I'm new to erlang. I wonder how to write a function which returns the first N elements in a list?
I've tried:
take([],_) -> [];
take([H|T],N) when N > 0 -> take([H,hd(L)|tl(T)], N-1);
take([H|T],N) when N == 0 -> ... (I'm stuck here...)
Any hint? thx
Update: I know there's a function called "sublist" but I need to figure out how to write that function by my own.
I finally figured out the answer:
-module(list).
-export([take/2]).
take(List,N) -> take(List,N,[]).
take([],_,[]) -> [];
take([],_,List) -> List;
take([H|T], N, List) when N > 0 -> take(T, N-1, lists:append(List,[H]));
take([H|T], N, List) when N == 0 -> List.
In Erlang, take is spelled lists:sublist:
L = [1, 2, 3, 4];
lists:sublist(L, 3). % -> [1, 2, 3]
A simple solution is:
take([H|T], N) when N > 0 ->
[H|take(T, N-1)];
take(_, 0) -> [].
This will generate an error if there are not enough elements in the list.
When you use an accumulator as you are doing you do not usually append elements to the end of it as this is very inefficient (you copy the whole list each time). You would normally push elements on to it with [H|List]. It will then be in the reverse order but you then do a lists:reverse(List) to return them in the right order.
take(List, N) -> take(List, N, []).
take([H|T], N, Acc) when N > 0 ->
take(T, N-1, [H|Acc]);
take(_, 0, Acc) -> lists:reverse(Acc).
The accumulator version is tail recursive which is a Good Thing but you need to do an extra reverse which removes some of the benefits. The first version I think is clearer. There is no clear case for either.
Related
TL;DR: I want the exact behavior as filter ((== 4) . length) . subsequences. Just using subsequences also creates variable length of lists, which takes a lot of time to process. Since in the end only lists of length 4 are needed, I was thinking there must be a faster way.
I have a list of functions. The list has the type [Wor -> Wor]
The list looks something like this
[f1, f2, f3 .. fn]
What I want is a list of lists of n functions while preserving order like this
input : [f1, f2, f3 .. fn]
argument : 4 functions
output : A list of lists of 4 functions.
Expected output would be where if there's an f1 in the sublist, it'll always be at the head of the list.
If there's a f2 in the sublist and if the sublist doens't have f1, f2 would be at head. If fn is in the sublist, it'll be at last.
In general if there's a fx in the list, it never will be infront of f(x - 1) .
Basically preserving the main list's order when generating sublists.
It can be assumed that length of list will always be greater then given argument.
I'm just starting to learn Haskell so I haven't tried all that much but so far this is what I have tried is this:
Generation permutations with subsequences function and applying (filter (== 4) . length) on it seems to generate correct permutations -but it doesn't preserve order- (It preserves order, I was confusing it with my own function).
So what should I do?
Also if possible, is there a function or a combination of functions present in Hackage or Stackage which can do this? Because I would like to understand the source.
You describe a nondeterministic take:
ndtake :: Int -> [a] -> [[a]]
ndtake 0 _ = [[]]
ndtake n [] = []
ndtake n (x:xs) = map (x:) (ndtake (n-1) xs) ++ ndtake n xs
Either we take an x, and have n-1 more to take from xs; or we don't take the x and have n more elements to take from xs.
Running:
> ndtake 3 [1..4]
[[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
Update: you wanted efficiency. If we're sure the input list is finite, we can aim at stopping as soon as possible:
ndetake n xs = go (length xs) n xs
where
go spare n _ | n > spare = []
go spare n xs | n == spare = [xs]
go spare 0 _ = [[]]
go spare n [] = []
go spare n (x:xs) = map (x:) (go (spare-1) (n-1) xs)
++ go (spare-1) n xs
Trying it:
> length $ ndetake 443 [1..444]
444
The former version seems to be stuck on this input, but the latter one returns immediately.
But, it measures the length of the whole list, and needlessly so, as pointed out by #dfeuer in the comments. We can achieve the same improvement in efficiency while retaining a bit more laziness:
ndzetake :: Int -> [a] -> [[a]]
ndzetake n xs | n > 0 =
go n (length (take n xs) == n) (drop n xs) xs
where
go n b p ~(x:xs)
| n == 0 = [[]]
| not b = []
| null p = [(x:xs)]
| otherwise = map (x:) (go (n-1) b p xs)
++ go n b (tail p) xs
Now the last test also works instantly with this code as well.
