System::String reference to C++ char* parameter - c++

Is there an direct way to manage C++/CLI Strings in a wrapper to char* parameter for native C++ method?!
example:
void Test::TestFunc(System::String ^%str)
{
// right conversion to char* and consider the reference
}
native C++ function:
void TestB::Func(char *str)
{
...
}
my tricky way:
void Test::TestFunc(System::String ^%szRecvBuffer)
{
pin_ptr<const wchar_t> szRecvBufferP = PtrToStringChars(szRecvBuffer);
// Convert to a char*
size_t origsize = wcslen(szRecvBufferP) + 1;
const size_t newsize = 100;
size_t convertedChars = 0;
char nstring[newsize];
wcstombs_s(&convertedChars, nstring, origsize, szRecvBufferP, _TRUNCATE);
strcat_s(nstring, " (char *)");
char *szRecvBufferCh = nstring;
m_object->TestCommand(szRecvBufferCh); // parameter char*
System::String ^tmp = gcnew System::String(szRecvBufferCh);
szRecvBuffer = tmp;
}
greets leon22

You're doing a lot manually that the runtime will take care of for you.
void Test::TestFunc(String^% szRecvBuffer)
{
using System::Runtime::InteropServices::Marshal;
IntPtr memHandle = Marshal::StringToHGlobalAnsi(szRecvBuffer);
try
{
char* const str = static_cast<char*>(memHandle.ToPointer());
m_object->TestCommand(str);
szRecvBuffer = gcnew String(str);
}
finally
{
Marshal::FreeHGlobal(memHandle);
}
}
If you're using VC++ 2010, you can use std::unique_ptr<> with a custom deleter to avoid using try..finally, ultimately cutting the number of lines of code in half.

If the char* is an output parameter, then in C++/CLI you must pass System::StringBuilder^

If you search for "System::String" with Google, the second link is How to convert from System::String* to Char* in Visual C++ . This is obviously a FAQ!
(There appear to be about 5 different ways depending on the specifics of the conversion required, so I won't summarise them here: go read the article.)

You can't avoid having conversions in both directions, because System::String uses wchar_t, and a Unicode->Multibyte conversion is necessary to get char from that.
But marshal_as should make the conversion much easier.

Related

String type alternative in C

I currently have a function defined in a header that looks like this
void foo::GetValue(std::string& str);
This function basically assigns a value to str. I need to come up with an alternative to str (basically, nothing that employs the standard library).
The implementation of the above function is like this in the .cpp file:
void foo::GetValue(std::string& str)
{
std::string s = bar.someMethod();
str = s;
}
I want to know what is the best/easiest option for replacing the header?
One approach I had was to replace std::string in the header file with char* so I would have this in the header:
void foo::GetValue(char* str);
And in the implementation I would have this:
void foo::GetValue(char* str)
{
std::string resp = bar.someMethod();
char* c = new char[resp.size() + 1];
std::copy(resp.begin(), resp.end(), c);
c[resp.size()] = '\0';
}
The problem with the above approach is that a lot of files are calling this function and they will need to modify their code. Also, they will need to free the above memory. Two concerns I have with this is that other callers to this function will need to do the following two things
Replace std::string being passed to the function with char*.
Free the char* when done using it.
These two items seem very costly to me to trust other callers to do.
Any suggestions on what I can do to solve this problem? Perhaps change the signature to something else? I would prefer if the caller still passes a string, however string.c_str() is a constant char pointer.
For a given C++ function like this:
std::string foo::GetValue(std::string& str)
{
return bar.someMethod(str);
}
Then your equivalent C code looks like this:
void foo_GetValue(char* str, char* res, size_t size)
{
std::string str_arg = str;
std::string result = bar.someMethod(str_arg);
strncpy(res, result.c_str(), size - 1);
res[size-1] = 0; // Ensure is NUL terminated
}
When calling from C:
void example() {
const BUFFER_LEN = 1024;
char buffer[BUFFER_LEN];
foo_GetValue("example", buffer, BUFFER_LEN);
}

