Boost: how deal time dependent thread operations? - c++

For example having an array or reader threads and one writer thread we can sinc tham like this via shared_mutex and shared_lock this works if we are not dependent on time. But if we want to get all writing operations done inside of certan time frame and if thay are not done stop waiting and start doing something else inside of reader threads. How to do such thing? How to be capable to say from some watcher thread to all readers threads - "hey guys - there wount be any new data from writer in this time frame so go on."

Use a timed lock.
boost::shared_mutex m
Reader()
shared_lock lock(m, timeout);
if(!lock) {
//I don't have the lock. Don't touch the resource and do something else.
}
else {
//I have the lock. Read now.
}
Writer()
upgrade_lock lck(m);
upgrade_to_unique_lock uniqueLock(lck);
Just pick a timeout value. Note that it won't necessarily be precise.
BTW: if you're going to use Boost.Threads, perhaps you should read the documentation. It's pretty extensive. I've never used Boost.Threads, and it took me a matter of seconds to find this.

There's an alternative way of going about your problem: check out the Thread Pool pattern. With this pattern, you divide up the work into units that can be executed by a pool of worker threads. Whenever there's something to do, you queue up a work unit, and the next available thread in the pool will execute it. This insures that threads are always busy doing something (when there is something to do).
You will need to learn about thread-safe producer-consumer queues to implement this pattern.

Related

C++ wait notify in threads with synchronized queues

I have a program structured like that: one thread that receives tasks and writes them to input queue, multiple which process them and write in output queue, one that responds with results from it. When queue is empty, thread sleeps for several milliesconds. Queue has mutex inside it, pushing does lock(), and popping does try_lock() and returns if there is nothing in queue.
This is processing thread for example:
//working - atomic bool
while (working) {
if (!inputQue_->pop(msg)) {
std::this_thread::sleep_for(std::chrono::milliseconds(200));
continue;
} else {
string reply = messageHandler_->handle(msg);
if (!reply.empty()) {
outputQue_->push(reply);
}
}
}
And the thing that I dont like is that the time since receiving task until responding, as i have measured with high_resolution_clock, is almost 0, when there is no sleeping. When there is sleeping, it becomes bigger.
I dont want cpu resources to be wasted and want to do something like that: when recieving thread gets task, it notifies one of the processing threads, that does wait_for, and when processing task is done, it notifies responding thread same way. As a result I think i will get less time spent and cpu resources will not be wasted. And I have some questions:
Will this work the way that I see it supposed to, and the only difference will be waking up on notifying?
To do this, I have to create 2 condition variables: first same for receiving thread and all processing, second same for all processing and responding? And mutex in processing threads has to be common for all of them or uniuqe?
Can I place creation of unique_lock(mutex) and wait_for() in if branch just instead of sleep_for?
If some processing threads are busy, is it possible that notify_one() can try to wake up one of them, but not the free thread? I need to use notify_all()?
Is it possible that notify will not wake up any of threads? If yes, does it have high probability?
Will this work the way that I see it supposed to, and the only difference will be waking up on notifying?
Yes, assuming you do it correctly.
To do this, I have to create 2 condition variables: first same for receiving thread and all processing, second same for all processing and responding? And mutex in processing threads has to be common for all of them or uniuqe?
