Using template to generate a static lookup table - c++

I have:
const char kLetters[] = "QWERTYUIOPASDFGHJKLZXCVBNM";
I can call kLetters[n] to obtain the nth letter of the Keyboard alphabet in O(1) time. However I will have to iterate through kLetter (taking O(n) or at least O(log n) ) time for the reverse lookup.
I would like to create a reverse lookup table as a compile-time static lookup table using templates and was wondering if there is a ways of doing this.
EDIT - as mentioned in the comments, a reverse lookup would mean I supply 'E' and get back 2. Also my alphabet example was not the best example, I would like to make no assumptions about the order. For that reason I have change the alphabet to keyboard order.

How about something like this? It lets you specify the range rather than a complete string.
#include <iostream>
template <int Start, int End, int N>
struct lookup {
static_assert(Start != End, "Can't have 0 length lookup table");
enum { value = lookup<Start+(Start < End ? 1:-1),End,N-1>::value };
};
template <int Start, int End>
struct lookup<Start,End,0> {
enum { value = Start };
};
template <int Start, int End, int V, int P=0>
struct reverse_lookup {
static_assert(Start != End, "V isn't in the range Start, End");
static_assert(Start != End || !P, "Can't have 0 length range");
enum { value = reverse_lookup<Start+(Start < End ? 1:-1),End,V,P+1>::value };
};
template <int Start, int End, int P>
struct reverse_lookup<Start,End,Start,P> {
enum { value = P };
};
int main() {
std::cout << char(lookup<'A', 'Z', 3>::value) << std::endl;
std::cout << char(lookup<'Z', 'A', 3>::value) << std::endl;
std::cout << int(reverse_lookup<'A','Z','F'>::value) << std::endl;
}

Alright, after knowing what reverse lookup is, I think you can do this:
const char kLetters[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
int get_index(char letter)
{
return letter - 'A';
}
After all, the letter A is at index 0, B at 1, C at 2... and so on. That gives enough hint.
My O(1) solution.
So far other solutions work for non-arbitrary sequence of letters, and #awoodland solution assumes that the letter whose index is to be obtainted is known at compile time which makes it less useful.
But this solution has attempted to solve both limitations; that is, it should work:
With arbitrary sequence of letters, such as
const char Letters[] = "ZBADCEWFVGHIUXJTKSLYQMROPN";
And the letters may be unknown at compile time. The function that gets the index has this signature:
int Index(char letter);
Here is the complete code which uses a technique described by # David Rodríguez in his blog:
#include <iostream>
const char Letters[] = "ZBADCEWFVGHIUXJTKSLYQMROPN";
template<char L> int Index();
template<> int Index<'Z'>() { return 0; }
template<> int Index<'B'>() { return 1; }
template<> int Index<'A'>() { return 2; }
template<> int Index<'D'>() { return 3; }
template<> int Index<'C'>() { return 4; }
template<> int Index<'E'>() { return 5; }
template<> int Index<'W'>() { return 6; }
template<> int Index<'F'>() { return 7; }
template<> int Index<'V'>() { return 8; }
template<> int Index<'G'>() { return 9; }
template<> int Index<'H'>() { return 10; }
template<> int Index<'I'>() { return 11; }
template<> int Index<'U'>() { return 12; }
template<> int Index<'X'>() { return 13; }
template<> int Index<'J'>() { return 14; }
template<> int Index<'T'>() { return 15; }
template<> int Index<'K'>() { return 16; }
template<> int Index<'S'>() { return 17; }
template<> int Index<'L'>() { return 18; }
template<> int Index<'Y'>() { return 19; }
template<> int Index<'Q'>() { return 20; }
template<> int Index<'M'>() { return 21; }
template<> int Index<'R'>() { return 22; }
template<> int Index<'O'>() { return 23; }
template<> int Index<'P'>() { return 24; }
template<> int Index<'N'>() { return 25; }
typedef int (*fptr)();
const int limit = 26;
fptr indexLookup[ limit ];
template <char L>
struct init_indexLookup {
static void init( fptr *indexLookup ) {
indexLookup[ L - 'A' ] = &Index<L>;
init_indexLookup<L-1>::init( indexLookup );
}
};
template <>
struct init_indexLookup<'A'> {
static void init( fptr *indexLookup ) {
indexLookup[ 0 ] = &Index<'A'>;
}
};
const int ignore = (init_indexLookup<'Z'>::init(indexLookup),0);
int Index(char letter)
{
return indexLookup[letter-'A']();
}
And here is the test code:
int main()
{
std::cout << Index('A') << std::endl;
std::cout << Index('Z') << std::endl;
std::cout << Index('B') << std::endl;
std::cout << Index('K') << std::endl;
}
Output:
2
0
1
16
Online demo : http://ideone.com/uzE2t
Well, that actually is two function calls: one to Index(), other to from one in the indexLookup. You can easily avoid first function call by writing (ideone):
int main()
{
std::cout << indexLookup['A'-'A']() << std::endl;
std::cout << indexLookup['Z'-'A']() << std::endl;
std::cout << indexLookup['B'-'A']() << std::endl;
std::cout << indexLookup['K'-'A']() << std::endl;
}
That looks cumbersome, but hey, we can make Index() inline:
inline int Index(char letter)
{
return indexLookup[letter-'A']();
}
That looks fine, and most likely now compiler will make it equivalent to one function call!
Simple yet O(1) solution
Wait. I just realized that the whole solution reduces to a lookup table which is initialized as:
const int indexLookup[] = {2,1,4,3,5,7,9,10,11,14,16,18,21,
25,23,24,20,22,17,15,12,8,6,13,19,0};
inline int Index(char letter)
{
return indexLookup[letter-'A'];
}
which looks unbelievably simple!

