How to form a Concave shape out of Convex shapes? - c++

i'm trying to get around the rule of only being able to form convex shapes in the SFML c++ library.
To do this I'm planning on testing given vertices, and if concave,
splitting the vertices into groups, testing each groups' concaveness,
and repeating until a full set of concave shapes results that look
just like the original shape when put together
What I would like to know is...
What the equation for testing a shapes concaveness is: What is it and how does it work?
How would i split up the vertices of the concave shape so in the end the shape is formed out of as few convex shapes as possible?
Whats the best practice for achieving my goal?
Thanks!

You can test for a shape being a convex hull by going round all the edges and checking the next edge is always moving in the same direction (left/right handed). This is a quick and cheap algorithm. There is an implementation of this here: en.wikipedia.org/wiki/Graham_scan
If you don't have a convex hull, perform a package wrapping algorithm to get a convex hull that encompasses all your points (again quite fast). en.wikipedia.org/wiki/Gift_wrapping_algorithm
Now, look for points that are on your shape, but aren't on the convex hull. For each run of these points, create a new shape from these points (plus the 2 either side on the convex hull).
Recursion is now your friend: do the exact same process on each of the sub-shapes you have just made.
I have used this techniques to test for a point being contained inside an arbitrary shape: i.e. the point must be inside the convex hull (easy to test), but not any of the sub-shapes, or their sub-shapes, or their sub-shapes....

The Boost Geometry library that was published yesterday, has an implementation of Convex Hull algorithm. A picture says more than a thousand words:
Although this constructs a 'new' shape that is non-concave (i.e. convex); This may or may not be precisely what you want. However, in the process the algorithm is bound to be able to classify shape a concave/convex, so you'd likely be interested in the library nonetheless.
General information on convex hull algorithm:
http://en.wikipedia.org/wiki/Convex_hull
http://en.wikipedia.org/wiki/Convex_hull_algorithms
Since Adrian Japon more or less suggested that 'hit testing' (containment test) is of a usual reason to care about convex/concave geometries, without further ado, I'll highlight the corresponding Boost Geometry algorithm for that: within.
Again, really because the picture is so pretty. Note that though the picture suggests querying for a point against a polygon, the algorithms are fully generic and can be used to test complete containment on n-dimensional polygons in another

Alright, just to mash all the info together:
To test polygon Concaveness, look at this page given by Adrian
Taylor
One way to accomplish my goal is to use Monotone Decomposition and Triangulation
You can learn about Monotone Decomposition at this lovely site: (summary of it below)
Finally, triangulate the now Monotone shapes using the information in this Powerpoint:
Push u1 and u2 on the stack.
j = 3 /* j is index of current vertex */
u = uj
Case (i): u is adjacent to v1 but not vi.
add diagonals uv2, uv3, …, uvi.
pop vi, vi-1, …, v1 from stack.
push vi, u on stack.
Case (ii): u is adjacent to vi but not v1.
while i > 1 and angle uvivi-1 < 
add diagonal uvi-1
pop vi from stack
endwhile
push u
Case (iii): u adjacent to both v1 and vi.
add diagonals uv2, uv3, …, uvi-1.
exit
j = j + 1
Go to step 3.
**Note:**
By “adjacent” we mean connected by an edge in P.
Recall that v1 is the bottom of the stack, vi is the top.
By “Push” we mean push the item(s) to the back of the list
Hope this helps someone... but I'm still looking for any better/faster solutions.

Some things to think about:
Left-handed and right-handed corners (the sign of the cross-product is an easy way to distinguish). All corners in a convex shape are the same handed-ness.
Extending an edge and adding a new vertex may give you better results than adding edges between existing vertices.

I assume you have your polygon as a list of point, a very simple way would be to go around your polygon and consider the sequence of triplet of consecutive points (A,B,C).
Then you just check that at one point det(AB,BC) changes its sign, where
det(AB,AC) = (x_a-x_b)(yc-yb) - (x_c-x_b)(y_a-y_b)

Related

I'm looking for an algorithm for finding the convex hull of a set of 3D points [duplicate]