Implementing a String class with implicit conversion to char* (C++)

It might not be advisable according to what I have read at a couple of places (and that's probably the reason std::string doesn't do it already), but in a controlled environment and with careful usage, I think it might be ok to write a string class which can be implicitly converted to a proper writable char buffer when needed by third party library methods (which take only char* as an argument), and still behave like a modern string having methods like Find(), Split(), SubString() etc. While I can try to implement the usual other string manipulation methods later, I first wanted to ask about the efficient and safe way to do this main task. Currently, we have to allocate a char array of roughly the maximum size of the char* output that is expected from the third party method, pass it there, then convert the return char* to a std::string to be able to use the convenient methods it allows, then again pass its (const char*) result to another method using string.c_str(). This is both lengthy and makes the code look a little messy.
Here is my very initial implementation so far:
MyString.h
#pragma once
#include<string>
using namespace std;
class MyString
{
private:
bool mBufferInitialized;
size_t mAllocSize;
string mString;
char *mBuffer;
public:
MyString(size_t size);
MyString(const char* cstr);
MyString();
~MyString();
operator char*() { return GetBuffer(); }
operator const char*() { return GetAsConstChar(); }
const char* GetAsConstChar() { InvalidateBuffer(); return mString.c_str(); }
private:
char* GetBuffer();
void InvalidateBuffer();
};
MyString.cpp
#include "MyString.h"
MyString::MyString(size_t size)
:mAllocSize(size)
,mBufferInitialized(false)
,mBuffer(nullptr)
{
mString.reserve(size);
}
MyString::MyString(const char * cstr)
:MyString()
{
mString.assign(cstr);
}
MyString::MyString()
:MyString((size_t)1024)
{
}
MyString::~MyString()
{
if (mBufferInitialized)
delete[] mBuffer;
}
char * MyString::GetBuffer()
{
if (!mBufferInitialized)
{
mBuffer = new char[mAllocSize]{ '\0' };
mBufferInitialized = true;
}
if (mString.length() > 0)
memcpy(mBuffer, mString.c_str(), mString.length());
return mBuffer;
}
void MyString::InvalidateBuffer()
{
if (mBufferInitialized && mBuffer && strlen(mBuffer) > 0)
{
mString.assign(mBuffer);
mBuffer[0] = '\0';
}
}
Sample usage (main.cpp)
#include "MyString.h"
#include <iostream>
void testSetChars(char * name)
{
if (!name)
return;
//This length is not known to us, but the maximum
//return length is known for each function.
char str[] = "random random name";
strcpy_s(name, strlen(str) + 1, str);
}
int main(int, char*)
{
MyString cs("test initializer");
cout << cs.GetAsConstChar() << '\n';
testSetChars(cs);
cout << cs.GetAsConstChar() << '\n';
getchar();
return 0;
}
Now, I plan to call the InvalidateBuffer() in almost all the methods before doing anything else. Now some of my questions are :
Is there a better way to do it in terms of memory/performance and/or safety, especially in C++ 11 (apart from the usual move constructor/assignment operators which I plan to add to it soon)?
I had initially implemented the 'buffer' using a std::vector of chars, which was easier to implement and more C++ like, but was concerned about performance. So the GetBuffer() method would just return the beginning pointer of the resized vector of . Do you think there are any major pros/cons of using a vector instead of char* here?
I plan to add wide char support to it later. Do you think a union of two structs : {char,string} and {wchar_t, wstring} would be the way to go for that purpose (it will be only one of these two at a time)?
Is it too much overkill rather than just doing the usual way of passing char array pointer, converting to a std::string and doing our work with it. The third party function calls expecting char* arguments are used heavily in the code and I plan to completely replace both char* and std::string with this new string if it works.
Thank you for your patience and help!
If I understood you correctly, you want this to work:
mystring foo;
c_function(foo);
// use the filled foo
with a c_function like ...
void c_function(char * dest) {
strcpy(dest, "FOOOOO");
}
Instead, I propose this (ideone example):
template<std::size_t max>
struct string_filler {
char data[max+1];
std::string & destination;
string_filler(std::string & d) : destination(d) {
data[0] = '\0'; // paranoia
}
~string_filler() {
destination = data;
}
operator char *() {
return data;
}
};
and using it like:
std::string foo;
c_function(string_filler<80>{foo});
This way you provide a "normal" buffer to the C function with a maximum that you specify (which you should know either way ... otherwise calling the function would be unsafe). On destruction of the temporary (which, according to the standard, must happen after that expression with the function call) the string is copied (using std::string assignment operator) into a buffer managed by the std::string.
Addressing your questions:
Do you think there are any major pros/cons of using a vector instead of char* here?
Yes: Using a vector frees your from manual memory management. This is a huge pro.
I plan to add wide char support to it later. Do you think a union of two structs : {char,string} and {wchar_t, wstring} would be the way to go for that purpose (it will be only one of these two at a time)?
A union is a bad idea. How do you know which member is currently active? You need a flag outside of the union. Do you really want every string to carry that around? Instead look what the standard library is doing: It's using templates to provide this abstraction.
Is it too much overkill [..]
Writing a string class? Yes, way too much.
What you want to do already exists. For example with this plain old C function:
/**
* Write n characters into buffer.
* n cann't be more than size
* Return number of written characters
*/
ssize_t fillString(char * buffer, ssize_t size);
Since C++11:
std::string str;
// Resize string to be sure to have memory
str.resize(80);
auto newSize = fillSrting(&str[0], str.size());
str.resize(newSize);
or without first resizing:
std::string str;
if (!str.empty()) // To avoid UB
{
auto newSize = fillSrting(&str[0], str.size());
str.resize(newSize);
}
But before C++11, std::string isn't guaranteed to be stored in a single chunk of contiguous memory. So you have to pass through a std::vector<char> before;
std::vector<char> v;
// Resize string to be sure to have memor
v.resize(80);
ssize_t newSize = fillSrting(&v[0], v.size());
std::string str(v.begin(), v.begin() + newSize);
You can use it easily with something like Daniel's proposition

