OpenGl changing the unit of measure for coordinate system - c++

I'm learning OpenGL using the newest blue book, and I was hoping to get a point of clarification. The book says you can use any system of measurement for the coordinate system, however when doing 3d perspective programming, the world coordinates are +1/-1.
I guess where I am a little confused is lets say I want to use feet and inches for my world, and I want to build the interior of my house. Would I just use translates (x(feet), y(feet), z(feet)), extra, or is there some function to change you x,y world coordinates (i.e change the default from -1/+1 to lets say (-20/20). I know openGl converts everything unit left.
So i guess My biggest gap of knowledge is how to I model real world objects (lengths) to make sense in OPenGL?

I think the author is referring to normalized coordinates (device coordinates) that appear after the perspective divide.
Typically when you actually manipulate objects in OpenGL you use standard world coordinates which are not limited to -1/+1. These world coordinates can be anything you like and are translated into normalized coordinates by multiplying by the modelview and projection matrices then dividing by the homogeneous coordinate 'w'.
OpenGL will do all this for you (until you get into shaders) so don't really worry about normalized coordinates.

Well its all relative. If you set 1 OpenGL unit to be 1 meter and then build everything perfectly to scale on that basis then you have the scale you want (ie 10 meters would be 10 openGL units and 1 millimeter would be 0.001 OpenGL units.
If, however, you were to then introduce a model that was designed such that 1 OpenGL unit = 1 foot then the object is going to end up being ~3 times too large.
Sure you can change between the various methods but by far the best way to do this is to re-scale your model before loading it into your engine.

…however when doing 3d perspective programming, the world coordinates are +1/-1.
Says who? Maybe you are referring to clip space, however this is just one special space in which all coordinates are after projection.
You world units may be anything. The relevant part is, how those are projected. Say you have a perspective projection of 90°FOV, near clip plane at 0.01, far clip plane at 10.0, quadratic aspect (for simplicity). Then your view volume into the world will resolve a rectangle with side lengths 0.01 and 0.01 distance close to the viewer, and stretch to 10.0 in the distant with the 0.02 side lengths. Reduce the FOV and the lateral lenghts shrink accordingly.
Nevertheless, coordinates in about the range 0.01 to 10. are projected into the +/-1 clip space.
So it's up to you to choose the projection limits to match your scene and units of choice.

Normalized window coordinate range is always -1 to +1. But it can be used as you wish.
Suppose we want a range -100 to +100 then divide actual coordinate with 100. In this case use
the function glVertex2f or glVertex3f only.
e.g. glVertex2f(10/100,10/100).

Related

Clipping in clipping coordinate system and normalized device coordinate system (OpenGL)