There's still room for improvement here. Just as with the library function subsequences, the search space could be explored even more lazily. Right now we have
> take 9 $ ndzetake 3 [1..]
[[1,2,3],[1,2,4],[1,2,5],[1,2,6],[1,2,7],[1,2,8],[1,2,9],[1,2,10],[1,2,11]]
but it could be finding [2,3,4] before forcing the 5 out of the input list. Shall we leave it as an exercise?
Here's the best I've been able to come up with. It answers the challenge Will Ness laid down to be as lazy as possible in the input. In particular, ndtake m ([1..n]++undefined) will produce as many entries as possible before throwing an exception. Furthermore, it strives to maximize sharing among the result lists (note the treatment of end in ndtakeEnding'). It avoids problems with badly balanced list appends using a difference list. This sequence-based version is considerably faster than any pure-list version I've come up with, but I haven't teased apart just why that is. I have the feeling it may be possible to do even better with a better understanding of just what's going on, but this seems to work pretty well.
Here's the general idea. Suppose we ask for ndtake 3 [1..5]. We first produce all the results ending in 3 (of which there is one). Then we produce all the results ending in 4. We do this by (essentially) calling ndtake 2 [1..3] and adding the 4 onto each result. We continue in this manner until we have no more elements.
import qualified Data.Sequence as S
import Data.Sequence (Seq, (|>))
import Data.Foldable (toList)
We will use the following simple utility function. It's almost the same as splitAtExactMay from the 'safe' package, but hopefully a bit easier to understand. For reasons I haven't investigated, letting this produce a result when its argument is negative leads to ndtake with a negative argument being equivalent to subsequences. If you want, you can easily change ndtake to do something else for negative arguments.
-- to return an empty list in the negative case.
splitAtMay :: Int -> [a] -> Maybe ([a], [a])
splitAtMay n xs
| n <= 0 = Just ([], xs)
splitAtMay _ [] = Nothing
splitAtMay n (x : xs) = flip fmap (splitAtMay (n - 1) xs) $
\(front, rear) -> (x : front, rear)
Now we really get started. ndtake is implemented using ndtakeEnding, which produces a sort of "difference list", allowing all the partial results to be concatenated cheaply.
ndtake :: Int -> [t] -> [[t]]
ndtake n xs = ndtakeEnding n xs []
ndtakeEnding :: Int -> [t] -> ([[t]] -> [[t]])
ndtakeEnding 0 _xs = ([]:)
ndtakeEnding n xs = case splitAtMay n xs of
Nothing -> id -- Not enough elements
Just (front, rear) ->
(front :) . go rear (S.fromList front)
where
-- For each element, produce a list of all combinations
-- *ending* with that element.
go [] _front = id
go (r : rs) front =
ndtakeEnding' [r] (n - 1) front
. go rs (front |> r)
ndtakeEnding doesn't call itself recursively. Rather, it calls ndtakeEnding' to calculate the combinations of the front part. ndtakeEnding' is very much like ndtakeEnding, but with a few differences:
We use a Seq rather than a list to represent the input sequence. This lets us split and snoc cheaply, but I'm not yet sure why that seems to give amortized performance that is so much better in this case.
We already know that the input sequence is long enough, so we don't need to check.
We're passed a tail (end) to add to each result. This lets us share tails when possible. There are lots of opportunities for sharing tails, so this can be expected to be a substantial optimization.
We use foldr rather than pattern matching. Doing this manually with pattern matching gives clearer code, but worse constant factors. That's because the :<|, and :|> patterns exported from Data.Sequence are non-trivial pattern synonyms that perform a bit of calculation, including amortized O(1) allocation, to build the tail or initial segment, whereas folds don't need to build those.
NB: this implementation of ndtakeEnding' works well for recent GHC and containers; it seems less efficient for earlier versions. That might be the work of Donnacha Kidney on foldr for Data.Sequence. In earlier versions, it might be more efficient to pattern match by hand, using viewl for versions that don't offer the pattern synonyms.
ndtakeEnding' :: [t] -> Int -> Seq t -> ([[t]] -> [[t]])
ndtakeEnding' end 0 _xs = (end:)
ndtakeEnding' end n xs = case S.splitAt n xs of
(front, rear) ->
((toList front ++ end) :) . go rear front
where
go = foldr go' (const id) where
go' r k !front = ndtakeEnding' (r : end) (n - 1) front . k (front |> r)
-- With patterns, a bit less efficiently:
-- go Empty _front = id
-- go (r :<| rs) !front =
-- ndtakeEnding' (r : end) (n - 1) front
-- . go rs (front :|> r)
I am new to OCaml and functional programming as a whole. I am working on a part of an assignment where I must simply return the first n elements of a list. I am not allowed to use List.Length.