You can use a single mutex and a single condition variable, but that makes it a bit more complex. I'd suggest a single mutex, but one condition variable for each condition a thread might want to wait for.
Can I place creation of unique_lock(mutex) and wait_for() in if branch just instead of sleep_for?
Absolutely not. You need to hold the mutex while you check whether the queue is empty and continue to hold it until you call wait_for. Otherwise, you destroy the entire logic of the condition variable. The mutex associated with the condition variable must protect the condition that the thread is going to wait for, which in this case is the queue being non-empty.
If some processing threads are busy, is it possible that notify_one() can try to wake up one of them, but not the free thread? I need to use notify_all()?
I don't know what you mean by the "free thread". As a general rule, you can use notify_one if it's not possible for a thread to be blocked on the condition variable that can't handle the condition. You should use notify_all if either more than one thread might need to be awoken or there's a possibility that more than one thread will be blocked on the condition variable and the "wrong thread" could be woken, that is, there could be at least one thread that can't do whatever it is that needs to be done.
Is it possible that notify will not wake up any of threads? If yes, does it have high probability?
Sure, it's quite possible. But that would mean no threads were blocked on the condition. In that case, no thread can block on the condition because threads must check the condition before they wait, and they do it while holding a mutex. To provide this atomic "unlock and wait" semantic is the entire purpose of a condition variable.
The mechanism you have is called polling. The thread repeatedly checks (polls) if there is data available. As you mentioned, it has the drawback of wasting time. (But it is simple). What you mentioned you would like to use is called a blocking mechanism. This deschedules the thread until the moment that work becomes available.
1) Yes (although I don't know exactly what you're imagining)
2) a) Yes, 2 condition variables is one way to do it. b) Common mutex is best
3) You would probably place those within pop, and calling pop would have the potential to block.
4) No. notify_one will only wake a thread that is currently waiting from having called wait. Also, if multiple are waiting, it is not necessarily guaranteed which will receive the notification. (OS/library dependent)
5) No. If 1+ threads are waiting, notify_one it is guaranteed to wake one. BUT if no threads are waiting, the notification is consumed (and has no effect). Note that under certain edge conditions, notify_one may actually wake more than one. Also, a thread may wake from wait without anyone having called notify_one ("Spurious wake up"). The fact that this can happen at all means that you always have to do additional checking for it.
This is called the producer/consumer problem btw.
In general, your considerations about condition variable are correct. My proposal is more connected to design and reusability of such functionality.
The main idea is to implement ThreadPool pattern, which has constructor with number of worker threads ,methods submitTask, shutdown, join.
Having such class, you will use 2 instances of pools: one multithreaded for processing, second (singlethreaded by your choice) for result sending.
The pool consists of Blocking Queue of Tasks and array of Worker threads, each performing the same "pop Task and run" loop.The Blocking Queue encapsulates mutex and cond_var. The Task is common functor.
This also brings your design to Task oriented approach, which has a lot of advantages in future of your application.
You are welcome to ask more questions about implementation details if you like this idea.
Best regards, Daniel