If you can use Boost and only need compile-time lookups:
using namespace boost::mpl;
typedef vector_c<char, 'A', 'B', 'C', 'D'> Chars;
// lookup by index:
std::cout << at_c<Chars, 1>::type::value << std::endl; // B
// lookup by value:
typedef find<Chars, integral_c<char, 'C'> >::type Iter;
std::cout << Iter::pos::value << std::endl; // 2

This assumes that 'Z' > 'A', but does not assume letters are contiguous. (Though it takes less memory if they are) I was tempted to put in if (numrLetters>26) conditionals so a smart compiler could use addition rather than the tables for ASCII, but then decided I didn't want to slow the code in the case of less-smart compilers.
const char kLetters[] = "ABCDEFGHJJKLMNOPQRSTUVWXYZ";
const int numLetters = sizeof(kLetters);
const char rkLetters['Z'-'A'] = {};
const int numrLetters = sizeof(rkLetters);
struct LetterInit {
LetterInit() {
for(int i=0; i<numLetters; ++i)
rkLetters[kLetters[i]-'A'] = i;
}
}LetterInitInst;
char findChar(int index) {
assert(index>=0 && index<numLetters);
return kLetters[index];
}
int findIndex(char letter) {
assert(letter>='A' && letter<='Z');
return rkLetters[letter-'A'];
}

As there are several solutions given that don't generate a table but still allow compile time lookup, here is another one
constexpr char kLetters[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
constexpr int get(char const x, int const i = 0) {
return kLetters[i] == x ? i : get(x, i + 1);
}
Use at compile time
int x[get('F')];
static_assert(sizeof(x) == sizeof(int[5]), "");
Specifying a character that doesn't exist will result in an error. If you use the function at runtime, you will get undefined behavior if you specify a character that doesn't exist. Proper checking can be added for those cases.
It yields the index of the first character found. No error is given if a character appears twice in the haystack.

If you can use c++0x (tested with gcc 4.5), this works:
#include<initializer_list>
#include<iostream>
#include<map>
constexpr int getLetterNumber(char a){ return std::map<char,int>({{'a',2},{'b',1},{'c',4}})[a]; }
int main(){
const char ch='b';
std::cout<<ch<<": "<<getLetterNumber(ch)<<std::endl;
}
constexpr enforces evaluation at compile-time.
EDIT: that solution is not correct, as pointed out. constexpr does not enfoce compile-time evaluation. This does does the lookup really at compile-time (similar to solutions posted meanwhile).
#include<iostream>
template<char C> int ch2Num();
#define CHR(c,i) template<> int ch2Num<c>(){ return i; }
CHR('a',2); CHR('b',1); /* ... */
#undef CHR
int main(void){
const char ch='b';
std::cout<<ch<<": "<<ch2Num<ch>()<<std::endl;
};

Related

Is it possible to write one function for std::string and std::wstring?

I just wrote a simple utility function for std::string. Then I noticed that the function would look exactly the same if the std::string was a std::wstring or a std::u32string. Is it possible to use a template function here? I am not very familiar with templates, and std::string and std::wstring are templates themselves, which might be an issue.
template<class StdStringClass>
inline void removeOuterWhitespace(StdStringClass & strInOut)
{
const unsigned int uiBegin = strInOut.find_first_not_of(" \t\n");
if (uiBegin == StdStringClass::npos)
{
// the whole string is whitespace
strInOut.clear();
return;
}
const unsigned int uiEnd = strInOut.find_last_not_of(" \t\n");
strInOut = strInOut.substr(uiBegin, uiEnd - uiBegin + 1);
}
Is this a proper way to do it? Are there pitfalls with this idea. I am not talking about this function but the general concept of using a templated class StdStringClass and calling the usual std::string functions like find, replace, erase, etc.
Its a good Idea, But I'd build the template on top of std::basic_string rather then general StdStringclass
template<class T>
inline void removeOuterWhitespace(std::basic_string<T>& strInOut)
{
constexpr auto delim[] = {T(' '),T('\t'),T('\n'),T(0)};
const auto uiBegin = strInOut.find_first_not_of(delim);
if (uiBegin == std::basic_string<T>::npos)
{
// the whole string is whitespace
strInOut.clear();
return;
}
const auto uiEnd = strInOut.find_last_not_of(delim);
strInOut = strInOut.substr(uiBegin, uiEnd - uiBegin + 1);
}
I would also ditch the MSDN-style "inout" notation in favro for simpler name like str. programmer will guess themselves that str is the result since it is passed as non-const reference and function returns void.
also, I changed unsigned int to auto. all the standard C++ containers/strings return size_t when returning indexes. size_t might not be unsigned int. auto matches itself to the right return value.
Assuming your template works as expected (haven't checked...sorry), another option would be to wrap the function in class, and control which types of strings classes you'd like the function to be applied to using constructors.
EDIT: added illustrative framework
EDIT2 one that compiles (at least with vs2015) :-)
class StringType1;
class StringTypeN;
class str {
//template function
template<class StdStringClass>
inline void removeOuterWhitespace(StdStringClass & strInOut)
{
//.
//.
//.
}
public:
//constructors
str(StringType1 &s1) { removeOuterWhitespace(s1); }
//.
//.
//.
str(StringTypeN &sN) { removeOuterWhitespace(sN); }
};
int main() {
return 0;
}
EDIT3 Proof of concept
#include <iostream>
class incr {
//template function
template<class incrementor>
inline void removeOuterWhitespace(incrementor & n)
{
n++;
}
public:
//constructors
incr(int &n1) { removeOuterWhitespace(n1); }
incr(double &n1) { removeOuterWhitespace(n1); }
incr(float &n1) { removeOuterWhitespace(n1); }
};
int main() {
int n1 = 1;
double n2 = 2;
float n3 = 3;
std::cout << n1 << "\t" << n2 << "\t" << n3 << std::endl;
auto test1 = incr(n1);
auto test2 = incr(n2);
auto test3 = incr(n3);
//all variables modified
std::cout << "all variables modified by constructing incr" << std::endl;
std::cout << n1 << "\t" << n2 << "\t" << n3 << std::endl;
return 0;
}