Given a set of points S (x, y, z). How to find the convex hull of those points ?
I tried understanding the algorithm from here, but could not get much.
It says:
First project all of the points onto the xy-plane, and find an edge that is definitely on the hull by selecting the point with highest y-coordinate and then doing one iteration of gift wrapping to determine the other endpoint of the edge. This is the first part of the incomplete hull. We then build the hull iteratively. Consider this first edge; now find another point in order to form the first triangular face of the hull. We do this by picking the point such that all the other points lie to the right of this triangle, when viewed appropriately (just as in the gift-wrapping algorithm, in which we picked an edge such that all other points lay to the right of that edge). Now there are three edges in the hull; to continue, we pick one of them arbitrarily, and again scan through all the points to find another point to build a new triangle with this edge, and repeat this until there are no edges left. (When we create a new triangular face, we add two edges to the pool; however, we have to first check if they have already been added to the hull, in which case we ignore them.) There are O(n) faces, and each iteration takes O(n) time since we must scan all of the remaining points, giving O(n2).
Can anyone explain it in a more clearer way or suggest a simpler alternative approach.
Implementing the 3D convex hull is not easy, but many algorithms have been implemented, and code is widely available. At the high end of quality and time investment to use is CGAL. At the lower end on both measures is my own C code:
In between there is code all over the web, including this implementation of QuickHull.
I would suggest first try an easier approach like quick hull. (Btw, the order for gift wrapping is O(nh) not O(n2), where h is points on hull and order of quick hull is O(n log n)).
Under average circumstances quick hull works quite well, but processing usually becomes slow in cases of high symmetry or points lying on the circumference of a circle. Quick hull can be broken down to the following steps:
Find the points with minimum and maximum x coordinates, those are
bound to be part of the convex.
Use the line formed by the two points to divide the set in two
subsets of points, which will be processed recursively.
Determine the point, on one side of the line, with the maximum
distance from the line. The two points found before along with this
one form a triangle.
The points lying inside of that triangle cannot be part of the
convex hull and can therefore be ignored in the next steps.
Repeat the previous two steps on the two lines formed by the
triangle (not the initial line).
Keep on doing so on until no more points are left, the recursion has
come to an end and the points selected constitute the convex hull.
See this impementaion and explanation for 3d convex hull using quick hull algorithm.
Gift wrapping algorithm:
Jarvis's match algorithm is like wrapping a piece of string around the points. It starts by computing the leftmost point l, since we know that the left most point must be a convex hull vertex.This process will take linear time.Then the algorithm does a series of pivoting steps to find each successive convex hull vertex untill the next vertex is the original leftmost point again.
The algorithm find the successive convex hull vertex like this: the vertex immediately following a point p is the point that appears to be furthest to the right to someone standing at p and looking at the other points. In other words, if q is the vertex following p, and r is any other input point, then the triple p, q, r is in counter-clockwise order. We can find each successive vertex in linear time by performing a series of O(n) counter-clockwise tests.
Since the algorithm spends O(n) time for each convex hull vertex, the worst-case running time is O(n2). However, if the convex hull has very few vertices, Jarvis's march is extremely fast. A better way to write the running time is O(nh), where h is the number of convex hull vertices. In the worst case, h = n, and we get our old O(n2) time bound, but in the best case h = 3, and the algorithm only needs O(n) time. This is a so called output-sensitive algorithm, the smaller the output, the faster the algorithm.
The following image should give you more idea
GPL C++ code for finding 3D convex hulls is available at http://www.newtonapples.net/code/NewtonAppleWrapper_11Feb2016.tar.gz and a description of the O(n log(n)) algorithm at http://www.newtonapples.net/NewtonAppleWrapper.html
One of the simplest algorithms for convex hull computation in 3D was presented in the paper The QuickHull algorithm for Convex Hulls by Barber, etc from 1995. Unfortunately the original paper lacks any figures to simplify its understanding.
The algorithm works iteratively by storing boundary faces of some convex set with the vertices from the subset of original points. The remaining points are divided on the ones already inside the current convex set and the points outside it. And each step consists in enlarging the convex set by including one of outside points in it until no one remains.
The authors propose to start the algorithm in 3D from any tetrahedron with 4 vertices in original points. If these vertices are selected so that they are on the boundary of convex hull then it will accelerate the algorithm (they will not be removed from boundary during the following steps). Also the algorithm can start from the boundary surface containing just 2 oppositely oriented triangles with 3 vertices in original points. Such points can be selected as follows.
The first point has with the minimal (x,y,z) coordinates, if compare coordinates lexicographically.
The second point is the most distant from the first one.
The third point is the most distant from the line through the first two points.
The next figure presents initial points and the starting 2 oppositely oriented triangles:
The remaining points are subdivided in two sets:
Black points - above the plane containing the triangles - are associated with the triangle having normal oriented upward.
Red points - below the plane containing the triangles - are associated with the triangle having normal oriented downward.
On the following steps, the algorithm always associates each point currently outside the convex set with one of the boundary triangles that is "visible" from the point (point is within positive half-space of that triangle). More precisely each outside point is associated with the triangle, for which the distance between the point and the plane containing the triangle is the largest.
On each step of algorithm the furthest outside point is selected, then all faces of the current convex set visible from it are identified, these faces are removed from the convex set and replaced with the triangles having one vertex in furthest point and two other points on the horizon ridge (boundary of removed visible faces).
On the next figure the furthest point is pointed by green arrow and three visible triangles are highlighted in red:
Visible triangles deleted, back faces and inside points can be seen in the hole, horizon ridge is shown with red color:
5 new triangles (joining at the added point) patch the hole in the surface:
The points previously associated with the removed triangles are either become inner for the updated convex set or redistributed among new triangles.
The last figure also presents the final result of convex hull computation without any remaining outside points. (The figures were prepared in MeshInspector application, having this algorithm implemented.)

