Should I use global variables? - c++

I have been reading about global variables and how bad they are but I am stuck in one place due to that. I am going to be very specific about if I should use global variables in this scenario.
I am working on a game engine. And my engine consists of lots of managers. Managers do certain tasks - they store resources, load them, update them etc.
I have made all my managers a singleton because so many classes and functions needs access to them. I was thinking of removing the singleton but I don't know how i can not have it and get access to these managers.
Here is an example of what I am trying to tell (im bad at english, sorry):
Singleton.h
template<class T> class Singleton {
private:
Singleton( const Singleton& );
const Singleton& operator=( const Singleton& );
protected:
Singleton() { instance = static_cast<T*>(this); }
virtual ~Singleton() {}
protected:
static T * instance;
public:
static T &Instance() {
return *instance;
}
};
ScriptManager.h
class ScriptManager : public Singleton<ScriptManager> {
public:
virtual void runLine(const String &line)=0;
virtual void runFile(const String &file)=0;
};
PythonScriptManager.cpp
class PythonScriptManager : public ScriptManager {
public:
PythonScriptManager() { Py_Initialize(); }
~PythonScriptManager() { Py_Finalize(); }
void runFile(const String &file) {
FILE * fp = fopen(file.c_str(), "r");
PyRun_SimpleFile(fp, file.c_str());
fclose(fp);
fp=0;
}
void runLine(const String &line) {
PyRun_SimpleString(line.c_str());
}
};
Entity ScriptComponent
#include <CoreIncludes.h>
#include <ScriptManager.h>
#include <ScriptComponent.h>
void update() {
ScriptManager::Instance().runFile("test_script.script");
//i know its not a good idea to open the stream on every frame but thats not the main concern right now.
}
Application
int main(int argc, const char * argv) {
Application * app = new Application(argc, argv);
ScriptManager * script_manager = new PythonScriptManager;
//all other managers
return app->run();
}
As you see I am not even including the files above in my ScriptComponent.cpp file which wins me some compilation time. How can I get that kind of a result without globals which will make it easy to integrate as this one. The singleton is not thread safe but adding threads won't take a long time.
I hope I could explain the problem.
Thanks in advance,
Gasim Gasimzada

I won't say you should never use globals, but:
Never use singletons. Here is why. They're horrible, and they're much worse than plain old globals.
"Manager" classes are bad. What do they "manage"? How do they "manage" it? "Manager" classes need to be broken up into something that you can describe. Once you've figured out what it means to "manage" an object, you can define one or more object with better-defined responsibilities.
When you use globals, don't make them mutable. A write-only global can be acceptable (consider a logger. You write to it, but its state never ever affects the application), and read-only globals can be ok too (consider various constants that are never changed, but which you frequently need to read from). Where globals become harmful is when they have mutable state: when you both read to, and write from, them.
And finally, the very very simple alternative:
Just pass dependencies as arguments. If an object needs something in order to function, pass it that "something" in its constructor. If a function needs something in order to operate, pass it that "something" as an argument.
This might sound like a lot of work, but it isn't. When your design is cluttered with globals and singletons, you get a big huge spaghetti architecture where everything depends on everything else. Because the dependencies are not explicitly visible, you get sloppy, and rather than thinking about what the best way to connect two components is, you just make them communicate through one or more globals. Once you have to think about which dependencies to explicitly pass around, most of them turn out to be unnecessary, and your design becomes much cleaner, more readable and maintainable, and much much easier to reason about. And your number of dependencies will drop dramatically, so that you only actually need to pass an extra argument or two to a small number of objects or functions.

How about removing the ScriptManager base class and use static methods in the specialization classes? It looks like there is no state involved with any ScriptManagers, and no real heritage other than the purely virtual functions.
I could not figure out from your code samples if you actually use polymorphism here. If not, static member functions look OK to me.

Do not ever use global variables. If you need an object of a type, then you pass it in, by reference if necessary.

Related

How to make data available to all objects of a class?