Why is trying to store a pointer to function ambiguous

Here is my code:
#include <functional>
#include <iostream>
#include<vector>
using namespace std;
// vector iterator
template <class T> class vit
{
private:
//vector<T>::iterator it;
vector<T> m_v;
function<bool (T, T)> m_fptr;
int len, pos;
public:
vit(vector<T> &v) { this->m_v = v; len = v.size(); pos = 0;};
// it= v.begin(); };
bool next(T &i) {
//if(it == m_v.end()) return false;
if(pos==len) return false;
//i = *it;
i = m_v[pos];
//if(idle) { idle = false ; return true; }
//it++;
pos++;
return true;};
//bool idle = true;
void set_same(function<bool (T,T)> fptr) { m_fptr = fptr ;};
//void set_same(function<bool(int, int)> fun) { return ; }
bool grp_begin() {
return pos == 0 || ! m_fptr(m_v[pos], m_v[pos-1]); };
bool grp_end() {
return pos == len || ! m_fptr(m_v[pos], m_v[pos+1]); };
};
bool is_same(int a, int b) { return a == b; }
main()
{
vector<int> v ={ 1, 1, 2, 2, 2, 3, 1, 1, 1 };
int total;
for(auto it = v.begin(); it != v.end(); it++) {
if(it == v.begin() || *it != *(it-1)) {
total = 0;
}
total += *it;
if(it+1 == v.end() || *it != *(it+1)) {
cout << total << endl;
}
}
cout << "let's gry a group" <<endl;
vit<int> g(v);
int i;
while(g.next(i)) { cout << i << endl; }
cout << "now let's get really fancy" << endl;
vit<int> a_vit(v);
//auto is_same = [](int a, int b) { return a == b; };
a_vit.set_same(is_same);
//int total;
while(a_vit.next(i)) {
if(a_vit.grp_begin()) total = 0;
total += i;
if(a_vit.grp_end()) cout << total << endl ;
}
}
When I compile it with g++ -std=c++11 iter.cc -o iter, I get the result:
iter.cc: In function 'int main()':
iter.cc:63:17: error: reference to 'is_same' is ambiguous
a_vit.set_same(is_same);
^
iter.cc:37:6: note: candidates are: bool is_same(int, int)
bool is_same(int a, int b) { return a == b; }
^
In file included from /usr/include/c++/5.3.0/bits/move.h:57:0,
from /usr/include/c++/5.3.0/bits/stl_pair.h:59,
from /usr/include/c++/5.3.0/utility:70,
from /usr/include/c++/5.3.0/tuple:38,
from /usr/include/c++/5.3.0/functional:55,
from iter.cc:1:
/usr/include/c++/5.3.0/type_traits:958:12: note: template<class, class> struct std::is_same
struct is_same;
^
By way of explanation, I have created a class called 'vit'. It does two things: iterate over a vector, and determine if a new group has been reached.
The class function 'set_same' is supposed to store a function provided by the calling class to determine if two adjacent elements of a vector are in the same group. However, I can't seem to store the function in the class for future use by grp_begin() and grp_end() on account of the ostensible ambiguity of is_same.
What gives?
There is an is_same function defined by you and there is a struct is_same defined by the C++ Standard Library. Since you are using namespace std, your compiler doesn't know which is_same you meant to use.
It's what the error says: it's not clear whether you mean your is_same (in the global namespace) or the class template is_same (in namespace std).
You may disambiguate as follows:
::is_same
… with the leading :: meaning "in the global namespace".
Though you should consider putting your code in a namespace of its own.
Thanks guys. This is my first time touching C++ after more than a decade. I have cleaned up the code, and used a lambda to bring the "is_same" function closer to where it is called.
Did you spot the bug in my code? 'pos' was off-by-one when calling grp_begin() and grp_end(). Here is the revised code:
#include <functional>
#include <iostream>
#include <vector>
// vector iterator
template <class T> class vit
{
private:
std::vector<T> m_v;
std::function<bool (T, T)> m_fptr;
int len, pos;
public:
vit(std::vector<T> &v) { m_v = v; len = v.size(); pos = -1;};
bool next(T &val) {
pos++;
if(pos==len) return false;
val = m_v[pos];
return true;};
void set_same(std::function<bool (T,T)> fptr) { m_fptr = fptr ;};
bool grp_begin() {
return pos == 0 || ! m_fptr(m_v[pos], m_v[pos-1]); };
bool grp_end() {
return pos+1 == len || ! m_fptr(m_v[pos], m_v[pos+1]); };
};
main()
{
std::vector<int> v ={ 1, 1, 2, 2, 2, 3, 1, 1, 1 };
vit<int> a_vit(v);
std::function<bool (int, int)> is_same = [](int a, int b) { return a == b; };
a_vit.set_same(is_same);
int i, total;
while(a_vit.next(i)) {
if(a_vit.grp_begin()) total = 0;
total += i;
if(a_vit.grp_end()) std::cout << total << std::endl ;
}
}
My class definition isn't bullet-proof and could be better: if the user forgets to 'set-same', for example, they'll be referring a random memory address as a function.
Nevertheless, I'm pretty chuffed with my solution so far. The class caller is relieved of all the bookkeeping relating iterating over the vector, and working out if a group boundary has been crossed.
The calling code looks very compact and intuitive to me.I can see C++ being my go to language.