I heard clipping should be done in clipping coordinate system.
The book suggests a situation that a line is laid from behind camera to in viewing volume. (We define this line as PQ, P is behind camera point)
I cannot understand why it can be a problem.
(The book says after finishing normalizing transformation, the P will be laid in front of camera.)
I think before making clipping coordinate system, the camera is on original point (0, 0, 0, 1) because we did viewing transformation.
However, in NDCS, I cannot think about camera's location.
And I have second question.
In vertex shader, we do model-view transformation and then projection transformation. Finally, we output these vertices to rasterizer.
(some vertices's w is not equal to '1')
Here, I have curiosity. The rendering pipeline will automatically do division procedure (by w)? after finishing clipping.
Sometimes not all the model can be seen on screen, mostly because some objects of it lie behind the camera (or "point of view"). Those objects are clipped out. If just a part of the object can't be seen, then just that part must be clipped leaving the rest as seen.
OpenGL clips
OpenGL does this clipping in Clipping Coordinate Space (CCS). This is a cube of size 2w x 2w x 2w where 'w' is the fourth coordinate resulting of (4x4) x (4x1) matrix and point multiplication. A mere comparison of coordinates is enough to tell if the point is clipped or not. If the point passes the test then its coordinates are divided by 'w' (so called "perspective division"). Notice that for ortogonal projections 'w' is always 1, and with perspective it's generally not 1.
CPU clips
If the model is too big perhaps you want to save GPU resources or improve the frame rate. So you decide to skip those objects that are going to get clipped anyhow. Then you do the maths on your own (on CPU) and only send to the GPU the vertices that passed the test. Be aware that some objects may have some vertices clipped while other vertices of this same object may not.
Perhaps you do send them to GPU and let it handle these special cases.
You have a volume defined where only objects inside are seen. This volume is defined by six planes. Let's put ourselves in the camera and look at this volume: If your projection is perspective the six planes build a "fustrum", a sort of truncated pyramid. If your projection is orthogonal, the planes form a parallelepiped.
In order to clip or not to clip a vertex you must use the distance form the vertex to each of these six planes. You need a signed distance, this means that the sign tells you what side of the plane is seen form the vertex. If any of the six distance signs is not the right one, the vertex is discarded, clipped.
If a plane is defined by equation Ax+By+Cz+D=0 then the signed distance from p1,p2,p3 is (Ap1+Bp2+Cp3+D)/sqrt(AA+BB+C*C). You only need the sign, so don't bother to calculate the denominator.
Now you have all tools. If you know your planes on "camera view" you can calculate the six distances and clip or not the vertex. But perhaps this is an expensive operation considering that you must transform the vertex coodinates from model to camera (view) spaces, a ViewModel matrix calculation. With the same cost you use your precalculated ProjectionViewModel matrix instead and obtain CCS coordinates, which are much easier to compare to '2w', the size of the CCS cube.
Sometimes you want to skip some vertices not due to they are clipped, but because their depth breaks a criteria you are using. In this case CCS is not the right space to work with, because Z-coordinate is transformed into [-w, w] range, depth is somehow "lost". Instead, you do your clip test in "view space".