Fit rectangle around points

I'm trying to fit a rectangle around a set of 8 2D-Points, while trying to minimize the covered area.
Example:
The rectangle may be scaled and rotated. However it needs to stay a rectangle.
My first approach was to brute force each possible rotation, fit the rectangle as close as possible, and calculate the covered area. The best fit would be then the rotation with the lowest area.
However this does not really sound like the best solution.
Is there any better way for doing this?
I don't know what you mean by "try every possible rotation", as there are infinitely many of them, but this basic idea actually yields a very efficient solution:
The first step is to compute the convex hull. How much this actually saves depends on the distribution of your data, but for points picked uniformly from a unit disk, the number of points on the hull is expected to be O(n^1/3). There are a number of ways to do that:
If the points are already sorted by one of their coordinates, the Graham scan algorithm does that in O(n). For every point in the given order, connect it to the previous two in the hull and then remove every concave point (the only candidate are those neighboring the new point) on the new hull.
If the points are not sorted, the gift-wrapping algorithm is a simple algorithm that runs at O(n*h). For each point on the hull starting from the leftmost point of the input, check every point to see if it's the next point on the hull. h is the number of points on the hull.
Chen's algorithm promises O(n log h) performance, but I haven't quite explored how it works.
another simle idea would be to sort the points by their azimuth and then remove the concave ones. However, this only seems like O(n+sort) at first, but I'm afraid it actually isn't.
At this point, checking every angle collected thus far should suffice (as conjenctured by both me and Oliver Charlesworth, and for which Evgeny Kluev offered a gist of a proof). Finally, let me refer to the relevant reference in Lior Kogan's answer.
For each direction, the bounding box is defined by the same four (not necessarily distinct) points for every angle in that interval. For the candidate directions, you will have at least one arbitrary choice to make. Finding these points might seem like an O(h^2) task until you realise that the extremes for the axis-aligned bounding box are the same extremes that you start the merge from, and that consecutive intervals have their extreme points either identical or consecutive. Let us call the extreme points A,B,C,D in the clockwise order, and let the corresponding lines delimiting the bounding box be a,b,c,d.
So, let's do the math. The bounding box area is given by |a,c| * |b,d|. But |a,c| is just the vector (AC) projected onto the rectangle's direction. Let u be a vector parallel to a and c and let v be the perpendicular vector. Let them vary smoothly across the range. In the vector parlance, the area becomes ((AC).v) / |v| * ((BD).u) / |u| = {((AC).v) ((BD).u)} / {|u| |v|}. Let us also choose that u = (1,y). Then v = (y, -1). If u is vertical, this poses a slight problem involving limits and infinities, so let's just choose u to be horizontal in that case instead. For numerical stability, let's just rotate 90° every u that is outside (1,-1)..(1,1). Translating the area to the cartesian form, if desired, is left as an exercise for the reader.
It has been shown that the minimum area rectangle of a set of points is collinear with one of the edges of the collection's convex hull polygon ["Determining the Minimum-Area Encasing Rectangle for an Arbitrary Closed Curve" [Freeman, Shapira 1975]
An O(nlogn) solution for this problem was published in "On the computation of minimum encasing rectangles and set diameters" [Allison, Noga, 1981]
A simple and elegant O(n) solution was published in "A Linear time algorithm for the minimum area rectangle enclosing a convex polygon" [Arnon, Gieselmann 1983] when the input is the convex hull (The complexity of constructing a convex hull is equal to the complexity of sorting the input points). The solution is based on the Rotating calipers method described in Shamos, 1978. An online demonstration is available here.
They first thing that came to mind when I saw this problem was to use principal component analysis. I conjecture that the smallest rectangle is the one that satisfies two conditions: that the edges are parallel with the principal axes and that at least four points lie on the edges (bounded points). There should be an extension to n dimensions.

How to distinguish between an inbound and an outbound edge of a polygon?

