I have win 32 C++ application . I have to load 330,000 objects into memory . If I use sequential approach it takes around 16 min . In the threading approach I divide the 330,000 objects equally among 10 containers . I create 10 threads and I assign each thread one container of size 33000 objects to load them in memory . This approach took around 9 min .
INcreasing the number of threads did not help .....
Will I get any further improvement if I use ThreadPool ?
As always without specifics, it depends.
Are you loading objects from disk or creating them in memory? If you're loading them from disk then it's probably IO bound so increasing the number of threads probably won't help very much.
In the comment you mentioned you are loading from a database. I presume when you use threads you are making N queries simultaneously? Might be worth investigating the database console to understand how its coping with many concurrent queries.
On the other hand, if the objects are created as the result of some CPU bound process (e.g. calculating pi) then chances are increasing the number of threads grater than the number of CPU's probably won't increase performance (and as ronag points out in the comments will probably hurt performance due to the increased context switching).
Are there dependencies between the objects? That would again affect how things go.
You'd typically use a thread pool if you have a collection of independent tasks that you want to run with a configurable way of running them. It sounds like using a thread pool would be a good way to run lots of benchmarks with various thread settings. You could also make the number of threads configurable which would help when running on different architectures/systems.
IME, and yours, a few threads will speed up this kind of task. I'm guessing that the overall throughput is improved because of better use of the 'intelligent' disk cacheing available on modern controllers - the disk/controller spends less time idle because there are always threads wanting to read something. The diminishing returns sets in, however, after only a few threads are loaded in and you are disk-bound. In a slightly similar app, I found that any more than 6 threads provided no additional advantage & just used up more memory.
I can't see how pooling, or otherwise, of these threads would make any difference to performance - it's just a big job that has to be done :(
Tell your customers that they have to install an SSD
Rgds,
Martin
Related
I have added multithreading to a raytracer I am writing, and while it does run much faster now, when it's running, my computer is almost unusably slow. Obviously I want to use all my PC's compute power, but I don't want it to prevent any other application from getting access to the CPUs.
I thought about having the threads sleep, but unless they all sleep at the same time, then the other threads would just eat up the extra time. Also, I don't necessarily want to give up a certain percentage of available compute power if I'm not going to use it.
Also, (This is not my official question) I've noticed that for some reason the first thread launched does more work than the second, and the second more than the third, and so on until like the last 5 threads (out of 32) won't actually get a crack at any work, despite the fact that there's plenty to go a around (there's at least 0.5M work items for them to chew through). If someone would like to venture a guess in the comments, it would be appreciated.
If you use the standard threads, you could try to use thread::hardware_concurrency to find out an estimate of the maximul number of threads that are really supported by hardware, in order not to overload your cpu.
If it returns 0 the information is not available. In other cases you could limit yourself to this number or a little bit below (thinking that other processes might use these as well).
If limiting the number of threads does not improve responsiveness, you can also consider calling from time to time this_thread::yield() to give opportunity to reschedule threads. But depending on the kind of job and synchronisation you use, this second alternative might decrease performance.
As requested, my comment as an answer:
It sounds like you've oversubscribed your poor CPU. Try reducing the number of threads?
If there's significantly more threads than hardware cores, a lot of time is going to be wasted switching between threads, scheduling them in the OS, and in contention over shared variables. It would also cause the general slowdown of the other running programs, because they have to contend with the high number of threads from your program (which by default all have the same priority as the other programs' threads in the eyes of the OS scheduler).
I have a question whch related to parallel programming. If I have a program that acts on each and every elemnt of an array why might it not be advantagous to use all the available processors?
I was thinking maybe because of the significant overhead of setting up and managing multiple threads or if the array size didnt warrant a concurrent solution. Can anyone think of anything else?
Some processors may already be busy doing important things, or you may want to leave spare capacity just in case they need to respond quickly to new workloads. For example, in a desktop system with 8 processors, you may want to leave 1 free to keep the UI responsive, while you fork out 7 "batch-processing" threads on the others. In a non-UI system, you may still want to keep one or more cores listening to OS interrupts or doing network IO.