Cheapest way to wake up multiple waiting threads without blocking

I use boost::thread to manage threads. In my program i have pool of threads (workers) that are activated sometimes to do some job simultaneously.
Now i use boost::condition_variable: and all threads are waiting inside boost::condition_variable::wait() call on their own conditional_variableS objects.
Can i AVOID using mutexes in classic scheme, when i work with conditional_variables? I want to wake up threads, but don't need to pass some data to them, so don't need a mutex to be locked/unlocked during awakening process, why should i spend CPU on this (but yes, i should remember about spurious wakeups)?
The boost::condition_variable::wait() call trying to REACQUIRE the locking object when CV received the notification. But i don't need this exact facility.
What is cheapest way to awake several threads from another thread?
If you don't reacquire the locking object, how can the threads know that they are done waiting? What will tell them that? Returning from the block tells them nothing because the blocking object is stateless. It doesn't have an "unlocked" or "not blocking" state for it to return in.
You have to pass some data to them, otherwise how will they know that before they had to wait and now they don't? A condition variable is completely stateless, so any state that you need must be maintained and passed by you.
One common pattern is to use a mutex, condition variable, and a state integer. To block, do this:
Acquire the mutex.
Copy the value of the state integer.
Block on the condition variable, releasing the mutex.
If the state integer is the same as it was when you coped it, go to step 3.
Release the mutex.
To unblock all threads, do this:
Acquire the mutex.
Increment the state integer.
Broadcast the condition variable.
Release the mutex.
Notice how step 4 of the locking algorithm tests whether the thread is done waiting? Notice how this code tracks whether or not there has been an unblock since the thread decided to block? You have to do that because condition variables don't do it themselves. (And that's why you need to reacquire the locking object.)
If you try to remove the state integer, your code will behave unpredictably. Sometimes you will block too long due to missed wakeups and sometimes you won't block long enough due to spurious wakeups. Only a state integer (or similar predicate) protected by the mutex tells the threads when to wait and when to stop waiting.
Also, I haven't seen how your code uses this, but it almost always folds into logic you're already using. Why did the threads block anyway? Is it because there's no work for them to do? And when they wakeup, are they going to figure out what to do? Well, finding out that there's no work for them to do and finding out what work they do need to do will require some lock since it's shared state, right? So there almost always is already a lock you're holding when you decide to block and need to reacquire when you're done waiting.
For controlling threads doing parallel jobs, there is a nice primitive called a barrier.
A barrier is initialized with some positive integer value N representing how many threads it holds. A barrier has only a single operation: wait. When N threads call wait, the barrier releases all of them. Additionally, one of the threads is given a special return value indicating that it is the "serial thread"; that thread will be the one to do some special job, like integrating the results of the computation from the other threads.
The limitation is that a given barrier has to know the exact number of threads. It's really suitable for parallel processing type situations.
POSIX added barriers in 2003. A web search indicates that Boost has them, too.
http://www.boost.org/doc/libs/1_33_1/doc/html/barrier.html
Generally speaking, you can't.
Assuming the algorithm looks something like this:
ConditionVariable cv;
void WorkerThread()
{
for (;;)
{
cv.wait();
DoWork();
}
}
void MainThread()
{
for (;;)
{
ScheduleWork();
cv.notify_all();
}
}
NOTE: I intentionally omitted any reference to mutexes in this pseudo-code. For the purposes of this example, we'll suppose ConditionVariable does not require a mutex.
The first time through MainTnread(), work is queued and then it notifies WorkerThread() that it should execute its work. At this point two things can happen:
WorkerThread() completes DoWork() before MainThread() can complete ScheduleWork().
MainThread() completes ScheduleWork() before WorkerThread() can complete DoWork().
In case #1, WorkerThread() comes back around to sleep on the CV, and is awoken by the next cv.notify() and all is well.
In case #2, MainThread() comes back around and notifies... nobody and continues on. Meanwhile WorkerThread() eventually comes back around in its loop and waits on the CV but it is now one or more iterations behind MainThread().
This is known as a "lost wakeup". It is similar to the notorious "spurious wakeup" in that the two threads now have different ideas about how many notify()s have taken place. If you are expecting the two threads to maintain synchrony (and usually you are), you need some sort of shared synchronization primitive to control it. This is where the mutex comes in. It helps avoid lost wakeups which, arguably, are a more serious problem than the spurious variety. Either way, the effects can be serious.
UPDATE: For further rationale behind this design, see this comment by one of the original POSIX authors: https://groups.google.com/d/msg/comp.programming.threads/cpJxTPu3acc/Hw3sbptsY4sJ
Spurious wakeups are two things:
Write your program carefully, and make sure it works even if you
missed something.
Support efficient SMP implementations
There may be rare cases where an "absolutely, paranoiacally correct"
implementation of condition wakeup, given simultaneous wait and
signal/broadcast on different processors, would require additional
synchronization that would slow down ALL condition variable operations
while providing no benefit in 99.99999% of all calls. Is it worth the
overhead? No way!
But, really, that's an excuse because we wanted to force people to
write safe code. (Yes, that's the truth.)
boost::condition_variable::notify_*(lock) does NOT require that the caller hold the lock on the mutex. THis is a nice improvement over the Java model in that it decouples the notification of threads with the holding of the lock.
Strictly speaking, this means the following pointless code SHOULD DO what you are asking:
lock_guard lock(mutex);
// Do something
cv.wait(lock);
// Do something else
unique_lock otherLock(mutex);
//do something
otherLock.unlock();
cv.notify_one();
I do not believe you need to call otherLock.lock() first.