This is probably very basic but somehow I cannot figure it out.
Say I have a class A which embeds 42 Things, plus some common data:
class A {
Thing things[42];
int common_data[1024];
}
I would like each thing to have access to the common data, but I don't want to copy the data in each Thing object, nor pay the price of a pointer to it in each thing. In other word, I would like Thing to look like this:
class Thing {
int ident;
int f() {
return common_data[ident];
}
}
Of course here common_data is unbound. What is the canonical way to make this work?
FWIW I am working with a subset of C++ with no dynamic allocation (no "new", no inheritance, basically it's C with the nice syntax to call methods and declare objects); I am ideally looking for a solution that fits in this subset.
You can solve your issue by making the common_data attribute of Class A static. Static variables are shared by all members of class A, and will be accessible if you make it public.
class A
{
private:
Thing things[42];
public:
static int common_data[1024];
}
It can be accessed by doing...
A::common_data[index];
I am not sure if I understand the question correctly, but maybe this helps:
struct A {
Thing things[42];
int common_data[1024];
void foo(int index) {
things[index].doSomeThingWithCommonData(int* common_data);
}
};
struct Thing {
void doSomeThinWithCommonData(int* common_data) {
/* now you have access to common_data */
}
};
Your reasons for avoiding pointers/reference is based on irrational fears. "Copying" a pointer 42 times is nothing (read this word carefully) for the machine. Moreover this is definitely not the bottleneck of the application.
So the idiomatic way is to simply use dependency injection, which is indeed a slightly more costly action for you (if passing an array can be considered costly), but allows for a much more decoupled design.
This is therefore the solution I recommend:
struct Thing {
using data = std::shared_ptr<std::array<int, 1024>>;
data common_data;
Thing(data arg)
: common_data(arg)
{}
// ...
};
If the system is costrained, then you should benchmark your program. I can tell you already with almost absolutely certainty that the bottleneck won't be the copying of those 42 pointers.

Cast relatives classes to each other which has common parent class

I have classes DBGameAction and ServerGameAction which has common parent class GameAction. Classes DBGameAction and ServerGameAction it's a API for safety working with entity GameAction from different part of program.
My question is: is it normal at first create DBGameAction entity and then cast it to the ServerGameAction entity? Or maybe it's a wrong program design?
My program:
#include <vector>
#include <string>
#include <iostream>
class GameAction
{
protected:
/* Need use mutex or something else for having safety access to this entity */
unsigned int cost;
unsigned int id;
std::vector<std::string> players;
GameAction(){}
public:
unsigned int getCost() const
{
return cost;
}
};
class DBGameAction : public GameAction
{
public:
void setCost(unsigned int c)
{
cost = c;
}
void setId(unsigned int i)
{
id = i;
}
};
class ServerGameAction : public GameAction
{
ServerGameAction(){}
public:
void addPlayer(std::string p)
{
players.push_back(p);
}
std::string getLastPlayer() const
{
return players.back();
}
};
int main(int argc, char *argv[])
{
DBGameAction *dbga = 0;
ServerGameAction *sga = 0;
try {
dbga = new DBGameAction;
}
catch(...) /* Something happens wrong! */
{
return -1;
}
sga = reinterpret_cast<ServerGameAction*>(dbga);
sga->addPlayer("Max");
dbga->setCost(100);
std::cout << dbga->getCost() << std::endl;
std::cout << sga->getLastPlayer() << std::endl;
delete dbga;
sga = dbga = 0;
return 0;
}
It is wrong program design.
Is there a reason why you are not creating GameAction variables which you then downcast to DBGameAction and ServerGameAction?
I haven't used reinterpret_cast in many occasions but I am sure it shouldn't be used this way. You should try to find a better design for the interface of your classes. Someone who uses your classes, doesn't have a way to know that he needs to do this sort of castings to add a player.
You have to ask yourself, if adding a player is an operation that only makes sense for ServerGameActions or for DBGameActions too. If it makes sense to add players to DBGameActions, then AddPlayer should be in the interface of DBGameAction too. Then you will not need these casts. Taking it one step further, if it is an operation that makes sense for every possible GameAction you may ever have, you can put it in the interface of the base class.
I have used a similar pattern effectively in the past, but it is a little different than most interface class setups. Instead of having a consistent interface that can trigger appropriate class-specific methods for accomplishing similar tasks on different data types, this provides two completely different sets of functionality which each have their own interface, yet work on the same data layout.
The only reason I would pull out this design is for situations where the base class is data-only and shared between multiple libraries or executables. Then each lib or exe defines a child class which houses all the functionality that it's allowed to use on the base data. This way you can, for example, build your server executable with all kinds of nice extra functions for manipulating game data that the client isn't allowed to use, and the server-side functionality doesn't get built into the client executable. It's much easier for a game modder to trigger existing, dormant functionality than to write and inject their own.
The main part of your question about casting directly between the child classes is making us worry, though. If you find yourself wanting to do that, stop and rethink. You could theoretically get away with the cast as long as your classes stay non-virtual and the derived classes never add data members (the derived classes can't have any data for what you're trying to do anyway, due to object slicing), but it would be potentially dangerous and, most likely, less readable code. As #dspfnder was talking about, you would want to work with base classes for passing data around and down-cast on-demand to access functionality.
With all that said, there are many ways to isolate, restrict, or cull functionality. It may be worth reworking your design with functionality living in friend classes instead of child classes; that would require much less or no casting.

