Variable assignment and usage in the same expression - c++

I encountered a line of code:
int a = 10;
int b = 40;
a = a + b - (b = a);
cout << a << " " << b << endl;
I cannot understand what happens in this code.
Can anyone explain for me?

Undefined behavior. the value of b is changed and used for computation without an intervening sequence point. The results of the program are unpredictable - it can print anything or crash, or do do some nasty system calls.
Except where noted, the order of evaluation of operands of individual
operators and subexpressions of individual expressions, and the order
in which side effects take place, is unspecified.53) Between the
previous and next sequence point a scalar object shall have its stored
value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be accessed only to determine the
value to be stored. The requirements of this paragraph shall be met
for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined.

Undefined behavior
http://en.wikipedia.org/wiki/Sequence_point

This is undefined behavior because vairable b has been modified then used in the same expression so the final result is ambiguous because it depends on the order of the expression evalution.
The (b=a) could happen before or after b vairable being used to calcualte a+b.

Related

Unexpected behaviour with cout and incrementing [duplicate]

Recently in an interview there was a following objective type question.
int a = 0;
cout << a++ << a;
Answers:
a. 10
b. 01
c. undefined behavior
I answered choice b, i.e. output would be "01".
But to my surprise later I was told by an interviewer that the correct answer is option c: undefined.
Now, I do know the concept of sequence points in C++. The behavior is undefined for the following statement:
int i = 0;
i += i++ + i++;
but as per my understanding for the statement cout << a++ << a , the ostream.operator<<() would be called twice, first with ostream.operator<<(a++) and later ostream.operator<<(a).
I also checked the result on VS2010 compiler and its output is also '01'.
You can think of:
cout << a++ << a;
As:
std::operator<<(std::operator<<(std::cout, a++), a);
C++ guarantees that all side effects of previous evaluations will have been performed at sequence points. There are no sequence points in between function arguments evaluation which means that argument a can be evaluated before argument std::operator<<(std::cout, a++) or after. So the result of the above is undefined.
C++17 update
In C++17 the rules have been updated. In particular:
In a shift operator expression E1<<E2 and E1>>E2, every value computation and side-effect of E1 is sequenced before every value computation and side effect of E2.
Which means that it requires the code to produce result b, which outputs 01.
See P0145R3 Refining Expression Evaluation Order for Idiomatic C++ for more details.
Technically, overall this is Undefined Behavior.
But, there are two important aspects to the answer.
The code statement:
std::cout << a++ << a;
is evaluated as:
std::operator<<(std::operator<<(std::cout, a++), a);
The standard does not define the order of evaluation of arguments to an function.
So Either:
std::operator<<(std::cout, a++) is evaluated first or
ais evaluated first or
it might be any implementation defined order.
This order is Unspecified[Ref 1] as per the standard.
[Ref 1]C++03 5.2.2 Function call
Para 8
The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations take effect before the function is entered. The order of evaluation of the postfix expression and the argument expression list is unspecified.
Further, there is no sequence point between evaluation of arguments to a function but a sequence point exists only after evaluation of all arguments[Ref 2].
[Ref 2]C++03 1.9 Program execution [intro.execution]:
Para 17:
When calling a function (whether or not the function is inline), there is a sequence point after the evaluation of all function arguments (if any) which takes place before execution of any expressions or statements in the function body.
Note that, here the value of c is being accessed more than once without an intervening sequence point, regarding this the standard says:
[Ref 3]C++03 5 Expressions [expr]:
Para 4:
....
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored. The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined.
The code modifies c more than once without intervening sequence point and it is not being accessed to determine the value of the stored object. This is clear violation of the above clause and hence the result as mandated by the standard is Undefined Behavior[Ref 3].
Sequence points only define a partial ordering. In your case, you have
(once overload resolution is done):
std::cout.operator<<( a++ ).operator<<( a );
There is a sequence point between the a++ and the first call to
std::ostream::operator<<, and there is a sequence point between the
second a and the second call to std::ostream::operator<<, but there
is no sequence point between a++ and a; the only ordering
constraints are that a++ be fully evaluated (including side effects)
before the first call to operator<<, and that the second a be fully
evaluated before the second call to operator<<. (There are also
causual ordering constraints: the second call to operator<< cannot
preced the first, since it requires the results of the first as an
argument.) §5/4 (C++03) states:
Except where noted, the order of
evaluation of operands of individual operators and subexpressions of
individual expressions, and the order in which side effects take place,
is unspecified. Between the previous and next sequence point a scalar
object shall have its stored value modified at most once by the
evaluation of an expression. Furthermore, the prior value shall be
accessed only to determine the value to be stored. The requirements of
this paragraph shall be met for each allowable ordering of the
subexpressions of a full expression; otherwise the behavior is
undefined.
One of the allowable orderings of your expression is a++, a, first
call to operator<<, second call to operator<<; this modifies the
stored value of a (a++), and accesses it other than to determine
the new value (the second a), the behavior is undefined.
The correct answer is to question the question. The statement is unacceptable because a reader cannot see a clear answer. Another way to look at it is that we have introduced side-effects (c++) that make the statement much harder to interpret. Concise code is great, providing it's meaning is clear.