How do I store the intermediate results of a recursive function using C++ templates at compile time?

I asked How do I capture the results of a recursive function at compile-time?, but I think my approach was wrong.
I have a program like so:
#include <iostream>
#include <list>
std::list<unsigned int> recursive_case(std::list<unsigned int>& result, unsigned int& i) {
result.push_front(1 + (i % 10));
i /= 10;
return i != 0 ? recursive_case(result, i) : result;
}
std::list<unsigned int> initial_case(unsigned int i) {
std::list<unsigned int> result;
result.push_back(i % 10);
i /= 10;
return i != 0 ? recursive_case(result, i) : result;
}
int main() {
auto list = initial_case(123);
bool first = true;
for (auto i: list) {
if (first) {
first = false;
} else {
std::cout << ", ";
}
std::cout << i;
}
std::cout << std::endl;
}
The output is 2, 3, 3.
I want to perform the above computation and get the same output but in compile-time (the loop iteration and output-printing would be at runtime i.e. everything starting from the for loop). Templates seem like a possibility (that's why I tagged this ask as such), but I am open to anything that gets the job done in compile-time.
You can use constexpr to calculate the list at compile time. I converted the recursion to iteration and used the indices trick to call calculate as often as necessary.
#include <iostream>
#include <array>
#include <iterator>
#include <utility>
constexpr std::size_t count_digits(std::size_t N, std::size_t Count = 0)
{
return (N > 0) ? count_digits(N/10, Count+1) : Count;
}
constexpr std::size_t ipow(std::size_t N, std::size_t Base)
{
return (N > 0) ? Base*ipow(N-1,Base) : 1;
}
constexpr std::size_t calculate(std::size_t n, std::size_t i)
{
std::size_t p = ipow(i,10);
std::size_t t = (n/p) % 10;
return i > 0 ? (t+1) : t;
}
template<std::size_t Num, std::size_t C, std::size_t... Is>
constexpr std::array<std::size_t, C> build_list(std::index_sequence<Is...>)
{
return {{ calculate(Num, C-Is-1)... }};
}
template <std::size_t Num, std::size_t C = count_digits(Num)>
constexpr auto build_list()
{
return build_list<Num, C>(std::make_index_sequence<C>{});
}
int main()
{
constexpr auto list = build_list<123>();
for(auto e : list)
{
std::cout << e << " ";
}
return 0;
}
output:
2 3 3
live example
Here's one solution.
#include <iostream>
// Print one digit.
template <unsigned int N, bool Initial> struct AtomicPrinter
{
static void print()
{
std::cout << N%10;
}
};
template <unsigned int N> struct AtomicPrinter<N, false>
{
static void print()
{
std::cout << 1 + N%10 << ", ";
}
};
// Recursive printer for a number
template <unsigned int N, bool Initial> struct Printer
{
static void print()
{
Printer<N/10, false>::print();
AtomicPrinter<N, Initial>::print();
}
};
// Specialization to end recursion.
template <bool TF> struct Printer<0, TF>
{
static void print()
{
}
};
void printList()
{
Printer<123, true>::print();
std::cout << std::endl;
}
int main() {
printList();
}
If there is a need to separate printing of the digits from constructing the list of digits, you can use:
#include <iostream>
#include <list>
template <unsigned int N, bool Initial> struct Digit
{
static void get(std::list<int>& l)
{
l.push_back(N%10);
}
};
template <unsigned int N> struct Digit<N, false>
{
static void get(std::list<int>& l)
{
l.push_back(1 + N%10);
}
};
template <unsigned int N, bool Initial> struct Digits
{
static void get(std::list<int>& l)
{
Digits<N/10, false>::get(l);
Digit<N, Initial>::get(l);
}
};
template <bool TF> struct Digits<0, TF>
{
static void get(std::list<int>& l)
{
}
};
void printList()
{
std::list<int> l;
Digits<123, true>::get(l);
bool first = true;
for (auto i: l) {
if (first) {
first = false;
} else {
std::cout << ", ";
}
std::cout << i;
}
std::cout << std::endl;
}
int main() {
printList();
}
You may use something like the following to split number at compile time:
#include <utility>
#include <iostream>
template <char... Cs>
std::integer_sequence<char, Cs...> operator "" _seq() { return {}; }
template <char...Cs>
void print(std::integer_sequence<char, Cs...>)
{
const char* sep = "";
for (const auto& c : {Cs...}) {
std::cout << sep << c;
sep = ", ";
}
}
int main() {
auto seq = 123_seq;
print(seq);
}
Demo