I feel that what I have written is probably overly complicated for what I'm trying to accomplish. What my code attempts to do is concatenate the front of the list to the end until n is decremented to 1. At which point the head moves a further n-1 spots to that the tail of the list and then return the tail. Again, I realize that there is probably a much simpler way to do this, but I am stumped and probably showing my inability to grasp functional programming.
let rec take n l =
let stopNum = 0 - (n - 1) in
let rec subList n lst =
match lst with
| hd::tl -> if n = stopNum then (tl)
else if (0 - n) = 0 then (subList (n - 1 ) tl )
else subList (n - 1) (tl # [hd])
| [] -> [] ;;
My compiler tells me that I have a syntax error on the last line. I get the same result regardless of whether "| [] -> []" is the last line or the one above it. The syntax error does not exist when I take out the nested subList let. Clearly there is something about nested lets that I am just not understanding.
Thanks.
let rec firstk k xs = match xs with
| [] -> failwith "firstk"
| x::xs -> if k=1 then [x] else x::firstk (k-1) xs;;
You might have been looking for this one.
What you have to do here, is to iterate on your initial list l and then add elements of this list in an accumulator until n is 0.
let take n l =
let rec sub_list n accu l =
match l with
| [] -> accu (* here the list is now empty, return the partial result *)
| hd :: tl ->
if n = 0 then accu (* if you reach your limit, return your result *)
else (* make the call to the recursive sub_list function:
- decrement n,
- add hd to the accumulator,
- call with the rest of the list (tl)*)
in
sub_list n [] l
Since you're just starting with FP, I suggest you look for the simplest and most elegant solution. What you're looking for is a way to solve the problem for n by building it up from a solution for a smaller problem.
So the key question is: how could you produce the first n elements of your list if you already had a function that could produce the first (n - 1) elements of a list?
Then you need to solve the "base" cases, the cases that are so simple that the answer is obvious. For this problem I'd say there are two base cases: when n is 0, the answer is obvious; when the list is empty, the answer is obvious.
If you work this through you get a fairly elegant definition.
I got a list, and now I want the nth item. In Haskell I would use !!, but I can't find an elm variant of that.
Elm added arrays in 0.12.1, and the implementation was massively overhauled in 0.19 to improve correctness and performance.
import Array
myArray = Array.fromList [1..5]
myItem = Array.get 2 myArray
Arrays are zero-indexed. Negative indices are not supported currently (bummer, I know).
Note that myItem : Maybe Int. Elm does everything it can to avoid runtime errors, so out of bounds access returns an explicit Nothing.
If you find yourself looking to index into a list rather than take the head and tail, you should consider using an array.
Array documentation
There is no equivalent of this in Elm.
You could of course implement it yourself.
(Note: This is not a "total" function, so it creates an exception when the index is out of range).
infixl 9 !!
(!!) : [a] -> Int -> a
xs !! n = head (drop n xs)
A better way would be to define a total function, using the Maybe data type.
infixl 9 !!
(!!) : [a] -> Int -> Maybe a
xs !! n =
if | n < 0 -> Nothing
| otherwise -> case (xs,n) of
([],_) -> Nothing
(x::xs,0) -> Just x
(_::xs,n) -> xs !! (n-1)
I've used this:
(!!): Int -> List a -> Maybe a
(!!) index list = -- 3 [ 1, 2, 3, 4, 5, 6 ]
if (List.length list) >= index then
List.take index list -- [ 1, 2, 3 ]
|> List.reverse -- [ 3, 2, 1 ]
|> List.head -- Just 3
else
Nothing
Of course you get a Maybe and you need to unwrap it when you use this function. There is not guarantee that your list will not be empty, or that you ask for a imposible index (like 1000) - so that's why elm compiler forces you to account for that case.
main =
let
fifthElement =
case 5 !! [1,2,3,4,255,6] of // not sure how would you use it in Haskell?! But look's nice as infix function. (inspired by #Daniƫl Heres)
Just a ->
a
Nothing ->
-1
in
div []
[ text <| toString fifthElement ] // 255
I've just started learning about Functional Programming, using Haskel.