A particularly frustrating example would be starting a parallel computation on all your cores, finding that you should have tweaked a parameter before launching it, and not being able to interrupt the computation because there is no spare computing power left to allow the UI to respond to your 'cancel' button.
I would have made that array a static variable and according to its size, I would have divided the task and assigned multiple treads to carry the work for each set of elements in the array.
For example, If I have 100 elements in the array. I would have divided it and made sets of 10.
and with 10 different threads I would have carried out my work.
Correct me if I am not getting you.
EDITED:-
The OS already does precisely that for you. It doesn't guarantee that each thread will stay on the same core forever (and in nearly all cases, there's no need for that either), but it does try to keep as many cores busy as possible. Which means giving all available threads their own core as much as possible.
Note:- Direct correlation between program threads and OS threads is not guaranteed, at least according to this for .net : http://msdn.microsoft.com/en-us/library/74169f59.aspx
Hope this make some sense.
I have a C++ program running on Linux in which a new thread is created to do some computationally expensive work independent of the main thread (The computational work completes by writing the results to files, which end up being very large). However, I'm getting relatively poor performance.
If I implement the program straightforward (without introducing other threads), it completes the task in roughly 2 hours. With the multi-threaded program it takes around 12 hours to do the same task (this was tested with only one thread spawned).
I've tried a couple of things, including pthread_setaffinity_np to set the thread to a single CPU (out of the 24 available on the server I'm using), as well as pthread_setschedparam to set the scheduling policy (I've only tried SCHED_BATCH). But the effects of these have so far been negligible.
Are there any general causes for this kind of problem?
EDIT: I've added some example code that I'm using, which is hopefully the most relevant parts. The function process_job() is what actually does the computational work, but it would be too much to include here. Basically, it reads in two files of data, and uses these to perform queries on an in-memory graph database, in which the results are written to two large files over a period of hours.
EDIT part 2: Just to clarify, the problem is not that I want to use threads to increase the performance of an algorithm I have. But rather, I want to run many instances of my algorithm simultaneously. Therefore, I expect the algorithm would run at a similar speed when put in a thread as it would if I didn't use multi-threads at all.
EDIT part 3: Thanks for the suggestions all. I'm currently doing some unit tests (seeing which parts are slowing down) as some have suggested. As the program takes a while to load and execute, it is taking time to see any results from the tests and therefore I apologize for late responses. I think the main point I wanted to clarify is possible reasons why threading could cause a program to run slowly. From what I gather from the comments, it simply shouldn't be. I'll post when I can find a reasonable resolution, thanks again.
(FINAL) EDIT part 4: It turns out that the problem was not related to threading after all. Describing it would be too cumbersome at this point (including the use of compiler optimization levels), but the ideas posted here were very useful and appreciated.
struct sched_param sched_param = {
sched_get_priority_min(SCHED_BATCH)
};
int set_thread_to_core(const long tid, const int &core_id) {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(core_id, &mask);
return pthread_setaffinity_np(tid, sizeof(mask), &mask);
}
void *worker_thread(void *arg) {
job_data *temp = (job_data *)arg; // get the information for the task passed in
...
long tid = pthread_self();
int set_thread = set_thread_to_core(tid, slot_id); // assume slot_id is 1 (it is in the test case I run)
sched_get_priority_min(SCHED_BATCH);
pthread_setschedparam(tid, SCHED_BATCH, &sched_param);
int success = process_job(...); // this is where all the work actually happens
pthread_exit(NULL);
}
int main(int argc, char* argv[]) {
...
pthread_t temp;
pthread_create(&temp, NULL, worker_thread, (void *) &jobs[i]); // jobs is a vector of a class type containing information for the task
...
return 0;
}
If you have plenty of CPU cores, and have plenty of work to do, it should not take longer to run in multithreaded than single threaded mode - the actual CPU time may be a fraction longer, but the "wall-clock time" should be shorter. I'm pretty sure that your code has some sort of bottleneck where one thread is blocking the other.
This is because of one or more of these things - I'll list them first, then go into detail below:
Some lock in a thread is blocking the second thread from running.
Sharing of data between threads (either true or "false" sharing)
Cache thrashing.
Competition for some external resource causing thrashing and/or blocking.
