they aren't the same in C++
The design shown in your php fragment appears to misdesigned. While what you are doing is something you might want to do at times, you'll usually want to use a constructor instead, C++ and PHP alike.
You are putting code directly in the file, this isn't allowed in C++, put it in the main function instead
memory management: you are using new without delete (or a smart pointer class)
You are using class B in class A while class A doesn't know about class B (it is defined later) - you should put class B on top (or perhaps use forward declaration)
A few ways to make your code work properly are shown below.
include <memory>
using std::auto_ptr;
class B
{
}
class A
{
public:
A();
SetB(B& b);
private:
B b1; // a B made in the constructor
B b2; // a COPY of the original B you make
}
A::A()
: b1(/*whatever you want to pass to B's constructor*/)
{
}
A::SetB(B& b)
{
b2 = b;
}
int main(int agrc, char** argv)
{
A firstA();
B firstB();
firstA.SetB(firstB);
A* secondA = new A();
B* secondB = new B();
secondA->SetB(*secondB);
auto_ptr<A> thirdA(new A());
auto_ptr<B> thirdB(new B());
thirdA->SetB(*thirdB);
// whatever other code
delete secondA;
delete secondB;
}
Note that id you call SetB only once (and there is no problem with cyclic depndencies between the different objects you are creating), but you do want the flexibility of constructing the B outside the class, you can instead make a parameter of the constructor.
Also note that you are making a copy of the B you create in main - if you want to use the came copy in the class (as you would in PHP), you should use a member reference (in which case you will need to set what it refers to in the constructor, you can't do so in the SetB function.
Then, note that there are serious problems with the secondA, secondB approach and as such it is not recommended (above nothing will go wrong, however, it is easy to get code that leaks memory this way (and hard to find out where the leak is) and on top of that when you want to use exceptions, you will need exception safe code, which is not achievable using plain old pointers.
Lastly, note that you mix and match here. There is no problem at all with using firstA and thirdB together, for example.

Can constructor call another constructor in c++?

class A{
A(int a = 5){
DoSomething();
A();
}
A(){...}
}
Can the first constructor call the second one?
Not before C++11.
Extract the common functionality into a separate function instead. I usually name this function construct().
The "so-called" second call would compile, but has a different meaning in C++: it would construct a new object, a temporary, which will then be instantly deleted at the end of the statement. So, no.
A destructor, however, can be called without a problem.
Not before C++0x, no.
BUT, just out of academic interest I've come up with a really horrible way* to do it using a placement operator "new" (someone care to point out how portable this is?)
#include <new>
#include <iostream>
class A
{
public:
A(int i, int j)
: i_(i), j_(j) { }
A(int i)
{ new (this) A(i, 13); }
int i_,j_;
};
int
main() {
A a1(10,11), a2(10);
std::cout
<< a1.i_ << ", "
<< a1.j_ << std::endl
<< a2.i_ << ", "
<< a2.j_ << std::endl;
return 0;
}
*Hell no, I don't write this in the production code.
The answer is in fact "yes", but as others have suggested, it doesn't do what you want. You can of course use the constructor of a base class, either implicitly or explicitly:
struct B {
B() {}
B( int x ) {}
};
struct A : public B {
A() {} // calls B() implicitly
A( int a, int b ) : B( b ) {} // calls B(int) explicitly
};
Not directly. There are a few ways to work around this.
From the initializer list of your class' constructor, you can call a constructor on any base class, and on all member variables.
So you can usually refactor your class and split it into several smaller ones to solve the problem. The commonly executed code can be placed in a member object or perhaps a base class. Then each of the main class' constructors just have to decide which construcotr to use to initialize that member.
class B {
B() { }
B(int b) { DoSomething(); }
}
class A{
A(int a = 5) : b(a) { } // call B's constructor which does something
A() : b() {} // call B's constructor which does nothing
B b;
};
This is an old question; however,
class A{
A(int a = 5){
DoSomething();
A();
}
A(){...}
}
could be
class A{
A(int a = 5){
*this = A();
DoSomething();
}
A(){...}
}
As pointed out by Pavel Radzivilovsky in his answer, since C++ 11, it is possible. It is the same syntax as for explicitely calling the parent's class constructor from a child class. This is useful when a class needs to have multiple constructors (say, a default constructor and a constructor with attribute initialization) but some operations have to be done in all cases. This allows to avoid code repetitions.
Here is an example:
class A
{
public:
A()
{
foo();
}
A(Attribute attribute) : A()
{
this->attribute = attribute;
}
//------ some other code --------
private:
Attribute attribute;
void foo()
{...}
//------ some other code -------
};
In this simple example, I assume that the function foo() needs to be called in all cases for the object to be correctly initialized. With this syntax, if the second constructor (with attribute initialization) is called, it will first perform the operations in the default constructor before executing the instructions in the attribute-initialization constructor.
It can also be done the other way around: the default constructor can call another constructor with default parameters.
Before C++ 11, it was necessary to duplicate the common instructions of all constructors or define methods that do the actual object initialization.