Synchronizing looping threads

I am making some multi-threaded video game code. Before I began coding I looked at an article describing vaguely Valve's solution to multi-threaded game design. A key concept I gleaned from the article is thread synchronization. I don't know if this is how Valve does it but I imagined multiple threads each executing a game loop. At the end of each iteration, the threads pause and wait for other threads to finish their current iteration, then synchronize shared data. I figure that besides the overhead is this management scheme, there would be no different to just let the threads operate completely asynchronously. The article mentioned a thread used exclusively for syncing but I am trying to get a different solution to work correctly. This is how I (try) to do it:
// at end of loop on each thread...
sig_thread_done();
while (!is_sync_done())
{
PauseExecution(1);
}
sig_thread_done and is_sync_done are function objects from another class that controls a list of all "threads". These functions look like this:
bool Core::IsFrameDone()
{
MutexLock lock(manager_mutex);
if (waiting_components == -1)
{
waiting_components = 0;
return true;
}
return false;
}
void Core::SignalFrameDone()
{
MutexLock lock(manager_mutex);
if (++waiting_components == (int)components.size()) // components == threads
{
//sync shared data...
waiting_components = -1; // -1 signifies that all threads have completed their iteration
}
}
The problem is that a fast thread can exit its waiting loop and come back around to it again before other threads have a chance to exit there's. So the other threads miss the exit through is_sync_done returning false before another thread begins waiting and the whole system gets stuck waiting forever.
I can't find an easy way to resolve this issue. I really like this approach because synchronization doesn't get stalled while some independent thread performs the sync.
I appreciate any insight or suggestions anyone has to offer.
Link to article.
I think you are trying to re-invent a Thread barrier.
For something like this you want to sync on a barrier, with something like a Win32 Event (or an array thereof), this makes sure you cannot get the situation you described (the barrier ensures that everything syncs up to the same frame) while at the same time freeing CPU time, as waiting on events is done as a kernel signal, and sleeps the thread till that signal is received. You'd also what to use wait-free algorithms in there, these work particularly well if you have a job/task based threading model, where certain things can be decoupled from the system.
Also, here is a better publication on multi-threading the source engine, its far more in depth and technical (they also specifically state that they avoid mutexes for this sort of thing).