Badly designed code in general...
Some lock in a thread is blocking the second thread from running.
If there is a thread that takes a lock, and another thread wants to use the resource that is locked by this thread, it will have to wait. This obviously means the thread isn't doing anything useful. Locks should be kept to a minimum by only taking the lock for a short period. Using some code to identify if locks are holding your code, such as:
while (!tryLock(some_some_lock))
{
tried_locking_failed[lock_id][thread_id]++;
}
total_locks[some_lock]++;
Printing some stats of the locks would help to identify where the locking is contentious - or you can try the old trick of "Press break in the debugger and see where you are" - if a thread is constantly waiting for some lock, then that's what's preventing progress...
Sharing of data between threads (either true or "false" sharing)
If two threads use [and update the value of it frequently] the same variable, then the two threads will have to swap "I've updated this" messages, and the CPU's have to fetch the data from the other CPU before it can continue with it's use of the variable. Since "data" is shared on a "per cache-line" level, and a cache-line is typically 32-bytes, something like:
int var[NUM_THREADS];
...
var[thread_id]++;
would classify as something called "false sharing" - the ACTUAL data updated is unique per CPU, but since the data is within the same 32-byte region, the cores will still have updated the same are of memory.
Cache thrashing.
If two threads do a lot of memory reading and writing, the cache of the CPU may be constantly throwing away good data to fill it with data for the other thread. There are some techniques available to ensure that two threads don't run in "lockstep" on which part of cache the CPU uses. If the data is 2^n (power of two) and fairly large (a multiple of the cache-size), it's a good idea to "add an offset" for each thread - for example 1KB or 2KB. That way, when the second thread reads the same distance into the data region, it will not overwrite exactly the same area of cache that the first thread is currently using.
Competition for some external resource causing thrashing and/or blocking.
If two threads are reading or writing from/to the hard-disk, network card, or some other shared resource, this can lead to one thread blocking another thread, which in turn means lower performance. It is also possible that the code detects different threads and does some extra flushing to ensure that data is written in the correct order or similar, before starting work with the other thread.
It is also possible that there are locks internally in the code that deals with the resource (user-mode library or kernel mode drivers) that block when more than one thread is using the same resource.
Generally bad design
This is a "catchall" for "lots of other things that can be wrong". If the result from one calculation in one thread is needed to progress the other, obviously, not a lot of work can be done in that thread.
Too small a work-unit, so all the time is spent starting and stopping the thread, and not enough work is being done. Say for example that you dole out small numbers to be "calculate if this is a prime" to each thread, one number at a time, it will probably take a lot longer to give the number to the thread than the calculation of "is this actually a prime-number" - the solution is to give a set of numbers (perhaps 10, 20, 32, 64 or such) to each thread, and then report back the result for the whole lot in one go.
There are plenty of other "bad design". Without understanding your code it's quite hard to say for sure.
It is entirely possible that your problem is none of the ones I've mentioned here, but most likely it is one of these. Hopefully this asnwer is helpful to identify the cause.
Read CPU Caches and Why You Care to understand why a naive port of an algorithm from one thread to multiple threads will more often than not result in greatly reduced performance and negative scalability. Algorithms that are specififcally designed for parallelism take care of overactive interlocked operations, false sharing and other causes of cache pollution.
Here are a few things you might wanna look into.
1°) Do you enter any critical section (locks, semaphores, etc.) between your worker thread and your main thread? (this should be the case if your queries modify the graph). If so, that could be one of the sources of the multithreading overhead : threads competing for a lock usually degrades performances.
2°) You're using a 24 cores machines, which I assume would be NUMA (Non-Uniform Memory Access). Since you set the threads affinities during your tests, you should pay close attention to the memory topology of your hardware. Looking at the files in /sys/devices/system/cpu/cpuX/ can help you with that (beware that cpu0 and cpu1 aren't necessarily close together, and thus does not necessarily share memory). Threads heavily using memory should use local memory (allocated in the same NUMA node as the core they're executing on).
3°) You are heavily using disk I/O. Which kind of I/O is that? if every thread perform every time some synchronous I/O, you might wanna consider asynchronous system calls, so that the OS stays in charge of scheduling those requests to the disk.