I'm slowly getting through Erik Meijer's lectures on Channel 9 (I've watched the first 4 so far) and in the 4th video Erik explains how tail works, and it fascinated me.
I've tried to write a function that returns the middle of a list (2 items for even lengths, 1 for odd) and I'd like to hear how others would implement it in
The least amount of Haskell code
The fastest Haskell code
If you could explain your choices I'd be very grateful.
My beginners code looks like this:
middle as | length as > 2 = middle (drop 2 (reverse as))
| otherwise = as
Just for your amusement, a solution from someone who doesn't speak Haskell:
Write a recursive function that takes two arguments, a1 and a2, and pass your list in as both of them. At each recursion, drop 2 from a2 and 1 from a1. If you're out of elements for a2, you'll be at the middle of a1. You can handle the case of just 1 element remaining in a2 to answer whether you need 1 or 2 elements for your "middle".
I don't make any performance claims, though it only processes the elements of the list once (my assumption is that computing length t is an O(N) operation, so I avoid it), but here's my solution:
mid [] = [] -- Base case: the list is empty ==> no midpt
mid t = m t t -- The 1st t is the slow ptr, the 2nd is fast
where m (x:_) [_] = [x] -- Base case: list tracked by the fast ptr has
-- exactly one item left ==> the first item
-- pointed to by the slow ptr is the midpt.
m (x:y:_) [_,_] = [x,y] -- Base case: list tracked by the fast ptr has
-- exactly two items left ==> the first two
-- items pointed to by the slow ptr are the
-- midpts
m (_:t) (_:_:u) = m t u -- Recursive step: advance slow ptr by 1, and
-- advance fast ptr by 2.
The idea is to have two "pointers" into the list, one that increments one step at each point in the recursion, and one that increments by two.
(which is essentially what Carl Smotricz suggested)
Two versions
Using pattern matching, tail and init:
middle :: [a] -> [a]
middle l#(_:_:_:_) = middle $ tail $ init l
middle l = l
Using length, take, signum, mod, drop and div:
middle :: [a] -> [a]
middle xs = take (signum ((l + 1) `mod` 2) + 1) $ drop ((l - 1) `div ` 2) xs
where l = length xs
The second one is basically a one-liner (but uses where for readability).
I've tried to write a function that returns the middle of a list (2 items for even lengths, 1 for odd) and I'd like to hear how others would implement it in
The right datastructure for the right problem. In this case, you've specified something that only makes sense on a finite list, right? There is no 'middle' to an infinite list. So just reading the description, we know that the default Haskell list may not be the best solution: we may be paying the price for the laziness even when we don't need it. Notice how many of the solutions have difficulty avoiding 2*O(n) or O(n). Singly-linked lazy lists just don't match a quasi-array-problem too well.
Fortunately, we do have a finite list in Haskell: it's called Data.Sequence.
Let's tackle it the most obvious way: 'index (length / 2)'.
Data.Seq.length is O(1) according to the docs. Data.Seq.index is O(log(min(i,n-i))) (where I think i=index, and n=length). Let's just call it O(log n). Pretty good!
And note that even if we don't start out with a Seq and have to convert a [a] into a Seq, we may still win. Data.Seq.fromList is O(n). So if our rival was a O(n)+O(n) solution like xs !! (length xs), a solution like
middle x = let x' = Seq.fromList x in Seq.index(Seq.length x' `div` 2)
will be better since it would be O(1) + O(log n) + O(n), which simplifies to O(log n) + O(n), obviously better than O(n)+O(n).
(I leave as an exercise to the reader modifying middle to return 2 items if length be even and 1 if length be odd. And no doubt one could do better with an array with constant-time length and indexing operations, but an array isn't a list, I feel.)
Haskell solution inspired by Carl's answer.
middle = m =<< drop 1
where m [] = take 1
m [_] = take 2
m (_:_:ys) = m ys . drop 1
If the sequence is a linked list, traversal of this list is the dominating factor of efficiency. Since we need to know the overall length, we have to traverse the list at least once. There are two equivalent ways to get the middle elements:
Traverse the list once to get the length, then traverse it half to get at the middle elements.
Traverse the list in double steps and single steps at the same time, so that when the first traversal stops, the second traversal is in the middle.
Both need the same number of steps. The second is needlessly complicated, in my opinion.