Pointer arithmetic in C++ giving wrong output [duplicate]

Recently in an interview there was a following objective type question.
int a = 0;
cout << a++ << a;
Answers:
a. 10
b. 01
c. undefined behavior
I answered choice b, i.e. output would be "01".
But to my surprise later I was told by an interviewer that the correct answer is option c: undefined.
Now, I do know the concept of sequence points in C++. The behavior is undefined for the following statement:
int i = 0;
i += i++ + i++;
but as per my understanding for the statement cout << a++ << a , the ostream.operator<<() would be called twice, first with ostream.operator<<(a++) and later ostream.operator<<(a).
I also checked the result on VS2010 compiler and its output is also '01'.
You can think of:
cout << a++ << a;
As:
std::operator<<(std::operator<<(std::cout, a++), a);
C++ guarantees that all side effects of previous evaluations will have been performed at sequence points. There are no sequence points in between function arguments evaluation which means that argument a can be evaluated before argument std::operator<<(std::cout, a++) or after. So the result of the above is undefined.
C++17 update
In C++17 the rules have been updated. In particular:
In a shift operator expression E1<<E2 and E1>>E2, every value computation and side-effect of E1 is sequenced before every value computation and side effect of E2.
Which means that it requires the code to produce result b, which outputs 01.
See P0145R3 Refining Expression Evaluation Order for Idiomatic C++ for more details.
Technically, overall this is Undefined Behavior.
But, there are two important aspects to the answer.
The code statement:
std::cout << a++ << a;
is evaluated as:
std::operator<<(std::operator<<(std::cout, a++), a);
The standard does not define the order of evaluation of arguments to an function.
So Either:
std::operator<<(std::cout, a++) is evaluated first or
ais evaluated first or
it might be any implementation defined order.
This order is Unspecified[Ref 1] as per the standard.
[Ref 1]C++03 5.2.2 Function call
Para 8
The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations take effect before the function is entered. The order of evaluation of the postfix expression and the argument expression list is unspecified.
Further, there is no sequence point between evaluation of arguments to a function but a sequence point exists only after evaluation of all arguments[Ref 2].
[Ref 2]C++03 1.9 Program execution [intro.execution]:
Para 17:
When calling a function (whether or not the function is inline), there is a sequence point after the evaluation of all function arguments (if any) which takes place before execution of any expressions or statements in the function body.
Note that, here the value of c is being accessed more than once without an intervening sequence point, regarding this the standard says:
[Ref 3]C++03 5 Expressions [expr]:
Para 4:
....
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored. The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined.
The code modifies c more than once without intervening sequence point and it is not being accessed to determine the value of the stored object. This is clear violation of the above clause and hence the result as mandated by the standard is Undefined Behavior[Ref 3].
Sequence points only define a partial ordering. In your case, you have
(once overload resolution is done):
std::cout.operator<<( a++ ).operator<<( a );
There is a sequence point between the a++ and the first call to
std::ostream::operator<<, and there is a sequence point between the
second a and the second call to std::ostream::operator<<, but there
is no sequence point between a++ and a; the only ordering
constraints are that a++ be fully evaluated (including side effects)
before the first call to operator<<, and that the second a be fully
evaluated before the second call to operator<<. (There are also
causual ordering constraints: the second call to operator<< cannot
preced the first, since it requires the results of the first as an
argument.) §5/4 (C++03) states:
Except where noted, the order of
evaluation of operands of individual operators and subexpressions of
individual expressions, and the order in which side effects take place,
is unspecified. Between the previous and next sequence point a scalar
object shall have its stored value modified at most once by the
evaluation of an expression. Furthermore, the prior value shall be
accessed only to determine the value to be stored. The requirements of
this paragraph shall be met for each allowable ordering of the
subexpressions of a full expression; otherwise the behavior is
undefined.
One of the allowable orderings of your expression is a++, a, first
call to operator<<, second call to operator<<; this modifies the
stored value of a (a++), and accesses it other than to determine
the new value (the second a), the behavior is undefined.
The correct answer is to question the question. The statement is unacceptable because a reader cannot see a clear answer. Another way to look at it is that we have introduced side-effects (c++) that make the statement much harder to interpret. Concise code is great, providing it's meaning is clear.

