How to detect "Over Current" event of an USB device? - c++

I have to detect the event "over current" of an USB device.
I'm developing in a Linux system and C/C++ language.
How do I do that?

You can use uevents. Here is some tutorial.
For watching uevents you have to bind specific NETLINK_KOBJECT_UEVENT:
int create_socket()
{
int sock = -1;
int result = 0;
struct sockaddr_nl snl;
memset(&snl, 0x00, sizeof(struct sockaddr_nl));
snl.nl_family = AF_NETLINK;
snl.nl_pid = getpid();
snl.nl_groups = -1;
sock = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_KOBJECT_UEVENT);
if (sock != -1)
{
result = bind(sock, (struct sockaddr *) &snl, sizeof(struct sockaddr_nl));
if (result < 0)
{
dbg("bind failed, exit\n");
close(sock);
sock = -1;
}
}
else
dbg("error getting socket, exit\n");
return sock;
}
int main() {
...
sock = create_socket();
while(sock != -1)
{
buflen = recv(sock, &buffer, sizeof(buffer), 0);
// parse buffer for event description
...
}
}
One of the events for sure will indicate the over-current state.

It might help you to look at the source code for your particular root port / host controller.
For example: http://www.spinics.net/lists/linux-usb/msg49451.html explains the overcurrent detection using a particular host controller driver.

Related

Why doesn't SO_TIMESTAMPING generate ancillary data? [duplicate]

I have been trying and failing to get Linux (kernel 4.1.4) to give me timestamps for when UDP datagrams are sent and received. I have read the original kernel docs (https://www.kernel.org/doc/Documentation/networking/timestamping.txt), along with lots of examples and a number of stackoverflow entries. I can send datagrams between sender and receiver with no problems. But I cannot get timestamps for sending or receiving datagrams, and I can't figure out what I'm doing wrong.
One bizarre thing is that when I use the MSG_ERRQUEUE channel for getting timestamp info on a sent datagram, I do get the original outgoing packet, and I do get the first ancillary message (SOL_IP, IP_RECVERR), but I do not get a second message (which should be level SOL_SOCKET, type SCM_TIMESTAMPING).
In another stackoverflow entry on getting timestamps for sent packets (Timestamp outgoing packets), someone mentioned that some drivers might not implement the call to skb_tx_timestamp, but I checked mine (Realtek), and that call is definitely in there.
Here's how I set up the UDP receiver (error handling code not shown):
inf->fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
timestampOn = SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_RX_HARDWARE;
r = setsockopt(inf->fd, SOL_SOCKET, SO_TIMESTAMPING, &timestampOn, sizeof(timestampOn));
r = setsockopt(inf->fd, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on));
memset(&(inf->local), 0, sizeof(struct sockaddr_in));
inf->local.sin_family = AF_INET;
inf->local.sin_port = htons(port);
inf->local.sin_addr.s_addr = htonl(INADDR_ANY);
r = bind(inf->fd, (struct sockaddr *)&(inf->local), sizeof(struct sockaddr_in));
Using SO_REUSEPORT or not doesn't seem to matter.
For receiving, my understanding is that we don't use MSG_ERRQUEUE. That's only if we want timestamps for sent messages. Besides, when I use MSG_ERRQUEUE with recvmsg, I get "resource temporarily unavailable." Here's how I receive datagrams:
int recv_len;
struct msghdr msg;
struct iovec iov;
memset(&msg, 0, sizeof(msg));
memset(&iov, 0, sizeof(iov));
// Space for control message info plus timestamp
char ctrl[2048];
memset(ctrl, 0, sizeof(ctrl));
//struct cmsghdr *cmsg = (struct cmsghdr *) &ctrl;
// Ancillary data buffer and length
msg.msg_control = (char *) ctrl;
msg.msg_controllen = sizeof(ctrl);
// Dest address info
msg.msg_name = (struct sockaddr *) &(inf->remote);
msg.msg_namelen = sizeof(struct sockaddr_in);
// Array of data buffers (scatter/gather)
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
// Data buffer pointer and length
iov.iov_base = buf;
iov.iov_len = len;
recv_len = recvmsg(inf->fd, &msg, 0);
And then I pass a pointer to msg to another function (handle_time) that does this:
struct timespec* ts = NULL;
struct cmsghdr* cmsg;
struct sock_extended_err *ext;
for( cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg,cmsg) ) {
printf("level=%d, type=%d, len=%zu\n", cmsg->cmsg_level, cmsg->cmsg_type, cmsg->cmsg_len);
}
Zero messages are received. So that's the first problem. My setup code above matches like half a dozen other examples I've found on the web, but I'm getting no ancillary data from this.