In Haskell, it might be something like this:
middle xs = take (2 - r) $ drop ((div l 2) + r - 1) xs
where l = length xs
r = rem l 2
middle xs =
let (ms, len) = go xs 0 [] len
in ms
go (x:xs) i acc len =
let acc_ = case len `divMod` 2 of
(m, 0) -> if m == (i+1) then (take 2 (x:xs))
else acc
(m, 1) -> if m == i then [x]
else acc
in go xs (i+1) acc_ len
go [] i acc _ = (acc,i)
This solution traverses the list just once using lazy evaluation. While it traverses the list, it calculates the length and then backfeeds it to the function:
let (ms, len) = go xs 0 [] len
Now the middle elements can be calculated:
let acc' = case len `divMod` 2 of
...
F# solution based on Carl's answer:
let halve_list l =
let rec loop acc1 = function
| x::xs, [] -> List.rev acc1, x::xs
| x::xs, [y] -> List.rev (x::acc1), xs
| x::xs, y::y'::ys -> loop (x::acc1) (xs, ys)
| [], _ -> [], []
loop [] (l, l)
It's pretty easy to modify to get the median elements in the list too:
let median l =
let rec loop acc1 = function
| x::xs, [] -> [List.head acc1; x]
| x::xs, [y] -> [x]
| x::xs, y::y'::ys -> loop (x::acc1) (xs, ys)
| [], _ -> []
loop [] (l, l)
A more intuitive approach uses a counter:
let halve_list2 l =
let rec loop acc = function
| (_, []) -> [], []
| (0, rest) -> List.rev acc, rest
| (n, x::xs) -> loop (x::acc) (n - 1, xs)
let count = (List.length l) / 2
loop [] (count, l)
And a really ugly modification to get the median elements:
let median2 l =
let rec loop acc = function
| (n, [], isEven) -> []
| (0, rest, isEven) ->
match rest, isEven with
| x::xs, true -> [List.head acc; x]
| x::xs, false -> [x]
| _, _ -> failwith "Should never happen"
| (n, x::xs, isEven) -> loop (x::acc) (n - 1, xs, isEven)
let len = List.length l
let count = len / 2
let isEven = if len % 2 = 0 then true else false
loop [] (count, l, isEven)
Getting the length of a list requires traversing its entire contents at least once. Fortunately, it's perfectly easy to write your own list data structure which holds the length of the list in each node, allowing you get get the length in O(1).
Weird that this perfectly obvious formulation hasn't come up yet:
middle [] = []
middle [x] = [x]
middle [x,y] = [x,y]
middle xs = middle $ init $ tail xs
A very straightforward, yet unelegant and not so terse solution might be:
middle :: [a] -> Maybe [a]
middle xs
| len <= 2 = Nothing
| even len = Just $ take 2 . drop (half - 1) $ xs
| odd len = Just $ take 1 . drop (half) $ xs
where
len = length xs
half = len `div` 2
This iterates twice over the list.
mid xs = m where
l = length xs
m | l `elem` [0..2] = xs
m | odd l = drop (l `div` 2) $ take 1 $ xs
m | otherwise = drop (l `div` 2 - 1) $ take 2 $ xs
I live for one liners, although this example only works for odd lists. I just want to stretch my brain! Thank you for the fun =)
foo d = map (\(Just a) -> a) $ filter (/=Nothing) $ zipWith (\a b -> if a == b then Just a else Nothing) (Data.List.nub d) (Data.List.nub $ reverse d)
I'm not much of a haskeller myself but I tried this one.
First the tests (yes, you can do TDD using Haskell)
module Main
where
import Test.HUnit
import Middle
main = do runTestTT tests
tests = TestList [ test1
, test2
, test3
, test4
, test_final1
, test_final2
]
test1 = [0] ~=? middle [0]
test2 = [0, 1] ~=? middle [0, 1]
test3 = [1] ~=? middle [0, 1, 2]
test4 = [1, 2] ~=? middle [0, 1, 2, 3]
test_final1 = [3] ~=? middle [0, 1, 2, 3, 4, 5, 6]
test_final2 = [3, 4] ~=? middle [0, 1, 2, 3, 4, 5, 6, 7]
And the solution I came to:
module Middle
where
middle a = midlen a (length a)
midlen (a:xs) 1 = [a]
midlen (a:b:xs) 2 = [a, b]
midlen (a:xs) lg = midlen xs (lg - (2))
It will traverse list twice, once for getting length and a half more to get the middle, but I don't care it's still O(n) (and getting the middle of something implies to get it's length, so no reason to avoid it).