4°) Some caches issues have already been mentionned in other answers. From experience, false sharing can hurt performances as much as you're observing. My last recommendation (which should have been my first) is to use a profiler tool, such as Linux Perf, or OProfile. With such performance degradation you're experiencing, the cause will certainly appear quite clearly.
The other answers have all addressed the general guidelines that can cause your symptoms. I will give my own, hopefully not excessively redundant version. Then I will talk a bit about how you can get to the bottom of the problem with everything discussed in mind.
In general, there's a few reasons you'd expect multiple threads to perform better:
A piece of work is dependent on some resources (disk, memory, cache, etc.) while other pieces can proceed independently of these resources or said workload.
You have multiple CPU cores that can process your workload in parallel.
The main reasons, enumerated above, you'd expect multiple threads to perform less well are all based on resource contention:
Disk contention: already explained in detail and can be a possible issue, especially if you are writing small buffers at a time instead of batching
CPU time contention if the threads are scheduled onto the same core: probably not your issue if you're setting affinity. However, you should still double check
Cache thrashing: similarly probably not your problem if you have affinity, though this can be very expensive if it is your problem.
Shared memory: again talked about in detail and doesn't seem to be your issue, but it wouldn't hurt to audit the code to check it out.
NUMA: again talked about. If your worker thread is pinned to a different core, you will want to check whether the work it needs to access is local to the main core.
Ok so far not much new. It can be any or none of the above. The question is, for your case, how can you detect where the extra time is coming from. There's a few strategies:
Audit the code and look for obvious areas. Don't spend too much time doing this as it's generally unfruitful if you wrote the program to begin with.
Refactor the single threaded code and the multi-threaded code to isolate one process() function, then profile at key checkpoints to try to account for the difference. Then narrow it down.
Refactor the resource access into batches, then profile each batch on both the control and the experiment to account for the difference. Not only will this tell you which areas (disk access vs memory access vs spending time in some tight loop) you need to focus your efforts on, doing this refactor might even improve your running time overall. Example:
First copy the graph structure to thread-local memory (perform a straight-up copy in the single-threaded case)
Then perform the query
Then setup an asynchronous write to disk
Try to find a minimally reproducible workload with the same symptoms. This means changing your algorithm to do a subset of what it already does.
Make sure there's no other noise in the system that could've caused the difference (if some other user is running a similar system on the work core).
My own intuition for your case:
Your graph structure is not NUMA friendly for your worker core.
The kernel can actually scheduled your worker thread off the affinity core. This can happen if you don't have isolcpu on for the core you're pinning to.
I can't tell you what's wrong with your program because you haven't shared enough of it to do a detailed analysis.
What I can tell you is if this was my problem the first thing I would try is to run two profiler sessions on my application, one on the single threaded version and another on the dual thread configuration. The profiler report should give you a pretty good idea of where the extra time is going. Note that you may not need to profile the entire application run, depending on the problem the time difference may become obvious after you profile for a few seconds or minutes.
As far as profiler choices for Linux you may want to consider oprofile or as a second choice gprof.
If you find you need help interpreting the profiler output feel free to add that to your question.
It can be a right pain in the rear to track down why threads aren't working as planned. One can do so analytically, or one can use tool to show what's going on. I've had very good mileage out of ftrace, Linux's clone of Solaris's dtrace (which in turn is based on what VxWorks, Greenhill's Integrity OS and Mercury Computer Systems Inc have been doing for a looong time.)
In particular I found this page very useful: http://www.omappedia.com/wiki/Installing_and_Using_Ftrace, particularly this and this section. Don't worry about it being an OMAP orientated website; I've used it on X86 Linuxes just fine (though you may have to build a kernel to include it). Also remember that the GTKWave viewer is primarily intended for looking at log traces from VHDL developments, which is why it looks 'odd'. It's just that someone realised that it would be a usable viewer for sched_switch data too, and that saved them writing one.
Using the sched_switch tracer you can see when (but not necessarily why) your threads are running, and that might be enough to give you a clue. The 'why' can be revealed by careful examination of some of the other tracers.