Next, let's turn to sending datagrams. Here's the setup:
inf->port = port;
inf->fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
memset(&(inf->remote), 0, sizeof(struct sockaddr_in));
inf->remote.sin_family = AF_INET;
inf->remote.sin_port = htons(port);
timestampOn = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_TX_HARDWARE;
r = setsockopt(inf->fd, SOL_SOCKET, SO_TIMESTAMPING, &timestampOn, sizeof(timestampOn));
on = 1;
r = setsockopt(inf->fd, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));
r = inet_aton(address, &(inf->remote.sin_addr));
And this is how I send a datagram:
int send_len, r, i;
struct msghdr msg;
struct iovec iov;
memset(&msg, 0, sizeof(msg));
memset(&iov, 0, sizeof(iov));
// Space for control message info plus timestamp
char ctrl[2048];
memset(ctrl, 0, sizeof(ctrl));
//struct cmsghdr *cmsg = (struct cmsghdr *) &ctrl;
// Ancillary data buffer and length
//msg.msg_control = (char *) ctrl;
//msg.msg_controllen = sizeof(ctrl);
// Dest address info
msg.msg_name = (struct sockaddr *) &(inf->remote);
msg.msg_namelen = sizeof(struct sockaddr_in);
// Array of data buffers (scatter/gather)
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
// Data buffer pointer and length
iov.iov_base = buf;
iov.iov_len = len;
send_len = sendmsg(inf->fd, &msg, 0);
Examples I've seen reuse the msg and iov data structures, but in my experimentation, I added code to make sure things were cleared, just in case the send left anything behind, although it didn't make any difference. Here's the code for getting the timestamp:
memset(&msg, 0, sizeof(msg));
memset(&iov, 0, sizeof(iov));
memset(ctrl, 0, sizeof(ctrl));
msg.msg_control = (char *) ctrl;
msg.msg_controllen = sizeof(ctrl);
msg.msg_name = (struct sockaddr *) &(inf->remote);
msg.msg_namelen = sizeof(struct sockaddr_in);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
iov.iov_base = junk_buf;
iov.iov_len = sizeof(junk_buf);
for (;;) {
r = recvmsg(inf->fd, &msg, MSG_ERRQUEUE);
if (r<0) {
fprintf(stderr, "Didn't get kernel time\n");
return send_len;
}
printf("recvmsg returned %d\n", r);
handle_time(&msg);
}
The data buffer contains the original datagram as expected. The ancillary data I get back includes a single message, which handle_time prints as:
level=0, type=11, len=48
This is level SOL_IP and type IP_RECVERR, which is expected according to the docs. Looking into the payload (a struct sock_extended_err), the errno is 42 (ENOMSG, No message of desired type) and origin is 4 (SO_EE_ORIGIN_TXSTATUS). From the docs, this is supposed to happen and demonstrates that in fact I did manage to inform the kernel that I want TX status messages. But there is no second ancillary message!
I have tried to see if there is any kernel compile option that might disable this, but I haven't found any. So I'm just completely baffled here. Can anyone help me figure out what I'm doing wrong?
Thanks!
UPDATE: I tried running this same code on another Linux machine, this time CentOS 7 (kernel 3.10.0-693.2.2.el7.x86_64). I can't figure out what what kind of NIC that machine has, but when I try to send datagrams, I get some other weird behavior. For the very first datagram, when I start this program, I get back the message and a single ancillary message, just as above. For every subsequent sendmsg call, errno tells me that I get an "Invalid argument" error. This error goes away if I don't enable timestamps on the socket.
UPDATE 2: I discovered that I had not been making an ioctl necessary to enable timestamps in the driver. Unfortunately, when I do this call, I get ENODEV from errno (no such device). Here's how I'm trying to do it (which I'm imitating from https://github.com/majek/openonload/blob/master/src/tests/onload/hwtimestamping/tx_timestamping.c):
struct ifreq ifr;
struct hwtstamp_config hwc;
inf->fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
memset(&ifr, 0, sizeof(ifr));
hwc.flags = 0;
hwc.tx_type = HWTSTAMP_TX_ON;
hwc.rx_filter = HWTSTAMP_FILTER_ALL;
ifr.ifr_data = (char*)&hwc;
r = ioctl(inf->fd, SIOCSHWTSTAMP, &ifr);
That being said, I'd be relatively happy with software timestamps, which should not need this call. So I'm not sure this is helpful anyhow.