const_cast with two levels pointers

I want to do this conversion using C++ format, it works on the C way. but it fails when I try on C++ format.
It works!
void req_password(const void *data, size_t datalen)
{
char *password_old = ((char **) data)[0];
char *password_new = ((char **) data)[1];
...
}
It fails
void req_password(const void *data, size_t datalen)
{
char *password_old = (const_cast<char **>(data))[0];
char *password_old = (const_cast<char **>(data))[1];
...
}
error:
error: invalid const_cast from type 'const void*' to type 'char**'
So my doubt is, how could I do this conversion using the C++ way?
PS: This code is part from a API, I can't control the the input of data.
Don't.
If you are being given immutable data, then you are being given immutable data and that is the end of it!
First, here's what I suggest for maximum safety. Coercing data into its real type is a little tricky, alas:
void req_password(const void* data, size_t datalen)
{
const char* password_old = (reinterpret_cast<const char* const*>(data)[0]);
const char* password_new = (reinterpret_cast<const char* const*>(data)[1]);
// ...
}
(I've actually added some constness in the above, as it seems to be the intent of having const void* in the first place.)
But, if you really want the strings to be mutable, then this is fine too:
void req_password(const void* data, size_t datalen)
{
char* password_old = (reinterpret_cast<char* const*>(data)[0]);
char* password_new = (reinterpret_cast<char* const*>(data)[1]);
// ...
// More obvious when you recall that `const void*` is actually `void const*`;
// So:
// void const*
// becomes:
// char* const*
}
Notice how you don't even need const_cast here, because you're not modifying the thing that data points to: you are dereferencing it and getting its pointee.
Of course, ideally, data would point to a const std::string instance.