If you are getting slowdown from using 1 thread, it is likely due to overhead from using thread safe library functions, or from thread setup. Creating a thread for each job will cause significant overhead, but probably not as much as you refer to.
In other words, it is probably some overhead from some thread safe library function.
The best thing to do, is to profile your code to find out where time is spent. If it is in a library call, try to find a replacement library or implement it yourself. If the bottleneck is thread creation/destruction try reusing threads, for instance using OpenMP tasks or std::async in C++11.
Some libraries are really nasty wrt thread safe overhead. For instance, many rand() implementations use a global lock, rather than using thread local prgn's. Such locking overhead is much larger than generating a number, and is hard to track without a profiler.
The slowdown could also stem from small changes you have made, for instance declaring variables volatile, which generally should not be necessary.
I suspect you're running on a machine with one single-core processor. This problem is not parallelizable on that kind of system. Your code is constantly using the processor, which has a fixed number of cycles to offer to it. It actually runs more slowly because the additional thread adds expensive context switching to the problem.
The only kinds of problems that parallelize well on a single-processor machine are those that allow one path of execution to run while another is blocked waiting for I/O, and situations (such as keeping a responsive GUI) where allowing one thread to get some processor time is more important than executing your code as quickly as possible.
If you only want to run many independent instances of your algorithm can you just submit multiple jobs (with different parameters, can be handled by a single script) to your cluster? That would eliminate the need to profile and debug your multithreaded program. I don't have much experience with multithreaded programming but if you use MPI or OpenMP then you'd have to write less code for the book keeping too. For example, if some common initialization routine is needed and the processes can run independently thereafter you can just do that by initializing in one thread and doing a broadcast. No need for maintaining locks and such.
I want to use multi-threads to accelerate my program, but not sure which way is optimal.
Say we have 10000 small tasks, it takes maybe only 0.1s to finish one of them. Now I have a CPU with 12 cores and I want to use 12 threads to make it faster.
So far as I know, there are two ways:
1.Tasks Pool
There are always 12 threads running, each of them get one new task from the tasks pool after it finished its current work.
2.Separate Tasks
By separating the 10000 tasks into 12 parts and each thread works on one part.
The problem is, if I use tasks pool it is a waste of time for lock/unlock when multiple threads try to access the tasks pool. But the 2nd way is not ideal because some of the threads finish early, the total time depends on the slowest thread.
I am wondering how you deal with this kind of work and any other best way to do it? Thank you.
EDIT: Please note that the number 10000 is just for example, in practice, it may be 1e8 or more tasks and 0.1 per task is also an average time.
EDIT2: Thanks for all your answers :] It is good to know kinds of options.
So one midway between the two approaches is to break into say 100 batches of 100 tasks each and let the a core pick a batch of 100 tasks at a time from the task pool.
Perhaps if you model the randomness in execution time in a single core for a single task, and get an estimate of mutex locking time, you might be able to find an optimal batch size.
But without too much work we at least have the following lemma :
The slowest thread can only take at max 100*.1 = 10s more than others.
Task pool is always the best solution here. It's not just optimum time, it's also comprehensibility of code. You should never force your tasks to conform to the completely unrelated criteria of having the same number of subtasks as cores - your tasks have nothing to do with that (in general), and such a separation doesn't scale when you change machines, etc. It requires overhead to collaborate on combining results in subtasks for the final task, and just generally makes an easy task hard.
But you should not be worrying about the use of locks for taskpools. There are lockfree queues available if you ever determined them necessary. But determine that first. If time is your concern, use the appropriate methods of speeding up your task, and put your effort where you will get the most benefit. Profile your code. Why do your tasks take 0.1 s? Do they use an inefficient algorithm? Can loop unrolling help? If you find the hotspots in your code through profiling, you may find that locks are the least of your worries. And if you find everything is running as fast as possible, and you want that extra second from removing locks, search the internet with your favorite search engine for "lockfree queue" and "waitfree queue". Compare and swap makes atomic lists easy.
Both ways suggested in the question will perform well and similarly to each another (in simple cases with predictable and relatively long duration of the tasks). If the target system type is known and available (and if performance is really a top concern), the approach should be chosen based on prototyping and measurements.