The basics of Weiler-Atherton Polygon Clipping algorithm are:
Start from the first edge which is going inside the clipping area.
When an edge of a candidate/subject polygon enters the clipping area, save the intersection point.
When an edge of a candidate/subject polygon exits the clipping area, save the intersection point and follow the clipping polygon.
How to distinguish between an inbound and an outbound edge of a polygon?
It seems like finding inbound edges invole another huge algorithm and thereby affects the efficiency of the algorithm.
Another question is, how can I find the first inbound intersection?
This answer seems to be shedding some light on the problem. But, sadly it doesn't work.
For example, if I reverse the direction of vectors, the angle is not negated.
https://www.wolframalpha.com/input/?i=angle+between+vector+%7B0%2C180%7D+%7B180%2C0%7D
https://www.wolframalpha.com/input/?i=angle+between+vector+%7B0%2C180%7D+%7B-180%2C0%7D
First, a reminder that the Weiler–Atherton algorithm uses polygons defined by vertices in a specific order, clockwise. In short, you test for edges going in or out by traversing the polygon clockwise. The first edge going in (and therefore the first inbound intersection) is simply the first edge you traverse which started outside the clipping area (see below).
Also, the algorithm is typically run in two phases. First find all intersections, these are added to a list of vertices for your polygons, inserted at the correct position. During this phase you would typically mark whether each vertex is within the other polygon. For the second phase, traverse the vertices to determine clipping polygons.
Lets try some examples. Take a triangle defined by vertices A,B,C, and a rectangle w,x,y,z. The triangle will be the clipping area, rectangle is the subject.
The list of points we have generated for the subject is therefore w,x,R,Q,y,z. The triangle list is now A,B,Q,C,R.
Starting at w, R is the first intersection, it is inbound because the previous point (x) is outside. The traversal of the area will be R,Q,C, and back to R(done).
The intersections are unlabeled here, but they will still be R and Q. The list of points we have generated for the subject is therefore w,x,R,y,Q,z. The triangle list is now A,B,C,Q,R.
The clipping traversal is R,y,Q, and R(done)
Let P and Q be two polygons. One can pick any vertex v of P in order to determine the position of v with respect to Q (i.e inside or outside it) via the ray casting algorithm (or any other algorithm that suits all the requirements of the problem).
You only need to determine the position of one such vertex v of P with respect to Q in this manner because the position of the other vertices of P can be inferred by iterating over the ordered set of vertices and intersection points of P.
Lets say v is outside Q. Then, by iterating over the ordered set of vertices and intersection points of P, the first intersection point one finds is laying on an entering edge. If v is inside Q, the first intersection point one finds is laying on an exiting edge. Keep in mind that one edge can be both entering and exiting, depending on the number of intersection points laying on it.
The idea behind the ray casting algorithm is simple, but one should pick vertex v of P if |V(P)|>=|V(Q)| and v of Q otherwise (in order to lower the impact the ray casting algorithm has on the overall performance, though not significantly).
You do not necessarily need to start at the first inbound intersection, this is fine when you are looking at the polygons drawn on a piece of paper and can drop your pen wherever you want, but as you noted would require more effort to find when coding it.
You just need to make sure you get all the intersections calculated for your two polygons first walking around the source polygons line segments checking for intersections with the clipping polygons line segments. At this point it does not matter whether it is inside or outside.
Once you have all the intersections and your two polygons points in order (I think I had two lists that could link to each other), walk around your source polygon point by point. If your first source polygon point is inside the clip polygon that is the first point of your solution polygon, if not the first point of your solution polygon is the first intersection with the clip polygon.
Once you have your first solution point each point from there is the next solution point. As you hit intersections you switch to the other polygon and carry on until you return back to your first solution point.
It has been a while since I have coded this, but if I remember correctly points that can catch you out are when polygons are entirely inside each other (in which case the contained one is your solution) and make sure you are prepared for more than one solution polygon if you have some odd polygon shapes.