UPDATE 3: A compilable example was requested. The whole program is pretty minimal, so I put it into pastebin here: https://pastebin.com/qd0gspRc
Also, here's the output from ethtool:
Time stamping parameters for eth0:
Capabilities:
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
PTP Hardware Clock: none
Hardware Transmit Timestamp Modes: none
Hardware Receive Filter Modes: none
Since this obviously doesn't support hardware timestamps, the ioctl is moot. I tried changing the SO_TIMESTAMPING setting to SOF_TIMESTAMPING_TX_SOFTWARE and SOF_TIMESTAMPING_RX_SOFTWARE for sender and receiver. That didn't help.
Then I tried adding SOF_TIMESTAMPING_SOFTWARE to both. I finally started getting something:
level=1, type=37, len=64
Level 1 is SOL_SOCKET, and type 37 is SCM_TIMESTAMPING. I'll go back to the docs and figure out how to interpret this. It says something about passing an array of three time structures. The driver's call to skb_tx_timestamp should have been sufficient so that it wouldn't require that I enable "fake" software timestamps to get something out.
Like I say in comment the use of SOF_TIMESTAMPING_SOFTWARE and SOF_TIMESTAMPING_RAW_HARDWARE is necessary because if I understand correctly the documentation, some bits are to generate the timestamp and some bits are here to report them in control message:
1.3.1 Timestamp Generation
Some bits are requests to the stack to try to generate timestamps. Any
combination of them is valid. Changes to these bits apply to newly
created packets, not to packets already in the stack. As a result, it
is possible to selectively request timestamps for a subset of packets
(e.g., for sampling) by embedding an send() call within two setsockopt
calls, one to enable timestamp generation and one to disable it.
Timestamps may also be generated for reasons other than being
requested by a particular socket, such as when receive timestamping is
enabled system wide, as explained earlier.
1.3.2 Timestamp Reporting
The other three bits control which timestamps will be reported in a
generated control message. Changes to the bits take immediate effect
at the timestamp reporting locations in the stack. Timestamps are only
reported for packets that also have the relevant timestamp generation
request set.
After, to use the data documentation say:
2.1 SCM_TIMESTAMPING records
These timestamps are returned in a control message with cmsg_level
SOL_SOCKET, cmsg_type SCM_TIMESTAMPING, and payload of type
struct scm_timestamping { struct timespec ts[3]; };
...
The structure can return up to three timestamps. This is a legacy
feature. At least one field is non-zero at any time. Most timestamps
are passed in ts[0]. Hardware timestamps are passed in ts[2].
To get transmit timestamp this require some configuration, first you need to know that software timestamp are not always available, I only achieve to get hardware transmit timestamp. But I'm not an expert in these domain, I just try to implemented timestamp with information that I found.
Secondly, I needed to activate hardware feature with linuxptp tool, I use hwstamp_cli:
hwstamp_ctl -i eth0 -r 1 -t 1
With this and some modification on your code I achieve to get hardware transmit timestamp but only with ethX interface because lo interface don't have these feature AFAIK so the final code is:
#include <arpa/inet.h>
#include <errno.h>
#include <inttypes.h>
#include <linux/errqueue.h>
#include <linux/net_tstamp.h>
#include <linux/sockios.h>
#include <net/if.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#define UDP_MAX_LENGTH 1500
typedef struct {
int fd;
int port;
int err_no;
struct sockaddr_in local;
struct sockaddr_in remote;
struct timeval time_kernel;
struct timeval time_user;
int64_t prev_serialnum;
} socket_info;
static int setup_udp_receiver(socket_info *inf, int port) {
inf->port = port;
inf->fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (inf->fd < 0) {
inf->err_no = errno;
fprintf(stderr, "setup_udp_server: socket failed: %s\n",
strerror(inf->err_no));
return inf->fd;
}
int timestampOn =
SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE |
// SOF_TIMESTAMPING_OPT_TSONLY |
0;
int r = setsockopt(inf->fd, SOL_SOCKET, SO_TIMESTAMPING, &timestampOn,
sizeof timestampOn);
if (r < 0) {
inf->err_no = errno;
fprintf(stderr, "setup_udp_server: setsockopt failed: %s\n",
strerror(inf->err_no));
return r;
}
int on = 1;
r = setsockopt(inf->fd, SOL_SOCKET, SO_REUSEPORT, &on, sizeof on);
if (r < 0) {
inf->err_no = errno;
fprintf(stderr, "setup_udp_server: setsockopt2 failed: %s\n",
strerror(inf->err_no));
return r;
}
inf->local = (struct sockaddr_in){.sin_family = AF_INET,
.sin_port = htons((uint16_t)port),
.sin_addr.s_addr = htonl(INADDR_ANY)};
r = bind(inf->fd, (struct sockaddr *)&inf->local, sizeof inf->local);
if (r < 0) {
inf->err_no = errno;
fprintf(stderr, "setup_udp_server: bind failed: %s\n",
strerror(inf->err_no));
return r;
}
inf->prev_serialnum = -1;
return 0;
}
static int setup_udp_sender(socket_info *inf, int port, char *address) {
inf->port = port;
inf->fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (inf->fd < 0) {
inf->err_no = errno;
fprintf(stderr, "setup_udp_client: socket failed: %s\n",
strerror(inf->err_no));
return inf->fd;
}
int timestampOn =
SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE |
// SOF_TIMESTAMPING_OPT_TSONLY |
0;
int r = setsockopt(inf->fd, SOL_SOCKET, SO_TIMESTAMPING, &timestampOn,
sizeof timestampOn);
if (r < 0) {
inf->err_no = errno;
fprintf(stderr, "setup_udp_server: setsockopt failed: %s\n",
strerror(inf->err_no));
return r;
}
inf->remote = (struct sockaddr_in){.sin_family = AF_INET,
.sin_port = htons((uint16_t)port)};
r = inet_aton(address, &inf->remote.sin_addr);
if (r == 0) {
fprintf(stderr, "setup_udp_client: inet_aton failed\n");
inf->err_no = 0;
return -1;
}
inf->local = (struct sockaddr_in){.sin_family = AF_INET,
.sin_port = htons(0),
.sin_addr.s_addr = htonl(INADDR_ANY)};
inf->prev_serialnum = -1;
return 0;
}
static void handle_scm_timestamping(struct scm_timestamping *ts) {
for (size_t i = 0; i < sizeof ts->ts / sizeof *ts->ts; i++) {
printf("timestamp: %lld.%.9lds\n", (long long)ts->ts[i].tv_sec,
ts->ts[i].tv_nsec);
}
}
static void handle_time(struct msghdr *msg) {
for (struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg); cmsg;
cmsg = CMSG_NXTHDR(msg, cmsg)) {
printf("level=%d, type=%d, len=%zu\n", cmsg->cmsg_level, cmsg->cmsg_type,
cmsg->cmsg_len);
if (cmsg->cmsg_level == SOL_IP && cmsg->cmsg_type == IP_RECVERR) {
struct sock_extended_err *ext =
(struct sock_extended_err *)CMSG_DATA(cmsg);
printf("errno=%d, origin=%d\n", ext->ee_errno, ext->ee_origin);
continue;
}
if (cmsg->cmsg_level != SOL_SOCKET)
continue;
switch (cmsg->cmsg_type) {
case SO_TIMESTAMPNS: {
struct scm_timestamping *ts = (struct scm_timestamping *)CMSG_DATA(cmsg);
handle_scm_timestamping(ts);
} break;
case SO_TIMESTAMPING: {
struct scm_timestamping *ts = (struct scm_timestamping *)CMSG_DATA(cmsg);
handle_scm_timestamping(ts);
} break;
default:
/* Ignore other cmsg options */
break;
}
}
printf("End messages\n");
}
static ssize_t udp_receive(socket_info *inf, char *buf, size_t len) {
char ctrl[2048];
struct iovec iov = (struct iovec){.iov_base = buf, .iov_len = len};
struct msghdr msg = (struct msghdr){.msg_control = ctrl,
.msg_controllen = sizeof ctrl,
.msg_name = &inf->remote,
.msg_namelen = sizeof inf->remote,
.msg_iov = &iov,
.msg_iovlen = 1};
ssize_t recv_len = recvmsg(inf->fd, &msg, 0);
gettimeofday(&inf->time_user, NULL);
if (recv_len < 0) {
inf->err_no = errno;
fprintf(stderr, "udp_receive: recvfrom failed: %s\n",
strerror(inf->err_no));
}
handle_time(&msg);
return recv_len;
}
static ssize_t udp_send(socket_info *inf, char *buf, size_t len) {
struct iovec iov = (struct iovec){.iov_base = buf, .iov_len = len};
struct msghdr msg = (struct msghdr){.msg_name = &inf->remote,
.msg_namelen = sizeof inf->remote,
.msg_iov = &iov,
.msg_iovlen = 1};
gettimeofday(&inf->time_user, NULL);
ssize_t send_len = sendmsg(inf->fd, &msg, 0);
if (send_len < 0) {
inf->err_no = errno;
fprintf(stderr, "udp_send: sendmsg failed: %s\n", strerror(inf->err_no));
}
return send_len;
}
static ssize_t meq_receive(socket_info *inf, char *buf, size_t len) {