Do not necessarily prejudice yourself as to the optimal number of threads matching the number of the cores. If this is a regular server or desktop system, there will be various system processes kicking in here and then and you may see your 12 threads variously floating between processors which hurts memory caching.
There are also crucial non-measurement factors you should check: do those small tasks require any resources to execute? Do these resources impose additional potential delays (blocking) or competition? Are there additional apps competing for the CPU power? Will the application need to be grow to accommodate different execution environments, task types, or user interaction models?
If the answer to all is negative, here are some additional approaches that you can measure and consider.
Use only 10 or 11 threads. You will observe a small slowdown, or even
a small speedup (the additional core will serve OS processes, so that
thread affinity of the rest will become more stable compared to 12
threads). Any concurrent interactive activity on the system will see
a big boost in responsiveness.
Create exactly 12 threads but explicitly set a different processor
affinity mask to each, to impose a 1-1 mapping between threads and processors.
This is good in the simplest near-academical case
where there are no resources other than CPU and shared memory
involved; you will see no chronic migration of threads across
processes. The drawback is an
algorithm closely coupled to a particular machine; on another machine
it could behave so poorly as to finish never at all (because of an
unrelated real time task that
blocks one of your threads forever).
Create 12 threads and split the tasks evenly. Have each thread
downgrade its own priority once it is past 40% and again once it is
past 80% of its load. This will improve load balancing inside your
process, but it will behave poorly if your application is competing
with other CPU-bound processes.
100ms/task - pile 'em on as they are - pool overhead will be insignificant.
OTOH..
1E8 tasks # 0.1s/task = 10,000,000 seconds
= 2777.7r hours
= 115.7 days
That's much more than the interval between patch Tuesday reboots.
Even if you run this on Linux, you should batch up the output and flush it to disk in such a manner that the job is restartable.
Is there a database involved? If so, you should have told us!
Each working thread may have its own small task queue with the capacity of no more than one or two memory pages. When the queue size becomes low (a half of capacity) it should send a signal to some manager thread to populate it with more tasks. If queue is organized in batches then working threads do not need to enter critical sections as long as current batch is not empty. Avoiding critical sections will give you extra cycles for actual job. Two batches per queue are enough, and in this case one batch can take one memory page, and so queue takes two.
The point of memory pages is that thread does not have to jump all over the memory to fetch data. If all data are in one place (one memory page) you avoid cache misses.
A few years ago, in the Windows environment, I did some testing, by letting multiple instances of CPU computation intensive + memory access intensive + I/O access intensive application run. I developed 2 versions: One is running under multi-processing, another is running under multi-threading.
I found that the performance is much better for multi-processing. I read somewhere else (but I can't remember the site).
Which states that the reason is that under multi-threading, they are "fighting" for a single memory pipeline and I/O pipeline, which makes the performance worse compared to multi-processing
However, I can't find that article anymore. I was wondering, till today, whether the below still hold true?
In Windows, having the algorithm
code run under multi-processing, there is a high
chance that the performance will be
better than multi-threading.
It depends on how much the various threads or processes (I'll be using the collective term "tasks" for both of them) need to communicate, especially by sharing memory: that's easy, cheap and fast for threads, but not at all for processes, so, if a lot of it is going on, I bet processes' performance is not going to beat threads'.
Also, processes (esp. on Windows) are "heavier" to get started, so if a lot of "task starts" occur, again threads can easily beat processes in terms of performance.
Next, you can have CPUs with "hyperthreading", which can run (at least) two threads on a core very rapidly -- but, not processes (since the "hyperthreaded" threads cannot be using distinct address spaces) -- yet another case in which threads can win performance-wise.
If none of these considerations apply, then the race should be no better than a tie, anyway.
I'm not sure what the quote even means. It's very close to nonsense.
The primary thing that in-proc threads share is virtual memory address space.
I found this is true as well. but I think it has something to do with the scheduling. because if you run it long enough, the multi-processes is just as fast as multi-threads. that number is about 10 seconds. if the algorithm needs to be run for 10 seconds. the multi-processes is as fast as multi-thread. but if it only needs to be run for less than 1 second. multi-processes is much,much faster than multi-thread.