Simpler way to set multiple array slots to one value

I'm coding in C++, and I have the following code:
int array[30];
array[9] = 1;
array[5] = 1;
array[14] = 1;
array[8] = 2;
array[15] = 2;
array[23] = 2;
array[12] = 2;
//...
Is there a way to initialize the array similar to the following?
int array[30];
array[9,5,14] = 1;
array[8,15,23,12] = 2;
//...
Note: In the actual code, there can be up to 30 slots that need to be set to one value.
This function will help make it less painful.
void initialize(int * arr, std::initializer_list<std::size_t> list, int value) {
for (auto i : list) {
arr[i] = value;
}
}
Call it like this.
initialize(array,{9,5,14},2);
A variant of aaronman's answer:
template <typename T>
void initialize(T array[], const T& value)
{
}
template <size_t index, size_t... indices, typename T>
void initialize(T array[], const T& value)
{
array[index] = value;
initialize<indices...>(array, value);
}
int main()
{
int array[10];
initialize<0,3,6>(array, 99);
std::cout << array[0] << " " << array[3] << " " << array[6] << std::endl;
}
Example: Click here
Just for the fun of it I created a somewhat different approach which needs a bit of infrastructure allowing initialization like so:
double array[40] = {};
"9 5 14"_idx(array) = 1;
"8 15 23 12"_idx(array) = 2;
If the digits need to be separated by commas, there is a small change needed. In any case, here is the complete code:
#include <algorithm>
#include <iostream>
#include <sstream>
#include <iterator>
template <int Size, typename T = int>
class assign
{
int d_indices[Size];
int* d_end;
T* d_array;
void operator=(assign const&) = delete;
public:
assign(char const* base, std::size_t n)
: d_end(std::copy(std::istream_iterator<int>(
std::istringstream(std::string(base, n)) >> std::skipws),
std::istream_iterator<int>(), this->d_indices))
, d_array()
{
}
assign(assign<Size>* as, T* a)
: d_end(std::copy(as->begin(), as->end(), this->d_indices))
, d_array(a) {
}
assign(assign const& o)
: d_end(std::copy(o.begin(), o.end(), this->d_indices))
, d_array(o.d_array)
{
}
int const* begin() const { return this->d_indices; }
int const* end() const { return this->d_end; }
template <typename A>
assign<Size, A> operator()(A* array) {
return assign<Size, A>(this, array);
}
void operator=(T const& value) {
for (auto it(this->begin()), end(this->end()); it != end; ++it) {
d_array[*it] = value;
}
}
};
assign<30> operator""_idx(char const* base, std::size_t n)
{
return assign<30>(base, n);
}
int main()
{
double array[40] = {};
"1 3 5"_idx(array) = 17;
"4 18 7"_idx(array) = 19;
std::copy(std::begin(array), std::end(array),
std::ostream_iterator<double>(std::cout, " "));
std::cout << "\n";
}
I just had a play around for the sake of fun / experimentation (Note my concerns at the bottom of the answer):
It's used like this:
smartAssign(array)[0][8] = 1;
smartAssign(array)[1][4][2] = 2;
smartAssign(array)[3] = 3;
smartAssign(array)[5][9][6][7] = 4;
Source code:
#include <assert.h> //Needed to test variables
#include <iostream>
#include <cstddef>
template <class ArrayPtr, class Value>
class SmartAssign
{
ArrayPtr m_array;
public:
class Proxy
{
ArrayPtr m_array;
size_t m_index;
Proxy* m_prev;
Proxy(ArrayPtr array, size_t index)
: m_array(array)
, m_index(index)
, m_prev(nullptr)
{ }
Proxy(Proxy* prev, size_t index)
: m_array(prev->m_array)
, m_index(index)
, m_prev(prev)
{ }
void assign(Value value)
{
m_array[m_index] = value;
for (auto prev = m_prev; prev; prev = prev->m_prev) {
m_array[prev->m_index] = value;
}
}
public:
void operator=(Value value)
{
assign(value);
}
Proxy operator[](size_t index)
{
return Proxy{this, index};
}
friend class SmartAssign;
};
SmartAssign(ArrayPtr array)
: m_array(array)
{
}
Proxy operator[](size_t index)
{
return Proxy{m_array, index};
}
};
template <class T>
SmartAssign<T*, T> smartAssign(T* array)
{
return SmartAssign<T*, T>(array);
}
int main()
{
int array[10];
smartAssign(array)[0][8] = 1;
smartAssign(array)[1][4][2] = 2;
smartAssign(array)[3] = 3;
smartAssign(array)[5][9][6][7] = 4;
for (auto i : array) {
std::cout << i << "\n";
}
//Now to test the variables
assert(array[0] == 1 && array[8] == 1);