Algorithms for Collision Detection between Arbitrarily sized Convex Polygons

I am working on an asteroids clone. Everything is 2D, and written in C++.
For the asteroids, I am generating random N-sided polygons. I have guaranteed that they are Convex. I then rotate them, give them a rotspeed, and have them fly through space. It all works, and is very pretty.
For collision, I'm using an Algorithm I thought of myself. This is probably a bad idea, and if push comes to shove, I'll probably scrap the whole thing and find a tutorial on the internet.
I've written and implemented everything, and the collision detection works alright.... most of the time. It will randomly fail when there's obviously a collision on screen, and sometimes indicate collision when nothing is touching. Either I have flubbed my implementation somewhere, or my algorithm is horrible. Due to the size/scope of my implementation (over several source files) I didn't want to bother you with that, and just wanted someone to check that my algorithm is, in fact, sound. At that point I can go on a big bug hunt.
Algorithm:
For each Asteroid, I have a function that outputs where each vertex should be when drawing the asteroid. For each pair of adjacent Vertices, I generate the Formula for the line that they sit on, y=mx+b format. I then start with one of my ships vertices, testing that point to see whether it is inside the asteroid. I start by plugging in the X coordinate of the point, and comparing the output to the Actual Y value. This tells me if the point is above or below the line. I then do the same with the Center of the Asteroid, to determine which half of the line is considered "Inside" the asteroid. I then repeat for each pair of Vertices. IF I ever find a line for which my point is not on the same side as the center of the asteroid, I know there is no collision, and exit detection for that point. Since there are 3 points on my ship, I then have to test for the next point. If all 3 points exit early, then There are no collisions for any of the points on the ship, and we're done. If any point is bound on all sides by the lines made up by the asteroid, then it is inside the asteroid, and the collision flag is set.
The two Issues I've discovered with this algorithm is that:
it doesn't work on concave polygons, and
It has problems with an Edge case where the Slope is Undefined.
I have made sure all polygons are Convex, and have written code to handle the Undefined Slope issue (doubles SHOULD return NAN if we divide by 0, so it's pretty easy to test for that).
So, should this work?
The standard solution to this problem is using the separating axis theorem (SAT). Given two convex polygons, A and B, the algorithm basically goes like this:
for each normal N of the edges of A and B
intervalA = [min, max] of projecting A on N
intervalB = [min, max] of projecting B on N
if intervalA doesn't overlap intervalB
return did not collide
return collided
I did something similar to compute polygon intersections, namely finding if a vertex sits within a given polygon.
Your algorithm is sound, and indeed does not work for concave polys. The line representation you chose is also problematic at slopes approaching infinity. I chose to use a couple of vectors for mine, one for the line direction, and one for a reference point on the line. From these, I can easily derive a parameterized equation of the line, and use that in various ways to find intersections with other shapes.
P = S + t * D
Any point P of the line can be caracterized by its coordinate t on the the line, given the above relation, where S is the reference point, and D the direction vector.
This representation lets you easily define which parts of the plane is the positive and the negative one (ie. above and below the line), thanks to the direction orientation. Now, any region of the plane can be defined as an intersection of several lines' negative or positive subplanes. So your "point within polygon" algorithm could be slightly changed to use that representation, with the added constraint of all the direction pointing clockwise, and testing for the point being in the negative subplane of all the lines (so you don't need the centre of the polygon anymore).
The formula to compute the side of a point wrt a line I used is the following:
(xs - xp) * yd - (ys - yp) * xd
The slope issue appears here when point P is close to S.
That representation can be computed using the edge vertices, but in order to have correct subplanes, you must keep your vertices in your polygon in condecutive orders.
For concave polygons, the problem is a bit more complicated: briefly, you have to test that the point is between two consecutive convex edges. This can be achieved by checking the coordinate of the point on the edge when projected on it, and ensuring it stands between 0 and length(edge) (assuming that the direction is normalized). Note that it boils down to check if the point belongs to a triangle within the polygon.

How to form Concave shapes from convex pieces Confusion

Hey so i was told in a previous answer that to make concave shapes out of multiple convex ones i do the following:
If you don't have a convex hull, perform a package wrapping algorithm
to get a convex border that encompasses all your points (again quite
fast). en.wikipedia.org/wiki/Gift_wrapping_algorithm
Choose a point that is on the boarder as a starter point for the algorithm.
Now, itterate through the following points that are on your shape,
but aren't on the convex border.
When one is found, create a new shape with the vertices from
the starter point to the found non-border point.
Finally set the starter point to be the the found off-border point
Recursion is now your friend: do the exact same process on each new
sub-shape you make.
I'm confused on one thing though. What do you do when two vertices in a row are off-border? After reaching the first one you connect the starter point to it, but then you immediatly run into another off-border point after you start itterating again, leaving you with only 2 vertices to work with: the starter point and new off-border point. What am i missing?
To illustrate my problem, here's a shape pertaining to this issue: It would be great if someone could draw all over it and walk through the steps of the algorithm using this. And using point 1 as the starting point.
Thanks!
Assuming you really want to take a convex polygon (as you've illustrated) and decompose it into convex parts without introducing new vertices, the usual approach is called "ear clipping" and is described in this Wikipedia article, Polygon triangulation. In this approach the convex pieces are triangles, which are necessarily convex.
This problem has been discussed in connection with the CGAL computational geometry software here in Stackoverflow, C++ 2D tessellation library.