Is this multiple accesses to the same object between sequence points well-defined behavior?

Is this multiple access allowed?
#include <iostream>
int main()
{
int A[1];
A[0] = 0;
A[A[0]] = 1;
std::cout << A[0];
}
Refer to following paragraph...
Except where noted, the order of evaluation of operands of individual
operators and subexpressions of individual expressions, and the
order in which side effects take place, is unspecified. Between the previous and next sequence point a scalar object shall
have its stored value modified at most once by the evaluation of an
expression. Furthermore, the prior value shall be accessed only to
determine the value to be stored. The requirements of this paragraph
shall be met for each allowable ordering of the subexpressions of a
full expression; otherwise the behavior is undefined.
If this uses the old value of A[0] it should be undefined behavior, right?
Yes, it's valid.
First of all, reading A[0] on the LHS of the assignment is perfectly valid and well-defined for the same reason that this is:
int x = 42;
x = x + 1;
Both operands must be evaluated before the assignment can be executed.
Secondly, evaluating A[A[0]] in isolation is quite okay:
[C++11: 1.9/15]: [..] The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator. [..]
In C++03 the closest related wording I can find is the following regarding assignment (though there are examples of constructs such as a = a + x all over the gaff):
[C++03: 5.17/8]: If the value being stored in an object is accessed from another object that overlaps in any way the storage of the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the behavior is undefined.

What is the correct answer for cout << a++ << a;?