assert(array[1] == 2 && array[4] == 2 && array[2] == 2);
assert(array[3] == 3);
assert(array[5] == 4 && array[9] == 4 && array[6] == 4 && array[7] == 4);
}
Let me know what you think, I don't typically write much code like this, I'm sure someone will point out some problems somewhere ;)
I'm not a 100% certain of the lifetime of the proxy objects.
The best you can do if your indexes are unrelated is "chaining" the assignments:
array[9] = array[5] = array[14] = 1;
However if you have some way to compute your indexes in a deterministic way you could use a loop:
for (size_t i = 0; i < 3; ++i)
array[transform_into_index(i)] = 1;
This last example also obviously applies if you have some container where your indexes are stored. So you could well do something like this:
const std::vector<size_t> indexes = { 9, 5, 14 };
for (auto i: indexes)
array[i] = 1;
Compilers which still doesn't support variadic template argument and universal initialization list, it can be a pain to realize, that some of the posted solution will not work
As it seems, OP only intends to work with arrays of numbers, valarray with variable arguments can actually solve this problem quite easily.
#include <valarray>
#include <cstdarg>
#include <iostream>
#include <algorithm>
#include <iterator>
template <std::size_t size >
std::valarray<std::size_t> selection( ... )
{
va_list arguments;
std::valarray<std::size_t> sel(size);
//Skip the first element
va_start ( arguments, size );
va_arg ( arguments, int );
for(auto &elem : sel)
elem = va_arg ( arguments, int );
va_end ( arguments );
return sel;
}
int main ()
{
//Create an array of 30 integers
std::valarray<int> array(30);
//The first argument is the count of indexes
//followed by the indexes of the array to initialize
array[selection<3>(9,5,14)] = 1;
array[selection<4>(8,15,13, 12)] = 2;
std::copy(std::begin(array), std::end(array),
std::ostream_iterator<int>(std::cout, " "));
return 0;
}
I remember, for static initialization exist syntax like:
int array[30] = {
[9] = 1, [8] = 2
}
And so on. This works in gcc, about another compilers - I do not know.
Use overload operator << .
#include <iostream>
#include <iomanip>
#include <cmath>
// value and indexes wrapper
template< typename T, std::size_t ... Ints> struct _s{ T value; };
//deduced value type
template< std::size_t ... Ints, typename T>
constexpr inline _s<T, Ints... > _ ( T const& v )noexcept { return {v}; }
// stored array reference
template< typename T, std::size_t N>
struct _ref
{
using array_ref = T (&)[N];
array_ref ref;
};
//join _s and _ref with << operator.
template<
template< typename , std::size_t ... > class IC,
typename U, std::size_t N, std::size_t ... indexes
>
constexpr _ref<U,N> operator << (_ref<U,N> r, IC<U, indexes...> ic ) noexcept
{
using list = bool[];
return ( (void)list{ false, ( (void)(r.ref[indexes] = ic.value), false) ... }) , r ;
//return r;
}
//helper function, for creating _ref<T,N> from array.
template< typename T, std::size_t N>
constexpr inline _ref<T,N> _i(T (&array)[N] ) noexcept { return {array}; }
int main()
{
int a[15] = {0};
_i(a) << _<0,3,4,5>(7) << _<8,9, 14>( 6 ) ;
for(auto x : a)std::cout << x << " " ;
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
//result: 7 0 0 7 7 7 0 0 6 6 0 0 0 0 6
double b[101]{0};
_i(b) << _<0,10,20,30,40,50,60,70,80,90>(3.14)
<< _<11,21,22,23,24,25>(2.71)
<< _<5,15,25,45,95>(1.414) ;
}
struct _i_t
{
int * array;
struct s
{
int* array;
std::initializer_list<int> l;
s const& operator = (int value) const noexcept
{
for(auto i : l )
array[i] = value;
return *this;
}
};
s operator []( std::initializer_list<int> i ) const noexcept
{
return s{array, i};
}
};
template< std::size_t N>
constexpr _i_t _i( int(&array)[N]) noexcept { return {array}; }
int main()
{
int a[15] = {0};
_i(a)[{1,3,5,7,9}] = 7;
for(auto x : a)std::cout << x << ' ';
}
Any fancy trickery you do will be unrolled by the compiler/assembler into exactly what you have. Are you doing this for readability reasons? If your array is already init, you can do:
array[8] = array[15] = array[23] = array[12] = 2;
But I stress my point above; it will be transformed into exactly what you have.