dumb data object holds all common values c++, is this correct

So I am new to c++ and I'm writing for a scientific application.
Data needs to be read in from a few input text files.
At the moment I am storing these input variables in an object. (lets call it inputObj).
Is it right that I have to pass this "inputObj" around all my objects now. It seems like it has just become a complicated version of global variables. So I think I may be missing the point of OOP.
I have created a g++ compilable small example of my program:
#include<iostream>
class InputObj{
// this is the class that gets all the data
public:
void getInputs() {
a = 1;
b = 2;
};
int a;
int b;
};
class ExtraSolver{
//some of the work may be done in here
public:
void doSomething(InputObj* io) {
eA = io->a;
eB = io->b;
int something2 = eA+eB;
std::cout<<something2<<std::endl;
};
private:
int eA;
int eB;
};
class MainSolver{
// I have most things happening from here
public:
void start() {
//get inputs;
inputObj_ = new InputObj();
inputObj_ -> getInputs();
myA = inputObj_->a;
myB = inputObj_->b;
//do some solve:
int something = myA*myB;
//do some extrasolve
extraSolver_ = new ExtraSolver();
extraSolver_ -> doSomething(inputObj_);
};
private:
InputObj* inputObj_;
ExtraSolver* extraSolver_;
int myA;
int myB;
};
int main() {
MainSolver mainSolver;
mainSolver.start();
}
Summary of question: A lot of my objects need to use the same variables. Is my implementation the correct way of achieving this.
Don't use classes when functions will do fine.
Don't use dynamic allocation using new when automatic storage will work fine.
Here's how you could write it:
#include<iostream>
struct inputs {
int a;
int b;
};
inputs getInputs() {
return { 1, 2 };
}
void doSomething(inputs i) {
int something2 = i.a + i.b;
std::cout << something2 << std::endl;
}
int main() {
//get inputs;
inputs my_inputs = getInputs();
//do some solve:
int something = my_inputs.a * my_inputs.b;
//do some extrasolve
doSomething(my_inputs);
}
I'll recommend reading a good book: The Definitive C++ Book Guide and List
my answer would be based off your comment
"Yea I still haven't got the feel for passing objects around to each other, when it is essentially global variables im looking for "
so this 'feel for passing object' will come with practice ^^, but i think it's important to remember some of the reasons why we have OO,
the goal (in it simplified version) is to modularise your code so as increase the reuse segment of code.
you can create several InputObj without redefining or reassignig them each time
another goal is data hiding by encapsulation,
sometimes we don't want a variable to get changed by another function, and we don't want to expose those variable globally to protect their internal state.
for instance, if a and b in your InputObj where global variable declared and initialized at the beginning of your code, can you be certain that there value doesn't get changed at any given time unless you want to ? for simple program yes.. but as your program scale so does the chances of your variable to get inadvertently changed (hence some random unexpected behavior)
also there if you want the initial state of a and b to be preserved , you will have to do it yourself ( more temp global variables? )
you get more control over the flow of your code by adding level abstractions with classes/inheritances/operation overriding/polymorphisms/Abtract and interface and a bunch of other concepts that makes our life easier to build complex architectures.
now while many consider global variable to be evil, i think they are good and useful when used properly... otherwise is the best way to shoot yourself in the foot.
I hope this helped a bit to clear out that uneasy feeling for passing out objects :)
Is using your approach good or not strongly depends on situation.
If you need some high speed calculation you can't provide incapsulation methods for your InputObj class, though they are recommended, because it will strongly reduce speed of calculation.
However there are two rules that your can follow to reduce bugs:
1) Carefully using 'const' keyword every time you really don't want your object to modify:
void doSomething(InputObj * io) -> void doSomething(const InputObj * io)
2) Moving every action related with initial state of the object(in your case, as far as I can guess, your InputObj is loaded from file and thus without this file loading is useless) to constructor:
Instead of:
InputObj() { }
void getInputs(String filename) {
//reading a,b from file
};
use:
InputObj(String filename) {
//reading a,b from file
};
You are right that this way you have implemented global variables, but I would call your approach structured, and not complicated, as you encapsulate your global values in an object. This will make your program more maintainable, as global values are not spread all over the place.
You can make this even nicer by implementing the global object as a singleton (http://en.wikipedia.org/wiki/Singleton_pattern) thus ensuring there is only one global object.
Further, access the object through a static member or function. That way you don't need to pass it around as a variable, but any part of your program can easily access it.
You should be aware that a global object like this will e.g. not work well in a multithreaded application, but I understand that this not the case.
You should also be aware that there is a lot of discussions if you should use a singleton for this kind of stuff or not. Search SO or the net for "C++ singleton vs. global static object"