Recently in an interview there was a following objective type question.
int a = 0;
cout << a++ << a;
Answers:
a. 10
b. 01
c. undefined behavior
I answered choice b, i.e. output would be "01".
But to my surprise later I was told by an interviewer that the correct answer is option c: undefined.
Now, I do know the concept of sequence points in C++. The behavior is undefined for the following statement:
int i = 0;
i += i++ + i++;
but as per my understanding for the statement cout << a++ << a , the ostream.operator<<() would be called twice, first with ostream.operator<<(a++) and later ostream.operator<<(a).
I also checked the result on VS2010 compiler and its output is also '01'.
You can think of:
cout << a++ << a;
As:
std::operator<<(std::operator<<(std::cout, a++), a);
C++ guarantees that all side effects of previous evaluations will have been performed at sequence points. There are no sequence points in between function arguments evaluation which means that argument a can be evaluated before argument std::operator<<(std::cout, a++) or after. So the result of the above is undefined.
C++17 update
In C++17 the rules have been updated. In particular:
In a shift operator expression E1<<E2 and E1>>E2, every value computation and side-effect of E1 is sequenced before every value computation and side effect of E2.
Which means that it requires the code to produce result b, which outputs 01.
See P0145R3 Refining Expression Evaluation Order for Idiomatic C++ for more details.
Technically, overall this is Undefined Behavior.
But, there are two important aspects to the answer.
The code statement:
std::cout << a++ << a;
is evaluated as:
std::operator<<(std::operator<<(std::cout, a++), a);
The standard does not define the order of evaluation of arguments to an function.
So Either:
std::operator<<(std::cout, a++) is evaluated first or
ais evaluated first or
it might be any implementation defined order.
This order is Unspecified[Ref 1] as per the standard.
[Ref 1]C++03 5.2.2 Function call
Para 8
The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations take effect before the function is entered. The order of evaluation of the postfix expression and the argument expression list is unspecified.
Further, there is no sequence point between evaluation of arguments to a function but a sequence point exists only after evaluation of all arguments[Ref 2].
[Ref 2]C++03 1.9 Program execution [intro.execution]:
Para 17:
When calling a function (whether or not the function is inline), there is a sequence point after the evaluation of all function arguments (if any) which takes place before execution of any expressions or statements in the function body.
Note that, here the value of c is being accessed more than once without an intervening sequence point, regarding this the standard says:
[Ref 3]C++03 5 Expressions [expr]:
Para 4:
....
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored. The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined.
The code modifies c more than once without intervening sequence point and it is not being accessed to determine the value of the stored object. This is clear violation of the above clause and hence the result as mandated by the standard is Undefined Behavior[Ref 3].
Sequence points only define a partial ordering. In your case, you have
(once overload resolution is done):
std::cout.operator<<( a++ ).operator<<( a );
There is a sequence point between the a++ and the first call to
std::ostream::operator<<, and there is a sequence point between the
second a and the second call to std::ostream::operator<<, but there
is no sequence point between a++ and a; the only ordering
constraints are that a++ be fully evaluated (including side effects)
before the first call to operator<<, and that the second a be fully
evaluated before the second call to operator<<. (There are also
causual ordering constraints: the second call to operator<< cannot
preced the first, since it requires the results of the first as an
argument.) §5/4 (C++03) states:
Except where noted, the order of
evaluation of operands of individual operators and subexpressions of
individual expressions, and the order in which side effects take place,
is unspecified. Between the previous and next sequence point a scalar
object shall have its stored value modified at most once by the
evaluation of an expression. Furthermore, the prior value shall be
accessed only to determine the value to be stored. The requirements of
this paragraph shall be met for each allowable ordering of the
subexpressions of a full expression; otherwise the behavior is
undefined.
One of the allowable orderings of your expression is a++, a, first
call to operator<<, second call to operator<<; this modifies the
stored value of a (a++), and accesses it other than to determine
the new value (the second a), the behavior is undefined.
The correct answer is to question the question. The statement is unacceptable because a reader cannot see a clear answer. Another way to look at it is that we have introduced side-effects (c++) that make the statement much harder to interpret. Concise code is great, providing it's meaning is clear.

l+l++ is the same as l+l?

Say,the trailing ++ has no actual effect here?
l+l++ is undefined. There is no sequence point in your expression to separate the access to l and the post-increment. It can do anything, including having the same effects as l+l.
EDIT: the question and answers at Why is `i = ++i + 1` unspecified behavior? explain what a sequence point is, quote the relevant parts of the standard and provide links. Let me quote again:
Except where noted, the order of
evaluation of operands of individual
operators and subexpressions of
individual expressions, and the order
in which side effects take place, is
unspecified. 53) Between the previous
and next sequence point a scalar
object shall have its stored value
modified at most once by the
evaluation of an expression.
Furthermore, the prior value shall be accessed only to determine the
value to be stored.
Emphasis mine.
SECOND EDIT: By popular request, the next sentence in the paragraph:
The requirements of this paragraph
shall be met for each allowable
ordering of the subexpressions of a
full expression; otherwise the
behavior is undefined.
This will post-increment l i.e. compute l+l and increment l after that, so it has some effect..
Demo code:
#include <iostream>
int main() {
int l = 1;
std::cout << "l+l++ = " << l+l++ << std::endl;
std::cout << "l = " << l << std::endl;
return 0;
}
EDIT: Note that this compile with a warning (see Pascal's answer):
main.cpp: In function ‘int main()’:
main.cpp:5: warning: operation on ‘l’ may be undefined
Be warned - many languages don't dictate the order operands are evaluated, so you may see 2*l or 2*l+1 as the result of that expression. In either case l will be one higher afterwards.
If you have i+i++ it is actually acting like something like i+i; i = i + 1