Getting template metaprogramming compile-time constants at runtime

Background
Consider the following:
template <unsigned N>
struct Fibonacci
{
enum
{
value = Fibonacci<N-1>::value + Fibonacci<N-2>::value
};
};
template <>
struct Fibonacci<1>
{
enum
{
value = 1
};
};
template <>
struct Fibonacci<0>
{
enum
{
value = 0
};
};
This is a common example and we can get the value of a Fibonacci number as a compile-time constant:
int main(void)
{
std::cout << "Fibonacci(15) = ";
std::cout << Fibonacci<15>::value;
std::cout << std::endl;
}
But you obviously cannot get the value at runtime:
int main(void)
{
std::srand(static_cast<unsigned>(std::time(0)));
// ensure the table exists up to a certain size
// (even though the rest of the code won't work)
static const unsigned fibbMax = 20;
Fibonacci<fibbMax>::value;
// get index into sequence
unsigned fibb = std::rand() % fibbMax;
std::cout << "Fibonacci(" << fibb << ") = ";
std::cout << Fibonacci<fibb>::value;
std::cout << std::endl;
}
Because fibb is not a compile-time constant.
Question
So my question is:
What is the best way to peek into this table at run-time? The most obvious solution (and "solution" should be taken lightly), is to have a large switch statement:
unsigned fibonacci(unsigned index)
{
switch (index)
{
case 0:
return Fibonacci<0>::value;
case 1:
return Fibonacci<1>::value;
case 2:
return Fibonacci<2>::value;
.
.
.
case 20:
return Fibonacci<20>::value;
default:
return fibonacci(index - 1) + fibonacci(index - 2);
}
}
int main(void)
{
std::srand(static_cast<unsigned>(std::time(0)));
static const unsigned fibbMax = 20;
// get index into sequence
unsigned fibb = std::rand() % fibbMax;
std::cout << "Fibonacci(" << fibb << ") = ";
std::cout << fibonacci(fibb);
std::cout << std::endl;
}
But now the size of the table is very hard coded and it wouldn't be easy to expand it to say, 40.
The only one I came up with that has a similiar method of query is this:
template <int TableSize = 40>
class FibonacciTable
{
public:
enum
{
max = TableSize
};
static unsigned get(unsigned index)
{
if (index == TableSize)
{
return Fibonacci<TableSize>::value;
}
else
{
// too far, pass downwards
return FibonacciTable<TableSize - 1>::get(index);
}
}
};
template <>
class FibonacciTable<0>
{
public:
enum
{
max = 0
};
static unsigned get(unsigned)
{
// doesn't matter, no where else to go.
// must be 0, or the original value was
// not in table
return 0;
}
};
int main(void)
{
std::srand(static_cast<unsigned>(std::time(0)));
// get index into sequence
unsigned fibb = std::rand() % FibonacciTable<>::max;
std::cout << "Fibonacci(" << fibb << ") = ";
std::cout << FibonacciTable<>::get(fibb);
std::cout << std::endl;
}
Which seems to work great. The only two problems I see are:
Potentially large call stack, since calculating Fibonacci<2> requires we go through TableMax all the way to 2, and:
If the value is outside of the table, it returns zero as opposed to calculating it.
So is there something I am missing? It seems there should be a better way to pick out these values at runtime.
A template metaprogramming version of a switch statement perhaps, that generates a switch statement up to a certain number?
Thanks in advance.
template <unsigned long N>
struct Fibonacci
{
enum
{
value = Fibonacci<N-1>::value + Fibonacci<N-2>::value
};
static void add_values(vector<unsigned long>& v)
{
Fibonacci<N-1>::add_values(v);
v.push_back(value);
}
};
template <>
struct Fibonacci<0>
{
enum
{
value = 0
};
static void add_values(vector<unsigned long>& v)
{
v.push_back(value);
}
};
template <>
struct Fibonacci<1>
{
enum
{
value = 1
};
static void add_values(vector<unsigned long>& v)
{
Fibonacci<0>::add_values(v);
v.push_back(value);
}
};
int main()
{
vector<unsigned long> fibonacci_seq;
Fibonacci<45>::add_values(fibonacci_seq);
for (int i = 0; i <= 45; ++i)
cout << "F" << i << " is " << fibonacci_seq[i] << '\n';
}
After much thought into the problem, I came up with this solution. Of course, you still have to add the values to a container at run-time, but (importantly) they are not computed at run-time.
As a side note, it's important not to define Fibonacci<1> above Fibonacci<0>, or your compiler will get very confused when it resolves the call to Fibonacci<0>::add_values, since Fibonacci<0>'s template specialization has not been specified.
Of course, TMP has its limitations: You need a precomputed maximum, and getting the values at run-time requires recursion (since templates are defined recursively).
I know this question is old, but it intrigued me and I had to have a go at doing without a dynamic container filled at runtime:
#ifndef _FIBONACCI_HPP
#define _FIBONACCI_HPP
template <unsigned long N>
struct Fibonacci
{
static const unsigned long long value = Fibonacci<N-1>::value + Fibonacci<N-2>::value;
static unsigned long long get_value(unsigned long n)
{
switch (n) {
case N:
return value;
default:
return n < N ? Fibonacci<N-1>::get_value(n)
: get_value(n-2) + get_value(n-1);
}
}
};
template <>
struct Fibonacci<0>
{
static const unsigned long long value = 0;
static unsigned long long get_value(unsigned long n)
{
return value;
}
};
template <>
struct Fibonacci<1>
{
static const unsigned long long value = 1;
static unsigned long get_value(unsigned long n)
{
if(n == N){
return value;
}else{
return 0; // For `Fibonacci<N>::get(0);`
}
}
};
#endif
This seems to work, and when compiled with optimizations (not sure if you were going to allow that), the call stack does not get to deep - there is normal runtime recursion on the stack of course for values (arguments) n > N, where N is the TableSize used in the template instantiation. However, once you go below the TableSize the generated code substitutes a constant computed at compile time, or at worst a value "computed" by dropping through a jump table (compiled in gcc with -c -g -Wa,-adhlns=main.s and checked the listing), the same as I reckon your explicit switch statement would result in.