How do i convert a QString to a char*

I have a QString that I would like to convert into a char* not a QChar* because I'll be passing it into a method that takes a char*, however I can't convert it without it getting a const char*. For example I have tried:
QString name = "name";
QByteArray byteArray = name.toUtf8();
myMailboxName = byteArray.constData();
and
QString name = "name";
QByteArray byteArray = name.toUtf8();
myMailboxName = byteArray.data();
where myMailboxName is a private char* in my class. However I get an error because it is returning a const char* and can't assign it to a char*. How can I fix this?
This is because data() returns the address of the buffer in the bytearray, you can read it, but obviously you should not write it.
You have your own buffer outside the bytearray. If you want the data, you should copy the buffer of bytearray into the myMailBoName.
use memcpy function
try this code snippet
const char *myMailboxName = name.toLatin1().data();
Use strdup. It does the allocation and the copy at the same time. Just remember to free it once you're done.
You can really use strdup (stackoverflow question about it), as Mike recommends, but also you can do that:
// copy QString to char*
QString filename = "C:\dev\file.xml";
char* cstr;
string fname = filename.toStdString();
cstr = new char [fname.size()+1];
strcpy( cstr, fname.c_str() );
Got there: stackoverflow similar question.
I use something like this wrapper:
template<typename T, typename Y>
void CharPasser(std::function<T(char *)> funcToExecute, const Y& str)
{
char* c = 0;
c = qstrdup(c, str.c_str());
funcToExecute(c);
delete[] c;
}
int SomeFunc(char* ){}
then use it like:
CharPasser<int, std::string>(SomeFunc, QString("test").tostdString())
At least this saves a bit of typing... :)
consider following exampleQString str = "BlahBlah;"try thischar* mychar = strdup(qPrintable(str));or thischar* mychr = str.toStdString().c_str();or thischar* mychar = strdup(str.ascii());Every syntax worked for me ;)

How to pass lua string(binary) to c++ using tolua++

I hava a class likeļ¼š
class SomeClass
{
void initFromBuffer(void* buffer,int length);
void initFromString(const std::string& str);
}
Using tolua++, got the binding like:
static int SomeClass_initFromBuffer00(lua_State* tolua_S)
{
SomeClass* self = (SomeClass*) tolua_tousertype(tolua_S,1,0);
void* buffer = ((void*) tolua_touserdata(tolua_S,2,0));
int length = ((int) tolua_tonumber(tolua_S,3,0));
self->initFromBuffer(buffer,length);
}
and:
static int SomeClass_initFromString00(lua_State* tolua_S)
{
SomeClass* self = (SomeClass*) tolua_tousertype(tolua_S,1,0);
const std::string str = ((const std::string) tolua_tocppstring(tolua_S,2,0));
self->initFromString(str);
tolua_pushcppstring(tolua_S,(const char*)str);
}
Now,i want to pass binary data from lua to c++,the binary has '\0' in it,so if i use initFromString to pass it, the binary data will be trimed. But if i use initFromBuffer to pass it, i got bad ptr at `void* buffer = ((void*) tolua_touserdata(tolua_S,2,0));, the pointer is null.
So, how could i pass binary string from lua to c++?
Maybe you should stop using Tolua's bad APIs and use plain Lua's actually good APIs. Both std::string and Lua strings are capable of storing embedded null characters. The only reason tolua_tocppstring causes truncation is because the function name is a lie. It doesn't convert it to a C++ string; it converts it to a C string, a const char*.
The correct answer is to use the proper API function:
std::string fromLuaStack(lua_State *lua, int stackIx)
{
size_t len;
const char *str = lua_tolstring(lua, stackIx, &len);
return std::string(str, len);
}
Similarly, you can use lua_pushlstring to push a std::string onto the stack.
It's unfortunate that Tolua doesn't have better documentation, as there may be a function to do this all directly. If there is, I couldn't find it.