struct iovec iov = (struct iovec){.iov_base = buf, .iov_len = len};
char ctrl[2048];
struct msghdr msg = (struct msghdr){.msg_control = ctrl,
.msg_controllen = sizeof ctrl,
.msg_name = &inf->remote,
.msg_namelen = sizeof inf->remote,
.msg_iov = &iov,
.msg_iovlen = 1};
ssize_t recv_len = recvmsg(inf->fd, &msg, MSG_ERRQUEUE);
if (recv_len < 0) {
inf->err_no = errno;
if (errno != EAGAIN) {
fprintf(stderr, "meq_receive: recvmsg failed: %s\n",
strerror(inf->err_no));
}
return recv_len;
}
handle_time(&msg);
return recv_len;
}
typedef struct {
int64_t serialnum;
int64_t user_time_serialnum;
int64_t user_time;
int64_t kernel_time_serialnum;
int64_t kernel_time;
size_t message_bytes;
} message_header;
static const size_t payload_max = UDP_MAX_LENGTH - sizeof(message_header);
static ssize_t generate_random_message(socket_info *inf, char *buf,
size_t len) {
if (len < sizeof(message_header)) {
return -1;
}
message_header *header = (message_header *)buf;
char *payload = (char *)(header + 1);
size_t payload_len = (size_t)random() % (payload_max + 1);
if (payload_len > len - sizeof(message_header)) {
payload_len = len - sizeof(message_header);
}
for (size_t i = 0; i < payload_len; i++) {
payload[i] = (char)random();
}
static int64_t serial_num = 0;
*header = (message_header){
.user_time_serialnum = inf->prev_serialnum,
.user_time = inf->time_user.tv_sec * 1000000000L + inf->time_user.tv_usec,
.kernel_time_serialnum = inf->prev_serialnum,
.kernel_time =
inf->time_kernel.tv_sec * 1000000000L + inf->time_kernel.tv_usec,
.serialnum = serial_num,
.message_bytes = payload_len};
size_t total = payload_len + sizeof *header;
printf("uts%5" PRId64 ": kt=%" PRId64 ", ut=%" PRId64 ", sn=%" PRId64
": s=%zu\n",
header->user_time_serialnum, header->kernel_time, header->user_time,
header->serialnum, total);
inf->prev_serialnum = serial_num++;
return (ssize_t)total;
}
static void sender_loop(char *host) {
socket_info inf;
int ret = setup_udp_sender(&inf, 8000, host);
if (ret < 0) {
return;
}
for (int i = 0; i < 2000; i++) {
useconds_t t = random() % 2000000;
usleep(t);
char packet_buffer[4096];
ssize_t len =
generate_random_message(&inf, packet_buffer, sizeof packet_buffer);
if (len < 0) {
return;
}
udp_send(&inf, packet_buffer, (size_t)len);
while (meq_receive(&inf, packet_buffer, sizeof packet_buffer) != -1) {
}
}
}
static void receiver_loop(void) {
socket_info inf;
int ret = setup_udp_receiver(&inf, 8000);
if (ret < 0) {
return;
}
for (int i = 0; i < 1000; i++) {
char packet_buffer[4096];
udp_receive(&inf, packet_buffer, sizeof packet_buffer);
}
}
#define USAGE "Usage: %s [-r | -s host]\n"
int main(int argc, char *argv[]) {
if (argc < 2) {
fprintf(stderr, USAGE, argv[0]);
return 0;
}
if (0 == strcmp(argv[1], "-s")) {
if (argc < 3) {
fprintf(stderr, USAGE, argv[0]);
return 0;
}
sender_loop(argv[2]);
} else if (0 == strcmp(argv[1], "-r")) {
receiver_loop();
} else {
fprintf(stderr, USAGE, argv[0]);
}
}
Exemple output:
$ ./a.out -r
level=1, type=37, len=64
timestamp: 1511196758.087209387s
timestamp: 0.000000000s
timestamp: 0.000000000s
End messages
level=1, type=37, len=64
timestamp: 1511196759.333507671s
timestamp: 0.000000000s
timestamp: 0.000000000s
End messages
$ ./a.out -s "8.8.8.8"
uts -1: kt=238059712, ut=140918979990070, sn=0: s=482
uts 0: kt=238059712, ut=1511197522000237457, sn=1: s=132
level=1, type=37, len=64
timestamp: 0.000000000s
timestamp: 0.000000000s
timestamp: 1511197359.637050597s
level=0, type=11, len=48
errno=42, origin=4
End messages
uts 1: kt=238059712, ut=1511197523000483805, sn=2: s=1454
level=1, type=37, len=64
timestamp: 0.000000000s
timestamp: 0.000000000s
timestamp: 1511197360.883295397s
level=0, type=11, len=48
errno=42, origin=4
End messages
Live test: sender, receiver

C/C++: socket() creation fails in the loop, too many open files

I am implementing a client-server TCP socket application. Client is on an OpenWRT Linux router (C based) and writes some data on the socket repeatedly and in a loop at some frequency rate. The Server is on a Linux Ubuntu machine (C/C++ based) and reads data in a loop according to data arrival speed.