Calculating the perspective projection matrix according to the view plane

I'm working with openGL but this is basically a math question.
I'm trying to calculate the projection matrix, I have a point on the view plane R(x,y,z) and the Normal vector of that plane N(n1,n2,n3).
I also know that the eye is at (0,0,0) which I guess in technical terms its the Perspective Reference Point.
How can I arrive the perspective projection from this data? I know how to do it the regular way where you get the FOV, aspect ration and near and far planes.
I think you created a bit of confusion by putting this question under the "opengl" tag. The problem is that in computer graphics, the term projection is not understood in a strictly mathematical sense.
In maths, a projection is defined (and the following is not the exact mathematical definiton, but just my own paraphrasing) as something which doesn't further change the results when applied twice. Think about it. When you project a point in 3d space to a 2d plane (which is still in that 3d space), each point's projection will end up on that plane. But points which already are on this plane aren't moving at all any more, so you can apply this as many times as you want without changing the outcome any further.
The classic "projection" matrices in computer graphics don't do this. They transfrom the space in a way that a general frustum is mapped to a cube (or cuboid). For that, you basically need all the parameters to describe the frustum, which typically is aspect ratio, field of view angle, and distances to near and far plane, as well as the projection direction and the center point (the latter two are typically implicitely defined by convention). For the general case, there are also the horizontal and vertical asymmetries components (think of it like "lens shift" with projectors). And all of that is what the typical projection matrix in computer graphics represents.
To construct such a matrix from the paramters you have given is not really possible, because you are lacking lots of parameters. Also - and I think this is kind of revealing - you have given a view plane. But the projection matrices discussed so far do not define a view plane - any plane parallel to the near or far plane and in front of the camera can be imagined as the viewing plane (behind the camere would also work, but the image would be mirrored), if you should need one. But in the strict sense, it would only be a "view plane" if all of the projected points would also end up on that plane - which the computer graphics perspective matrix explicitely does'nt do. It instead keeps their 3d distance information - which also means that the operation is invertible, while a classical mathematical projection typically isn't.
From all of that, I simply guess that what you are looking for is a perspective projection from 3D space onto a 2D plane, as opposed to a perspective transformation used for computer graphics. And all parameters you need for that are just the view point and a plane. Note that this is exactly what you have givent: The projection center shall be the origin and R and N define the plane.
Such a projection can also be expressed in terms of a 4x4 homogenous matrix. There is one thing that is not defined in your question: the orientation of the normal. I'm assuming standard maths convention again and assume that the view plane is defined as <N,x> + d = 0. From using R in that equation, we can get d = -N_x*R_x - N_y*R_y - N_z*R_z. So the projection matrix is just
( 1 0 0 0 )
( 0 1 0 0 )
( 0 0 1 0 )
(-N_x/d -N_y/d -N_z/d 0 )
There are a few properties of this matrix. There is a zero column, so it is not invertible. Also note that for every point (s*x, s*y, s*z, 1) you apply this to, the result (after division by resulting w, of course) is just the same no matter what s is - so every point on a line between the origin and (x,y,z) will result in the same projected point - which is what a perspective projection is supposed to do. And finally note that w=(N_x*x + N_y*y + N_z*z)/-d, so for every point fulfilling the above plane equation, w= -d/-d = 1 will result. In combination with the identity transform for the other dimensions, which just means that such a point is unchanged.
Projection matrix must be at (0,0,0) and viewing in Z+ or Z- direction
this is a must because many things in OpenGL depends on it like FOG,lighting ... So if your direction or position is different then you need to move this to camera matrix. Let assume your focal point is (0,0,0) as you stated and the normal vector is (0,0,+/-1)
Z near
is the distance between focal point and projection plane so znear is perpendicular distance of plane and (0,0,0). If assumption is correct then
znear=R.z
otherwise you need to compute that. I think you got everything you need for it
cast line from R with direction N
find closest point to focal point (0,0,0)
and then the z near is the distance of that point to R
Z far
is determined by the depth buffer bit width and z near
zfar=znear*(1<<(cDepthBits-1))
this is the maximal usable zfar (for mine purposes) if you need more precision then lower it a bit do not forget precision is higher near znear and much much worse near zfar. The zfar is usually set to the max view distance and znear computed from it or set to min focus range.
view angle
I use mostly 60 degree view. zang=60.0 [deg]
Common males in my region can see up to 90 degrees but that is peripherial view included the 60 degree view is more comfortable to view.
Females have a bit wider view ... but I did not heard any complains from them on 60 degree views ever so let assume its comfortable for them too...
Aspect
aspect ratio is determined by your OpenGL window dimensions xs,ys
aspect=(xs/ys)
This is how I set the projection matrix:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(zang/aspect,aspect,znear,zfar);
// gluPerspective has inacurate tangens so correct perspective matrix like this:
double perspective[16];
glGetDoublev(GL_PROJECTION_MATRIX,perspective);
perspective[ 0]= 1.0/tan(0.5*zang*deg);
perspective[ 5]=aspect/tan(0.5*zang*deg);
glLoadMatrixd(perspective);
deg = M_PI/180.0
perspective is projection matrix copy I use it for mouse position conversions etc ...
If you do not correct the matrix then you will be off when using advanced things like overlapping more frustrum to get high precision depth range. I use this to obtain <0.1m,1000AU> frustrum with 24bit depth buffer and the inaccuracy would cause the images will not fit perfectly ...
[Notes]
if the focal point is not really (0,0,0) or you are not viewing in Z axis (like you do not have camera matrix but instead use projection matrix for that) then on basic scenes/techniques you will see no problem. They starts with use of advanced graphics. If you use GLSL then you can handle this without problems but fixed OpenGL function can not handle this properly. This is also called PROJECTION_MATRIX abuse
[edit1] few links
If your view is standard frustrum then write the matrix your self gluPerspective otherwise look here Projections for some ideas how to construct it
[edit2]
From your comment I see it like this:
f is your viewing point (axises are the global world axises)
f' is viewing point if R would be the center of screen
so create projection matrix for f' position (as explained above), create transform matrix to transform f' to f. The transformed f must have Z axis the same as in f' the other axises can be obtained by cross product and use that as camera or multiply booth together and use as abused Projection matrix
How to construct the matrix is explained in the Understanding transform matrices link from my earlier comments

How to choose the Light Size in World Space for Shadow Mapping and Percentage Closer Filtering?