Can't unblock/"wake up" thread with pthread_kill & sigwait

I'm working on a C/C++ networking project and am having difficulties synchronizing/signaling my threads. Here is what I am trying to accomplish:
Poll a bunch of sockets using the poll function
If any sockets are ready from the POLLIN event then send a signal to a reader thread and a writer thread to "wake up"
I have a class called MessageHandler that sets the signals mask and spawns the reader and writer threads. Inside them I then wait on the signal(s) that ought to wake them up.
The problem is that I am testing all this functionality by sending a signal to a thread yet it never wakes up.
Here is the problem code with further explanation. Note I just have highlighted how it works with the reader thread as the writer thread is essentially the same.
// Called once if allowedSignalsMask == 0 in constructor
// STATIC
void MessageHandler::setAllowedSignalsMask() {
allowedSignalsMask = (sigset_t*)std::malloc(sizeof(sigset_t));
sigemptyset(allowedSignalsMask);
sigaddset(allowedSignalsMask, SIGCONT);
}
// STATIC
sigset_t *MessageHandler::allowedSignalsMask = 0;
// STATIC
void* MessageHandler::run(void *arg) {
// Apply the signals mask to any new threads created after this point
pthread_sigmask(SIG_BLOCK, allowedSignalsMask, 0);
MessageHandler *mh = (MessageHandler*)arg;
pthread_create(&(mh->readerThread), 0, &runReaderThread, arg);
sleep(1); // Just sleep for testing purposes let reader thread execute first
pthread_kill(mh->readerThread, SIGCONT);
sleep(1); // Just sleep for testing to let reader thread print without the process terminating
return 0;
}
// STATIC
void* MessageHandler::runReaderThread(void *arg) {
int signo;
for (;;) {
sigwait(allowedSignalsMask, &signo);
fprintf(stdout, "Reader thread signaled\n");
}
return 0;
}
I took out all the error handling I had in the code to condense it but do know for a fact that the thread starts properly and gets to the sigwait call.
The error may be obvious (its not a syntax error - the above code is condensed from compilable code and I might of screwed it up while editing it) but I just can't seem to find/see it since I have spent far to much time on this problem and confused myself.
Let me explain what I think I am doing and if it makes sense.
Upon creating an object of type MessageHandler it will set allowedSignalsMask to the set of the one signal (for the time being) that I am interested in using to wake up my threads.
I add the signal to the blocked signals of the current thread with pthread_sigmask. All further threads created after this point ought to have the same signal mask now.
I then create the reader thread with pthread_create where arg is a pointer to an object of type MessageHandler.
I call sleep as a cheap way to ensure that my readerThread executes all the way to sigwait()
I send the signal SIGCONT to the readerThread as I am interested in sigwait to wake up/unblock once receiving it.
Again I call sleep as a cheap way to ensure that my readerThread can execute all the way after it woke up/unblocked from sigwait()
Other helpful notes that may be useful but I don't think affect the problem:
MessageHandler is constructed and then a different thread is created given the function pointer that points to run. This thread will be responsible for creating the reader and writer threads, polling the sockets with the poll function, and then possibly sending signals to both the reader and writer threads.
I know its a long post but do appreciate you reading it and any help you can offer. If I wasn't clear enough or you feel like I didn't provide enough information please let me know and I will correct the post.
Thanks again.
POSIX threads have condition variables for a reason; use them. You're not supposed to need signal hackery to accomplish basic synchronization tasks when programming with threads.
Here is a good pthread tutorial with information on using condition variables:
https://computing.llnl.gov/tutorials/pthreads/
Or, if you're more comfortable with semaphores, you could use POSIX semaphores (sem_init, sem_post, and sem_wait) instead. But once you figure out why the condition variable and mutex pairing makes sense, I think you'll find condition variables are a much more convenient primitive.
Also, note that your current approach incurs several syscalls (user-space/kernel-space transitions) per synchronization. With a good pthreads implementation, using condition variables should drop that to at most one syscall, and possibly none at all if your threads keep up with each other well enough that the waited-for event occurs while they're still spinning in user-space.
This pattern seems a bit odd, and most likely error prone. The pthread library is rich in synchronization methods, the one most likely to serve your need being in the pthread_cond_* family. These methods handle condition variables, which implement the Wait and Signal approach.
Use SIGUSR1 instead of SIGCONT. SIGCONT doesn't work. Maybe a signal expert knows why.
By the way, we use this pattern because condition variables and mutexes are too slow for our particular application. We need to sleep and wake individual threads very rapidly.
R. points out there is extra overhead due to additional kernel space calls. Perhaps if you sleep > N threads, then a single condition variable would beat out multiple sigwaits and pthread_kills. In our application, we only want to wake one thread when work arrives. You have to have a condition variable and mutex for each thread to do this otherwise you get the stampede. In a test where we slept and woke N threads M times, signals beat mutexes and condition variables by a factor of 5 (it could have been a factor of 40 but I cant remember anymore....argh). We didn't test Futexes which can wake 1 thread at a time and specifically are coded to limit trips to kernel space. I suspect futexes would be faster than mutexes.