When used like this:
int main()
{
std::cout << "F" << 39 << " is " << Fibonacci<40>::get_value(39) << '\n';
std::cout << "F" << 45 << " is " << Fibonacci<40>::get_value(45) << '\n';
}
There is no call to a computation at all in the first case (value computed at compile time), and in the second case the call stack depth is at worst:
fibtest.exe!Fibonacci<40>::get_value(unsigned long n=41) Line 18 + 0xe bytes C++
fibtest.exe!Fibonacci<40>::get_value(unsigned long n=42) Line 18 + 0x2c bytes C++
fibtest.exe!Fibonacci<40>::get_value(unsigned long n=43) Line 18 + 0x2c bytes C++
fibtest.exe!Fibonacci<40>::get_value(unsigned long n=45) Line 18 + 0xe bytes C++
fibtest.exe!main() Line 9 + 0x7 bytes C++
fibtest.exe!__tmainCRTStartup() Line 597 + 0x17 bytes C
I.e. it recurses until it finds a value in the "Table". (verified by stepping through Disassembly in the debugger line by line, also by replacing the test ints by a random number <= 45)
The recursive part could also be replaced by the linear iterative solution:
static unsigned long long get_value(unsigned long n)
{
switch (n) {
case N:
return value;
default:
if (n < N) {
return Fibonacci<N-1>::get_value(n);
} else {
// n > N
unsigned long long i = Fibonacci<N-1>::value, j = value, t;
for (unsigned long k = N; k < n; k++) {
t = i + j;
i = j;
j = t;
}
return j;
}
}
}
If you have C++ compiler which supports variadic templates (C++0x standard ) you can save fibonacii sequence in a tuple at the compile time. At runtime you can access any element from that tuple by indexing.
#include <tuple>
#include <iostream>
template<int N>
struct Fib
{
enum { value = Fib<N-1>::value + Fib<N-2>::value };
};
template<>
struct Fib<1>
{
enum { value = 1 };
};
template<>
struct Fib<0>
{
enum { value = 0 };
};
// ----------------------
template<int N, typename Tuple, typename ... Types>
struct make_fibtuple_impl;
template<int N, typename ... Types>
struct make_fibtuple_impl<N, std::tuple<Types...> >
{
typedef typename make_fibtuple_impl<N-1, std::tuple<Fib<N>, Types... > >::type type;
};
template<typename ... Types>
struct make_fibtuple_impl<0, std::tuple<Types...> >
{
typedef std::tuple<Fib<0>, Types... > type;
};
template<int N>
struct make_fibtuple : make_fibtuple_impl<N, std::tuple<> >
{};
int main()
{
auto tup = typename make_fibtuple<25>::type();
std::cout << std::get<20>(tup).value;
std::cout << std::endl;
return 0;
}
With C++11: you may create a std::array and a simple getter: https://ideone.com/F0b4D3
namespace detail
{
template <std::size_t N>
struct Fibo :
std::integral_constant<size_t, Fibo<N - 1>::value + Fibo<N - 2>::value>
{
static_assert(Fibo<N - 1>::value + Fibo<N - 2>::value >= Fibo<N - 1>::value,
"overflow");
};
template <> struct Fibo<0u> : std::integral_constant<size_t, 0u> {};
template <> struct Fibo<1u> : std::integral_constant<size_t, 1u> {};
template <std::size_t ... Is>
constexpr std::size_t fibo(std::size_t n, index_sequence<Is...>)
{
return const_cast<const std::array<std::size_t, sizeof...(Is)>&&>(
std::array<std::size_t, sizeof...(Is)>{{Fibo<Is>::value...}})[n];
}
template <std::size_t N>
constexpr std::size_t fibo(std::size_t n)
{
return n < N ?
fibo(n, make_index_sequence<N>()) :
throw std::runtime_error("out of bound");
}
} // namespace detail
constexpr std::size_t fibo(std::size_t n)
{
// 48u is the highest
return detail::fibo<48u>(n);
}
In C++14, you can simplify some function:
template <std::size_t ... Is>
constexpr std::size_t fibo(std::size_t n, index_sequence<Is...>)
{
constexpr std::array<std::size_t, sizeof...(Is)> fibos{{Fibo<Is>::value...}};
return fibos[n];
}
My idea is to recursively save the fibonacci sequence in the variadic templates then convert it into an array. All of this are done at compile-time.
For example with n = 5 we have:
F<5>::array
= F<4, 0>::array
= F<3, 0, 1>::array
= F<2, 0, 1, 1>::array
= F<1, 0, 1, 1, 2>::array
= F<0, 0, 1, 1, 2, 3>::array
= { 0, 1, 1, 2, 3 }
Then we can index the array at runtime.
My C++14 implementation:
#include <cstdint>
#include <array>
#include <iostream>
template<uint64_t n>
struct Helper { static constexpr uint64_t value = Helper<n - 1>::value + Helper<n - 2>::value; };
template<>
struct Helper<0> { static constexpr uint64_t value = 0; };
template<>
struct Helper<1> { static constexpr uint64_t value = 1; };
template<u_int64_t x>
class Fib {
private:
template<u_int64_t n, u_int64_t...rest>
struct Get {
static constexpr std::array<u_int64_t, n + sizeof...(rest)> value = Get<n - 1, rest..., Helper<sizeof...(rest)>::value>::value;
};
template<u_int64_t...rest>
struct Get<0, rest...> {
static constexpr std::array<u_int64_t, sizeof...(rest)> value{rest...};
};
public:
static constexpr std::array<u_int64_t, x> sequence = Get<x>::value;
};
template<u_int64_t x>
constexpr std::array<u_int64_t, x> Fib<x>::sequence;
int main() {
for (int i = 0; i < 45; i++) std::cout << "F" << i << " = " << Fib<45>::sequence[i] << std::endl;
}
One of the basic tennants of C (and for the most part C++) is that you don't pay for what you don't need.
The automatic generation of look-up tables is just not something that the compiler needs to do for you. Even if you need that functionality, not everyone else necessarly does.
If you want a lookup table, write a program to make one. Then use that data in your program.
Don't use a template metaprogram if you want values to be calculated at runtime, just use a regular program to calculate values.
You can generate the switch or a static array using preprocessor metaprogramming techniques.
It is a good decision if the complexity does not exceed the limitations of that approach, and you prefer not extending your toolchain with extra steps that generate code or data.