Hi computer graphics and math people :-)
Short question: How to let an artist choose a meaningful light size in world space for shadow maps filtered by percentage closer filtering (PCF) and is it possible to use the same technique to support spot and directional light sources?
Longer question: I have implemented shadow mapping and filter the edges by applying percentage closer filtering (PCF). The filter kernel is a Poisson-disk in contrast to a regular, rectangular filter kernel. You can think of a Poisson-disk as sample positions more or less randomly distributed inside the unit circle. So the size of the filter region is simply a factor multiplied to each of the 2D sample positions of the kernel (Poisson-disk).
I can adjust the radius/factor for the Poisson-disk and change the size of the penumbra at runtime for either a spot light (perspective frustum) or directional light (orhtographic frustum). This works great but the values for the parameter does not really make any sense which is fine for small 3d samples or even games where one can invest some time to adjust the value empirically. What I want is a parameter called "LightSize" that has an actual meaning in world space. A large scene, for example, with a building that is 100 units long the LightSize has to be larger than in a scene with a close-up of a book shelf to result in the same smooth shadows. On the other hand a fixed LightSize would result in extremely smooth shadows on the shelf and quite hard shadows outside the building. This question is not about soft shadows, contact hardening etc. so ignore physically accurate blocker-receiver estimations ;-)
Oh and take a look at my awesome MS Paint illustrations:
Idea 1: If I use the LightSize directly as the filter-size, a factor of 0.5 would result in a Poisson-disk of the diagonal 1.0 and a radius 0.5. Since texture coordinates are in the range [0,1] this leads to a filter size that evaluates the whole texture for each fragment: imagine a fragment in the center of the shadow map, this fragment would fetch neighboring texels that are distributed inside the whole area of the texture. This would of course yield extremely large penumbra, but let's call this the "maximum". A penumbra factor of 0.05 for example would result in a diagonal of 0.1 so that each fragment would evaluate about 10% of its neighboring texels (ignore the circle etc. just think in 2d from a side view). This approach works but when the angle of a spotlight becomes larger or the frustum of a directional light changes its size, the penumbra changes its width because the LightSize defines the penumbra in texture space (UV space). The penumbra should stay the same independent of the size of the near plane. Imagine a fitted orthographic frustum. When the camera rotates the fitted frustum changes in size and so does the size of the penumbra, which is wrong.
Idea 2: Divide the LightSize by the size of the near plane in world space. This works great for orthographic projections because when the size of the frustum becomes larger, the LightSize is divided by a larger value so that the penumbra stays the same in world space. Unfortunately this doesn't work for a perspective frustum because the distance of the near plane leads to a changing size of the near plane so that the penumbra size is now dependent on the near plane distance which is anoying and wrong.
It feels like there has to be a way so that the artist can choose a meaningful light size in world space. I know that PCF is only a (quite bad) approximation of a physically plausible light source, but imagine the following:
When the light source is sampled multiple times by using a Poisson-disk in world space one can create physically accurate shadows by rendering a hard shadow for each sample position. This works for spot lights. The situation is different for directional lights. One can use an "angle in the origin of the directional light" and render multiple hard shadows for each slightly rotated frustum. This does not make any physically sense at all in the real world, but directional lights do not exist, so... by the way the sampling of a light source is often referred to as multi-view soft shadows (MVSS).
Do you have any suggestions? Could it be that spot and directional lights have to be handled differently and PCF does not allow me to use a meaningful real world light size for a perspective frustum?

OpenGL spectrum between perspective and orthogonal projection

In OpenGL (all versions, though I happen to be working in OpenGL ES 2.0) there is the option of using a perspective projection versus an orthogonal one. Is there a way to control the degree of orthogonality?
For the sake of picturing the issue (and please don't take this as the actual question, I am well aware there is no camera in OpenGL) assume that a scene is rendered with the viewport "looking" down the -z axis. Two parallel lines extending a finite distance down the -z axis at (x,y)=1,1 and (x,y)=-1,1 will appear as points in orthogonal projection, or as two lines that eventually converge to a single pixel in perspective projection. Is there a way to have the x- and y- values represented by the outer edges of the screen remain the same as in projection space - I assume this requires not changing the frustum - but have the lines only converge part of the way to a single pixel?
Is there a way to control the degree of orthogonality?
Either something is orthogonal, or it is not. There's no such thing like "just a little orthogonal".
Anyway, from a mathematical point of view, a perspective projection with an infinitely narrow field of view is orthogonal. So you can use glFrustum with a very large near and far plane distance, together with a countering translation in modelview to bring the far away viewing volume back to the origin.