Problem: Running the Server and then Client, server keeps reading new data. Both sides work well until the number of data deliveries (# of connections) reaches 1013. After that, the Client stuck at socket(AF_INET,SOCK_STREAM,0) with socket creation failed...: Too many open files. Apparently, the number of open fd approaches ulimit -n = 1024 on client.
I put the snippets of the code which shows the loop structures for Server.cpp and Client.c:
Server.c:
// TCP Socket creation stuff over here (work as they should):
// int sock_ = socket() / bind() / listen()
while (1)
{
socklen_t sizeOfserv_addr = sizeof(serv_addr_);
fd_set set;
struct timeval timeout;
int connfd_;
FD_ZERO(&set);
FD_SET(sock_, &set);
timeout.tv_sec = 10;
timeout.tv_usec = 0;
int rv_ = select(sock_ + 1, &set, NULL, NULL, &timeout);
if(rv_ == -1){
perror("select");
return 1;
}
else if(rv_ == 0){
printf("Client disconnected.."); /* a timeout occured */
close (connfd_);
close (sock_);
}
else{
connfd_ = accept (sock_,(struct sockaddr*)&serv_addr_,(socklen_t*)&sizeOfserv_addr);
if (connfd_ >= 0) {
int ret = read (connfd_, &payload, sizeof(payload)); /* some payload */
if (ret > 0)
printf("Received %d bytes !\n", ret);
close (connfd_); /* Keep parent socket open (sock_) */
}else{
printf("Server acccept failed..\n");
close (connfd_);
close (stcp.sock_);
return 0;
}
}
}
Client.cpp:
while (payload_exist) /* assuming payload_exist is true */
{
struct sockaddr_in servaddr;
int sock;
if (sock = socket(AF_INET, SOCK_STREAM, 0) == -1)
perror("socket creation failed...\n");
int one = 1;
int idletime = 2;
setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, &one, sizeof(one));
setsockopt(sock, IPPROTO_TCP, TCP_KEEPIDLE, &idletime, sizeof(idletime));
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr("192.168.100.12");
servaddr.sin_port = htons(PORT); /* some PORT */
if (connect (sock, (struct sockaddr*)&servaddr, sizeof(servaddr)) != 0){
perror("connect failed...");
return 1;
}
write(sock, (struct sockaddr*)&payload, sizeof(payload)); /* some new payload */
shutdown(sock,SHUT_WR);
bool serverOff = false;
while (!serverOff){
if(read(sock, &res, sizeof(res)) < 0){
serverOff = true;
close(sock);
}
}
}
NOTE: payload is 800 bytes and always gets fully transmitted per one write action. Having both codes defined under int main(), the client keeps creating sockets and sending data, on the other side, server receives all and would automatically close() and leave if client terminates, due to using select(). If I don't terminate the Client, however, by checking some print logs, it is evident that Server successfully receives 1013 payloads before client crashes with socket creation failed...: Too many open files.
Update:
Following the point mentioned by Steffen Ullrich, it turned out that, the client socket fd has no leak, and the existence of a second fd in the original loop (which was left open) was making the ulimit exceed the limit.
if(read(sock, &res, sizeof(res)) < 0){
serverOff = true;
close(sock); /********* Not actually closing sock *********/
}
Your check for end of connection is wrong.
read returns 0 if the other side has shut down the connection and <0 only on error.
if (sock = socket(AF_INET, SOCK_STREAM, 0) == -1)
perror("socket creation failed...\n");
Given the precedence of operators in C this basically says:
sock = ( socket(AF_INET, SOCK_STREAM, 0) == -1) )
if (sock) ...
Assuming that socket(...) will not return an error but a file descriptor (i.e. >=0) the comparison will be false and thus this essentially says sock = 0 while leaking a file descriptor if the fd returned by socket was >0.

consideration to speedup tcp/udp connection

I'm using winsock2 library to write a SDK(Software Developement Kit) for a digital board with 1Gbps ethernet on it. the problem I'm facing is that I can not get enough transfer rate(TX/RX) through ethernet uing TCP/UDP. i rather use UDP-RX as a case study to understand each parameter than can speed up my connection. with the code below i can send data from my PC to my device in just ~350 Mbps.