Modelling boost::Lockable with semaphore rather than mutex (previously titled: Unlocking a mutex from a different thread)

I'm using the C++ boost::thread library, which in my case means I'm using pthreads. Officially, a mutex must be unlocked from the same thread which locks it, and I want the effect of being able to lock in one thread and then unlock in another. There are many ways to accomplish this. One possibility would be to write a new mutex class which allows this behavior.
For example:
class inter_thread_mutex{
bool locked;
boost::mutex mx;
boost::condition_variable cv;
public:
void lock(){
boost::unique_lock<boost::mutex> lck(mx);
while(locked) cv.wait(lck);
locked=true;
}
void unlock(){
{
boost::lock_guard<boost::mutex> lck(mx);
if(!locked) error();
locked=false;
}
cv.notify_one();
}
// bool try_lock(); void error(); etc.
}
I should point out that the above code doesn't guarantee FIFO access, since if one thread calls lock() while another calls unlock(), this first thread may acquire the lock ahead of other threads which are waiting. (Come to think of it, the boost::thread documentation doesn't appear to make any explicit scheduling guarantees for either mutexes or condition variables). But let's just ignore that (and any other bugs) for now.
My question is, if I decide to go this route, would I be able to use such a mutex as a model for the boost Lockable concept. For example, would anything go wrong if I use a boost::unique_lock< inter_thread_mutex > for RAII-style access, and then pass this lock to boost::condition_variable_any.wait(), etc.
On one hand I don't see why not. On the other hand, "I don't see why not" is usually a very bad way of determining whether something will work.
The reason I ask is that if it turns out that I have to write wrapper classes for RAII locks and condition variables and whatever else, then I'd rather just find some other way to achieve the same effect.
EDIT:
The kind of behavior I want is basically as follows. I have an object, and it needs to be locked whenever it is modified. I want to lock the object from one thread, and do some work on it. Then I want to keep the object locked while I tell another worker thread to complete the work. So the first thread can go on and do something else while the worker thread finishes up. When the worker thread gets done, it unlocks the mutex.
And I want the transition to be seemless so nobody else can get the mutex lock in between when thread 1 starts the work and thread 2 completes it.
Something like inter_thread_mutex seems like it would work, and it would also allow the program to interact with it as if it were an ordinary mutex. So it seems like a clean solution. If there's a better solution, I'd be happy to hear that also.
EDIT AGAIN:
The reason I need locks to begin with is that there are multiple master threads, and the locks are there to prevent them from accessing shared objects concurrently in invalid ways.
So the code already uses loop-level lock-free sequencing of operations at the master thread level. Also, in the original implementation, there were no worker threads, and the mutexes were ordinary kosher mutexes.
The inter_thread_thingy came up as an optimization, primarily to improve response time. In many cases, it was sufficient to guarantee that the "first part" of operation A, occurs before the "first part" of operation B. As a dumb example, say I punch object 1 and give it a black eye. Then I tell object 1 to change it's internal structure to reflect all the tissue damage. I don't want to wait around for the tissue damage before I move on to punch object 2. However, I do want the tissue damage to occur as part of the same operation; for example, in the interim, I don't want any other thread to reconfigure the object in such a way that would make tissue damage an invalid operation. (yes, this example is imperfect in many ways, and no I'm not working on a game)
So we made the change to a model where ownership of an object can be passed to a worker thread to complete an operation, and it actually works quite nicely; each master thread is able to get a lot more operations done because it doesn't need to wait for them all to complete. And, since the event sequencing at the master thread level is still loop-based, it is easy to write high-level master-thread operations, as they can be based on the assumption that an operation is complete (more precisely, the critical "first part" upon which the sequencing logic depends is complete) when the corresponding function call returns.
Finally, I thought it would be nice to use inter_thread mutex/semaphore thingies using RAII with boost locks to encapsulate the necessary synchronization that is required to make the whole thing work.
man pthread_unlock (this is on OS X, similar wording on Linux) has the answer:
NAME
pthread_mutex_unlock -- unlock a mutex
SYNOPSIS
#include <pthread.h>
int
pthread_mutex_unlock(pthread_mutex_t *mutex);
DESCRIPTION