What is the proper way to handle a large number of interface implementations?

For one of my current projects I have an interface defined for which I have a large number of implementations. You could think of it as a plugin interface with many plugins.
These "plugins" each handle a different message type in a network protocol.
So when I get a new message, I loop through a list of my plugins, see who can handle it, and call into them via the interface.
The issue I am struggling with is how to allocate, initialize, and "load" all the implementations into my array/vector/whatever.
Currently I am declaring all of the "plugins" in main(), then calling an "plugin_manager.add_plugin(&plugin);" for each one. This seems less than ideal.
So, the actual questions:
1. Is there a standardized approach to this sort of thing?
2. Is there any way to define an array (global?) pre-loaded with the plugins?
3. Am I going about this the wrong way entirely? Are there other (better?) architecture options for this sort of problem?
Thanks.
EDIT:
This compiles (please excuse the ugly code)... but it kind of seems like a hack.
On the other hand, it solves the issue of allocation, and cleans up main()... Is this a valid solution?
class intf
{
public:
virtual void t() = 0;
};
class test : public intf
{
public:
test(){}
static test* inst(){ if(!_inst) _inst = new test; return _inst; }
static test* _inst;
void t(){}
};
test* test::_inst = NULL;
intf* ints[] =
{
test::inst(),
NULL
};
Store some form of smart pointer in a container. Dynamically allocate the plugins and register them in the container so that they can be used later.
One possible approach for your solution would be, if you have some form of message id that the plugin can decode, to use a map from that id to the plugin that handles that. This approach allows you to have fast lookup of the plugin given the input message.
One way of writing less code would be to use templates for the instantiation function. Then you only need to write one and put it in the interface, instead of having one function per implementation class.
class intf
{
public:
virtual void t() = 0;
template<class T>
static T* inst()
{
static T instance;
return &instance;
}
};
class test : public intf { ... };
intf* ints[] =
{
intf::inst<test>(),
NULL
};
The above code also works around two bugs you have in your code: One is a memory leak, in your old inst() function you allocate but you never free; The other is that the constructor sets the static member to NULL.
Other tips is to read more about the "singleton" pattern, which is what you have. It can be useful in some situations, but is generally advised against.