My solution, I like to keep things simple:
middle [] = []
middle xs | odd (length xs) = [xs !! ((length xs) `div` 2)]
| otherwise = [(xs !! ((length xs) `div` 2)),(reverse $ xs) !! ((length xs)`div` 2)]
Use of !! in Data.List as the function to get the value at a given index, which in this case is half the length of the list.
Edit: it actually works now
I like Svante's answer. My version:
> middle :: [a] -> [a]
> middle [] = []
> middle xs = take (r+1) . drop d $ xs
> where
> (d,r) = (length xs - 1) `divMod` 2
Here is my version. It was just a quick run up. I'm sure it's not very good.
middleList xs#(_:_:_:_) = take (if odd n then 1 else 2) $ drop en xs
where n = length xs
en = if n < 5 then 1 else 2 * (n `div` 4)
middleList xs = xs
I tried. :)
If anyone feels like commenting and telling me how awful or good this solution is, I would deeply appreciate it. I'm not very well versed in Haskell.
EDIT: Improved with suggestions from kmc on #haskell-blah
EDIT 2: Can now accept input lists with a length of less than 5.
Another one-line solution:
--
middle = ap (take . (1 +) . signum . (`mod` 2) . (1 +) . length) $ drop =<< (`div` 2) . subtract 1 . length
--
I'm trying to learn Erlang using the Karate Chop Kata. I translated the runit test supplied in the kata to an eunit test and coded up a small function to perform the task at hand.
-module(chop).
-export([chop/2]).
-import(lists).
-include_lib("eunit/include/eunit.hrl").
-ifdef(TEST).
chop_test_() -> [
?_assertMatch(-1, chop(3, [])),
?_assertMatch(-1, chop(3, [1])),
?_assertMatch(0, chop(1, [1])),
....several asserts deleted for brevity...
].
-endif.
chop(N,L) -> chop(N,L,0);
chop(_,[]) -> -1.
chop(_, [],_) -> -1;
chop(N, L, M) ->
MidIndex = length(L) div 2,
MidPoint = lists:nth(MidIndex,L),
{Left,Right} = lists:split(MidIndex,L),
case MidPoint of
_ when MidPoint < N -> chop(N,Right,M+MidIndex);
_ when MidPoint =:= N -> M+MidIndex;
_ when MidPoint > N -> chop(N,Left,M)
end.
Compiles ok.Running the test however gives, (amongst others) the following failure:
::error:badarg
in function erlang:length/1
called as length(1)
in call from chop:chop/3
I've tried different permutations of declaring chop(N,[L],M) .... and using length([L]) but have not been able to resolve this issue. Any suggestions are welcome.
ps. As you might have guessed I'm a nube when it comes to Erlang.
So I'm pressed for time at the moment, but the first problem I see is that
chop(N,L) -> chop(N,L,0);
chop(_,[]) -> -1.
is wrong because chop(N,L) will always match. reverse the clauses and see where that gets you.
Beyond that, in the case of the 1 element list, nth(0, [1]) will fail. I feel like these lists are probably 1-indexed.
As most significant thing to learn you should realize, that using binary search for lists in erlang is wrong idea, because lists:nth/2 is not O(1) but O(N) operation. Try list_to_tuple/1 and than do it on tuple. It is much more worth work.
It can also be worth to try it on array module.
The function erlang:length/1 returns the length of a list.
You called length(1) and 1 isn't a list.
length([1]) would return 1
length([1,2,3,4[) would return 4
etc, etc...
It appears that combining the remarks from Ben Hughes solves the problem. Just for completeness I'm pasting the tests-passing implementation of my binary search below.
chop(_,[]) -> -1;
chop(N,L) ->
Array = array:from_list(L),
chop(N,Array, 0, array:size(Array)-1).
chop(N, L, K, K) ->
Element = array:get(K,L),
if
Element == N -> K;
true -> -1
end;
chop(_, _, K, M) when M < K -> -1;
chop(N, L, K, M) ->
MidIndex = K + ((M - K) div 2),
MidPoint = array:get(MidIndex,L),
case MidPoint of
N -> MidIndex;
_ when MidPoint < N -> chop(N,L,MidIndex+1,M);
_ -> chop(N,L,K,MidIndex-1)
end.