Why does OpenGL have a far clipping plane, and what idioms are used to deal with this?

I've been learning OpenGL, and the one topic that continues to baffle me is the far clipping plane. While I can understand the reasoning behind the near clipping plane, and the side clipping planes (which never have any real effect because objects outside them would never be rendered anyway), the far clipping plane seems only to be an annoyance.
Since those behind OpenGL have obviously thought this through, I know there must be something I am missing. Why does OpenGL have a far clipping plane? More importantly, because you cannot turn it off, what are the recommended idioms and practices to use when drawing things at huge distances (for objects such as stars thousands of units away in a space game, a skybox, etc.)? Are you expected just to make the clipping plane very far away, or is there a more elegant solution? How is this done in production software?
The only reason is depth-precision. Since you only have a limited number of bits in the depth buffer, you can also just represent a finite amount of depth with it.
However, you can set the far plane to infinitely far away: See this. It just won't work very well with the depth buffer - you will see a lot of artifacts if you have occlusion far away.
So since this revolves around the depth buffer, you won't have a problem dealing with further-away stuff, as long as you don't use it. For example, a common technique is to render the scene in "slabs" that each only use the depth buffer internally (for all the stuff in one slab) but some form of painter's algorithm externally (for the slabs, so you draw the furthest one first)
Why does OpenGL have a far clipping plane?
Because computers are finite.
There are generally two ways to attempt to deal with this. One way is to construct the projection by taking the limit as z-far approaches infinity. This will converge on finite values, but it can play havoc with your depth precision for distant objects.
An alternative (if you're willing to have objects beyond a certain distance fail to depth-test correctly at all) is to turn on depth clamping with glEnable(GL_DEPTH_CLAMP). This will prevent clipping against the near and far planes; it's just that any fragments that would have normalized z coordinates outside of the [-1, 1] range will be clamped to that range. As previously indicated, it screws up depth tests between fragments that are being clamped, but usually those objects are far away.
It's just "the fact" that OpenGL depth test was performed in Window Space Coordinates (Normalized device coordinates in [-1,1]^3. With extra scaling glViewport and glDepthRange).
So from my point of view it's one of the design point of view of the OpenGL library.
One of approach to eliminate this OpenGL extension/OpenGL core functionality https://www.opengl.org/registry/specs/ARB/depth_clamp.txt if it is available in your OpenGL version.
I want to describe that in the perspective projection there is nothing about "far clipping plane".
3.1 For perspective projection you need to setup point \vec{c} as center of projection and plane on which projection will be performed. Let's call it
image plane T: (\vec{r}-\vec{r_0},\vec{n})
3.2 Let's assume that projected plane T split arbitary point \vec{r} and \vec{c} central of projection. In other case \vec{r} and \vec{c} are in one hafe-space and point \vec{r} should be discarded.
3.4 The idea of projection is to find intersection \vec{i} with plane T
\vec{i}=(1-t)\vec{c}+t\vec{r}
3.5 As it is
(\vec{i}-\vec{r_0},\vec{n})=0
=>
( (1-t)\vec{c}+t\vec{r}-\vec{r_0},\vec{n})=0
=>
( \vec{c}+t(\vec{r}-\vec{c})-\vec{r_0},\vec{n})=0
3.6. From "3.5" derived t can be subtitute into "3.4" and you will receive projection into plane T.
3.7. After projection you point will lie in the plane. But if assume that image plane is parallel to OXY plane, then I can suggest to use original "depth" for point after projection.
So from geometry point of view it is possible not to use far plane at all. As also not to use [-1,1]^3 model explicitly at all.
p.s. I don't know how to type latex formulas in correct way, s.t. they will be rendered.