Start Listening:
//Initialize winsock library
if (WSAStartup(MAKEWORD(2, 2), &m_wsa) != 0)
{
error = WSAGetLastError();
}
//Create a socket
if ((m_serversocket = socket(AF_INET, SOCK_DGRAM, 0)) == INVALID_SOCKET)
{
error = WSAGetLastError();
WSACleanup();
return;
}
int buffersize = 0x200000;
int buffersizelen = sizeof(buffersize);
setsockopt(m_serversocket, SOL_SOCKET, SO_RCVBUF, (char*)&buffersize, buffersizelen);
//Prepare the sockaddr_in structure
memset(&m_serveraddress, 0, sizeof(m_serveraddress));
m_serveraddress.sin_family = AF_INET;
inet_pton(AF_INET, SERVER_Address, &m_serveraddress.sin_addr.s_addr);
m_serveraddress.sin_port = htons(SEND_PORT_number);
// Bind the socket to any address and the specified port.
if (bind(m_serversocket, (struct sockaddr *)&m_serveraddress, sizeof(m_serveraddress)) == SOCKET_ERROR)
{
error = WSAGetLastError();
return;
}
Sending file:
sendchunk = 1000;
// Read File and fill the buffer
if ((m_err = fopen_s(&m_send_file, m_send_filename.toLocal8Bit().data(), "rb")) == 0)
{
// start to send buffer
while (!(feof(m_send_file) || m_stopsend))
{
remainsize = fread(read_data, 1, sendfilesize / count, m_send_file);
sndsize_ProgBar += remainsize;
sentsize = 0;
timer.start();
while ((remainsize >= sendchunk) && !(m_stopsend))
{
sendto(m_serversocket, read_data + sentsize, sendchunk, 0, (struct sockaddr *)&m_serveraddress, addrlengh); // 1024
sentsize += sendchunk;
remainsize -= sendchunk;
}
elapsedtimemicrosec = timer.getElapsedTimeInMicroSec();
timer.stop();
rcvRate = (float)(((remainsize + sentsize)) / elapsedtimemicrosec);
emit UpdateSendRate(rcvRate);
}
}
any suggestion to speedup connection?
P.S: i already tried different sendchunk and choose the best.

UDP receive waits indefinitely in x64 bit mode?

My code consist of udp server which receive data from an udp client. The code can run in two configurations win32 and x64 in visual studio. If i run the udp server in x32 mode, everything works fine, it receives data. But in x64 bit the receive wait indefinitely. No change in code, single receive command but both behave differently. My udp receive looks like this.
WSADATA wsadata;
int error = WSAStartup(0X0202, &wsadata);
if(error) {
cerr<<"UdpIPV4Server.cpp:- WSAStartup failed"<<endl;
return -1;
}
if ((socket_var = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) {
cerr<<"UdpIPV4Server.cpp:- socket function failed"<<endl;
return -1;
}
memset((char *) &si_server, 0, sizeof(si_server));
si_server.sin_family = AF_INET;
si_server.sin_port = htons(7888);
char host[NI_MAXHOST] = "10.8.0.2";
if(inet_pton(AF_INET, host, &si_server.sin_addr) != 1) {
cerr<<"UdpIPV4Server.cpp: inet_pton() failed\n";
return -1;
}
if(bind(socket_var,(struct sockaddr *)&si_server,sizeof(si_server)) == -1) {
cerr<<"UdpIPV4Server.cpp:- bind failed: "<<endl;
return -1;
}
char recv_buffer[65534];
int buf_size = 65534;
memset((char*)&si_client, 0, sizeof(struct sockaddr_in));
int si_client_len = sizeof(si_client);
if((recv_len = recvfrom(socket_var, recv_buffer, buf_size, 0, (struct sockaddr *)&si_client, &si_client_len)) == -1) {
cerr<<"udpipv4server.cpp:- recvfrom failed"<<endl;
return recv_len;
}
So What could be the issue, why this change in behaviour?

Example code of libssh2 being used for port forwarding

I'm looking for an example of how to use libssh2 to setup ssh port forwarding. I've looked at the API, but there is very little in the way of documentation in the area of port forwarding.
For instance, when using PuTTY's plink there is the remote port to listen on, but also the local port that traffic should be sent to. Is it the developers responsibility to set this up? Can someone give an example of how to do this?
Also, an example where remote port is brought to a local port would be useful. Do I use libssh2_channel_direct_tcpip_ex()?
I'm willing to put up a bounty if need be to get a couple of working examples of this.