Reconciling classes, inheritance, and C callbacks

In my C++ project, I've chosen to use a C library. In my zeal to have a well-abstracted and simple design, I've ended up doing a bit of a kludge. Part of my design requirement is that I can easily support multiple APIs and libraries for a given task (due, primarily, to my requirement for cross-platform support). So, I chose to create an abstract base class which would uniformly handle a given selection of libraries.
Consider this simplification of my design:
class BaseClass
{
public:
BaseClass() {}
~BaseClass() {}
bool init() { return doInit(); }
bool run() { return doWork(); }
void shutdown() { destroy(); }
private:
virtual bool doInit() = 0;
virtual bool doWork() = 0;
virtual void destroy() = 0;
};
And a class that inherits from it:
class LibrarySupportClass : public BaseClass
{
public:
LibrarySupportClass()
: BaseClass(), state_manager(new SomeOtherClass()) {}
int callbackA(int a, int b);
private:
virtual bool doInit();
virtual bool doWork();
virtual void destroy();
SomeOtherClass* state_manager;
};
// LSC.cpp:
bool LibrarySupportClass::doInit()
{
if (!libraryInit()) return false;
// the issue is that I can't do this:
libraryCallbackA(&LibrarySupportClass::callbackA);
return true;
}
// ... and so on
The problem I've run into is that because this is a C library, I'm required to provide a C-compatible callback of the form int (*)(int, int), but the library doesn't support an extra userdata pointer for these callbacks. I would prefer doing all of these callbacks within the class because the class carries a state object.
What I ended up doing is...
static LibrarySupportClass* _inst_ptr = NULL;
static int callbackADispatch(int a, int b)
{
_inst_ptr->callbackA(a, b);
}
bool LibrarySupportClass::doInit()
{
_inst_ptr = this;
if (!libraryInit()) return false;
// the issue is that I can't do this:
libraryCallbackA(&callbackADispatch);
return true;
}
This will clearly do Bad Things(TM) if LibrarySupportClass is instantiated more than once, so I considered using the singleton design, but for this one reason, I can't justify that choice.
Is there a better way?
You can justify that choice: your justification is that the C library only supports one callback instance.
Singletons scare me: It's not clear how to correctly destroy a singleton, and inheritance just complicates matters. I'll take another look at this approach.
Here's how I'd do it.
LibrarySupportClass.h
class LibrarySupportClass : public BaseClass
{
public:
LibrarySupportClass();
~LibrarySupportClass();
static int static_callbackA(int a, int b);
int callbackA(int a, int b);
private:
//copy and assignment are rivate and not implemented
LibrarySupportClass(const LibrarySupportClass&);
LibrarySupportClass& operator=(const LibrarySupportClass&);
private:
static LibrarySupportClass* singleton_instance;
};
LibrarySupportClass.cpp
LibrarySupportClass* LibrarySupportClass::singleton_instance = 0;
int LibrarySupportClass::static_callbackA(int a, int b)
{
if (!singleton_instance)
{
WHAT? unexpected callback while no instance exists
}
else
{
return singleton_instance->callback(a, b);
}
}
LibrarySupportClass::LibrarySupportClass()
{
if (singleton_instance)
{
WHAT? unexpected creation of a second concurrent instance
throw some kind of exception here
}
singleton_instance = this;
}
LibrarySupportClass::~LibrarySupportClass()
{
singleton_instance = 0;
}
My point is that you don't need to give it the external interface of a canonical 'singleton' (which e.g. makes it difficult to destroy).
Instead, the fact that there is only one of it can be a private implementation detail, and enforced by a private implementation detail (e.g. by the throw statement in the constructor) ... assuming that the application code is already such that it will not try to create more than one instance of this class.
Having an API like this (instead of the more canonical 'singleton' API) means that you can for example create an instance of this class on the stack if you want to (provided you don't try to create more than one of it).
The external constraint of the c library dictates that when your callback is called you don't have the identification of the "owning" instance of the callback. Therefore I think that your approach is correct.
I would suggest to declare the callbackDispatch method a static member of the class, and make the class itself a singleton (there are lots of examples of how to implement a singleton). This will let you implement similar classes for other libraries.
Dani beat me to the answer, but one other idea is that you could have a messaging system where the call back function dispatch the results to all or some of the instances of your class. If there isn't a clean way to figure out which instance is supposed to get the results, then just let the ones that don't need it ignore the results.
Of course this has the problem of performance if you have a lot of instances, and you have to iterate through the entire list.
The problem the way I see it is that because your method is not static, you can very easily end up having an internal state in a function that isn't supposed to have one, which, because there's a single instance on the top of the file, can be carried over between invocations, which is a -really- bad thing (tm). At the very least, as Dani suggested above, whatever methods you're calling from inside your C callback would have to be static so that you guarantee no residual state is left from an invocation of your callback.
The above assumes you have static LibrarySupportClass* _inst_ptr declared at the very top. As an alternative, consider having a factory function which will create working copies of your LibrarySupportClass on demand from a pool. These copies can then return to the pool after you're done with them and be recycled, so that you don't go around creating an instance every time you need that functionality.
This way you can have your objects keep state during a single callback invocation, since there's going to be a clear point where your instance is released and gets a green light to be reused. You will also be in a much better position for a multi-threaded environment, in which case each thread gets its own LibrarySupportClass instance.
The problem I've run into is that because this is a C library, I'm required to provide a C-compatible callback of the form int (*)(int, int), but the library doesn't support an extra userdata pointer for these callbacks
Can you elaborate? Is choosing a callback type based on userdata a problem?
Could your callback choose an instance based on a and/or b? If so, then register your library support classes in a global/static map and then have callbackADispatch() look up the correct instance in the map.
Serializing access to the map with a mutex would be a reasonable way to make this thread-safe, but beware: if the library holds any locks when it invokes your callback, then you may have to do something more clever to avoid deadlocks, depending on your lock hierarchy.