If the current thread holds the lock on mutex, then the
pthread_mutex_unlock() function unlocks mutex.
Calling pthread_mutex_unlock() with a mutex that the
calling thread does not hold will result in
undefined behavior.
...
My counter-question would be - what kind of synchronization problem are you trying to solve with this? Most probably there is an easier solution.
Neither pthreads nor boost::thread (built on top of it) guarantee any order in which a contended mutex is acquired by competing threads.
Sorry, but I don't understand. what will be the state of your mutex in line [1] in the following code if another thread can unlock it?
inter_thread_mutex m;
{
m.lock();
// [1]
m.unlock();
}
This has no sens.
There's a few ways to approach this. Both of the ones I'm going to suggest are going to involve adding an additional piece of information to the object, rather adding a mechanism to unlock a thread from a thread other than the one that owns it.
1) you can add some information to indicate the object's state:
enum modification_state { consistent, // ready to be examined or to start being modified
phase1_complete, // ready for the second thread to finish the work
};
// first worker thread
lock();
do_init_work(object);
object.mod_state = phase1_complete;
unlock();
signal();
do_other_stuff();
// second worker thread
lock()
while( object.mod_state != phase1_complete )
wait()
do_final_work(obj)
object.mod_state = consistent;
unlock()
signal()
// some other thread that needs to read the data
lock()
while( object.mod_state != consistent )
wait();
read_data(obj)
unlock()
Works just fine with condition variables, because obviously you're not writing your own lock.
2) If you have a specific thread in mind, you can give the object an owner.
// first worker
lock();
while( obj.owner != this_thread() ) wait();
do_initial_work(obj);
obj.owner = second_thread_id;
unlock()
signal()
...
This is pretty much the same solution as my first solution, but more flexible in the adding/removing of phases, and less flexible in the adding/removing of threads.
To be honest, I'm not sure how inter thread mutex would help you here. You'd still need a semaphore or condition variable to signal the passing of the work to the second thread.
Small modification to what you already have: how about storing the id of the thread which you want to take the lock, in your inter_thread_whatever? Then unlock it, and send a message to that thread, saying "I want you execute whatever routine it is that tries to take this lock".
Then the condition in lock becomes while(locked || (desired_locker != thisthread && desired_locker != 0)). Technically you've "released the lock" in the first thread, and "taken it again" in the second thread, but there's no way that any other thread can grab it in between, so it's as if you've transferred it directly from one to the other.
There's a potential problem, that if a thread exits or is killed, while it's the desired locker of your lock, then that thread deadlocks. But you were already talking about the first thread waiting for a message from the second thread to say that it has successfully acquired the lock, so presumably you already have a plan in mind for what happens if that message is never received. To that plan, add "reset the desired_locker field on the inter_thread_whatever".
This is all very hairy, though, I'm not convinced that what I've proposed is correct. Is there a way that the "master" thread (the one that's directing all these helpers) can just make sure that it doesn't order any more operations to be performed on whatever is protected by this lock, until the first op is completed (or fails and some RAII thing notifies you)? You don't need locks as such, if you can deal with it at the level of the message loop.
I don't think it is a good idea to say that your inter_thread_mutex (binary_semaphore) can be seen as a model of Lockable. The main issue is that the main feature of your inter_thread_mutex defeats the Locakble concept. If inter_thread_mutex was a model of lockable you will expect in In [1] that the inter_thread_mutex m is locked.
// thread T1
inter_thread_mutex m;
{
unique_lock<inter_thread_mutex> lk(m);
// [1]
}
But as an other thread T2 can do m.unlock() while T1 is in [1], the guaranty is broken.
Binary semaphores can be used as Lockables as far as each thread tries to lock before unlocking. But the main goal of your class is exactly the contrary.
This is one of the reason semaphores in Boost.Interprocess don't use lock/unlock to name the functions, but wait/notify. Curiously these are the same names used by conditions :)
A mutex is a mechanism for describing mutually exclusive blocks of code. It does not make sense for these blocks of code to cross thread boundaries. Trying to use such a concept in such an counter intuitive way can only lead to problems down the line.
It sounds very much like you're looking for a different multi-threading concept, but without more detail it's hard to know what.