The key to making libssh2 port forwarding work was discovering that it basically just gives you the data that came in to that port. You have to actually send the data onto a local port that you open:
(Note, this code is not yet complete, there is no error checking, and the thread yielding isn't correct, but it gives a general outline of how to accomplish this.)
void reverse_port_forward(CMainDlg* dlg, addrinfo * hubaddr, std::string username, std::string password, int port)
{
int iretval;
unsigned long mode = 1;
int last_socket_err = 0;
int other_port = 0;
fd_set read_set, write_set;
SOCKET sshsock = socket(AF_INET, SOCK_STREAM, 0);
iretval = connect(sshsock, hubaddr->ai_addr, hubaddr->ai_addrlen);
if (iretval != 0)
::PostQuitMessage(0);
LIBSSH2_SESSION * session = NULL;
session = libssh2_session_init();
iretval = libssh2_session_startup(session, sshsock);
if (iretval)
::PostQuitMessage(0);
iretval = libssh2_userauth_password(session, username.c_str(), password.c_str());
dlg->m_track_status(dlg, 1, 0, "Authorized");
LIBSSH2_LISTENER* listener = NULL;
listener = libssh2_channel_forward_listen_ex(session, "127.0.0.1", port, &other_port, 1);
if (!listener)
::PostQuitMessage(0);
LIBSSH2_CHANNEL* channel = NULL;
ioctlsocket(sshsock, FIONBIO, &mode);
libssh2_session_set_blocking(session, 0); // non-blocking
int err = LIBSSH2_ERROR_EAGAIN;
while (err == LIBSSH2_ERROR_EAGAIN)
{
channel = libssh2_channel_forward_accept(listener);
if (channel) break;
err = libssh2_session_last_errno(session);
boost::this_thread::yield();
}
if (channel)
{
char buf[MAX_BUF_LEN];
char* chunk;
long bytes_read = 0;
long bytes_written = 0;
int total_set = 0;
timeval wait;
wait.tv_sec = 0;
wait.tv_usec = 2000;
sockaddr_in localhost;
localhost.sin_family = AF_INET;
localhost.sin_addr.s_addr = inet_addr("127.0.0.1");
localhost.sin_port = htons(5900);
SOCKET local_sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
ioctlsocket(local_sock, FIONBIO, &mode);
iretval = connect(local_sock, (sockaddr*) &localhost, sizeof(localhost) );
if (iretval == SOCKET_ERROR)
iretval = WSAGetLastError();
while (1)
{
bytes_read = libssh2_channel_read(channel, buf, MAX_BUF_LEN);
if (bytes_read >= 0){
FD_ZERO(&read_set);
FD_ZERO(&write_set);
FD_SET(local_sock, &write_set);
// wait until the socket can be written to
while (select(0, &read_set, &write_set, NULL, &wait) < 1)
boost::this_thread::yield();
if (FD_ISSET(local_sock, &write_set))
{
FD_CLR(local_sock, &write_set);
chunk = buf;
// everything may not get written in this call because we're non blocking. So
// keep writing more data until we've emptied the buffer pointer.
while ((bytes_written = send(local_sock, chunk, bytes_read, 0)) < bytes_read)
{
// if it couldn't write anything because the buffer is full, bytes_written
// will be negative which won't help our pointer math much
if (bytes_written > 0)
{
chunk = buf + bytes_written;
bytes_read -= bytes_written;
if (bytes_read == 0)
break;
}
FD_ZERO(&read_set);
FD_ZERO(&write_set);
FD_SET(local_sock, &write_set);
// wait until the socket can be written to
while (select(0, &read_set, &write_set, NULL, &wait) < 1)
boost::this_thread::yield();
}
}
}
FD_ZERO(&read_set);
FD_ZERO(&write_set);
FD_SET(local_sock, &read_set);
select(0, &read_set, &write_set, NULL, &wait);
if (FD_ISSET(local_sock, &read_set))
{
FD_CLR(local_sock, &read_set);
bytes_read = recv(local_sock, buf, MAX_BUF_LEN, 0);
if (bytes_read >= 0)
{
while ((bytes_written = libssh2_channel_write_ex(channel, 0, buf, bytes_read)) == LIBSSH2_ERROR_EAGAIN)
boost::this_thread::yield();
}
}
boost::this_thread::yield();
} // while
} // if channel
}
P.S. To make this work requires the latest SVN builds of libssh2. There were bugs in prior versions that kept port forwarding from being usable.
The libssh2 source code includes since a few years a direct_tcpip.c example which demonstrates how to create direct-tcpip SSH channels, and since last week a forward-tcpip.c example which demonstrates how to create forward-tcpip SSH channels.
direct-tcpip is what ssh -L uses, and forward-tcpip is what ssh -R uses.
It is always the responsibility of libssh2 users to deal with the actual data. libssh2 takes care of SSH channels and nothing else. You can benefit significantly from studying the SSH RFCs, in particular RFC 4254, to find more about what exactly each channel type promises you, and thus what you can expect from libssh2.