I have a C++\MFC application written in Visual Studio 2003 SP1 links to an external static library "SomeExtStaticLib.lib". I also include the header files provided with "SomeExtStaticLib.lib" to create the objects in my application.
SomeExtStaticLib.lib is a static library built with VC6.
Now, I am migrating my application to Visual Studio 2008.
I have very basic question.
Should I also migrate the "SomeExtStaticLib.lib" to VS2008 compiled one?
When I tried to use this VC6 compiled "SomeExtStaticLib.lib" in my VC9 compiled application it did not give any linker errors. I was expecting at least some name mangling issues.
Are static libraries eliminating the name mangling issues?
The issue isn't one of static vs. dynamic linking, nor really of name
mangling. The issue is one of binary compatibility for everything used
in the interface. Thus, for example, unless I'm badly mistaken, the
definition of std::string changed between VC6 and VC9, with a
different layout. So if any of the code uses std::string, you'll have
to recompile, or get strange and unexplicable errors at runtime.
In general, it's best to assume no binary compatibility as soon as
different versions of the compiler, or even different compilation
options are involved, unless the vendor guarantees otherwise. (Although
some common sense is in order: you can freely mix options which only
control warnings, for example. But beware of /Ds which cause added
debugging code to be generated or not.)
If the application is unchanged it needs the same set of symbols from the library. And hence perhaps you can link to the library compiled with VC6.0. Name mangling is not the concern at all unless both the application and library are the same as the compatible(working) ones in VC6.0.
Should I also migrate the SomeExtStaticLib.lib to VS2008 compiled one?
There are compatibility problems between VC6.0 and visual 2008. So YES you should rebuild yor library with Visual 2008.
Just because you can link to the library as is doesn't mean it will work correctly.
Are static libraries eliminating the name mangling issues?
Not really. They are not doing anything special at all.
Static libraries have nothing to do with or without name mangling.... if your code is C++ there is mangling, and if its C (or extern "C" in C++) then there is no mangling. As long as the library and the code that link it agree, there's no problem to link in the library.
Related
I made static library in visual studio called MyString. (TEST PURPOSE)
And trying to linking using cmake tool and set the compiler mingw64.
But it seems not working It`s showing me some error called
'skipping incompatible when searching for library'
Is that impossible to linking library that made by another compiler?
There are many challenges mixing different compilers, like:
Name mangling (the way symbols are exported), especially when using C++
Different compilers use different standard libraries, which may cause serious problems. Imagine for example memory allocated with GCC/MinGW malloc() being released with MSVC free(), which will not work.
With static libraries it is especially hard (e.g. malloc() can be linked to the wrong standard library).
With shared libraries there may be possibilities to solve these issues and get it to work, at least when sticking to C. For C++ it may be a lot more challenging.
I'm trying to link to the OpenAL soft library as compiled with the Media Autobuild Suite, and I'm getting the following error from Visual Studio:
libopenal.a(source.cpp.o) : fatal error LNK1143: invalid or corrupt file: no symbol for COMDAT section 0xA
My application is in C++ and compiled directly in Visual Studio 2019 (however, with the VS2017 toolset). OpenAL soft is written in C++ but exposes a C interface, and the MAB Suite compiles using MinGW/gcc and generates a libopenal.a static library file.
I've read from multiple other questions such as From MinGW static library (.a) to Visual Studio static library (.lib) and How to use libraries compiled with MingW in MSVC? that object files compiled with different compilers are generally not compatible for C++ due to name mangling, but often are compatible with C linkage. Because C does not use name mangling, and because the ABI is (usually) OS-dependent, libraries with a C interface compiled on the same platform are generally compatible.
Nevertheless, I've been running into linker errors, namely the LNK1143 above. I've confirmed that the included headers use extern "C" { to hint C linkage and that the target platform (x64) is the same for both builds. I also linked to libgcc.a as this answer recommends, and did not get any linker errors for it.
Does this mean the claim that C interfaces are generally compatible across compilers is not true? Or is this a special case in which it's not working? If the latter, what could be causing the linking to fail? Would I have better luck if I recompiled as shared libraries (dlls) instead of static libraries (even if I still use MinGW's .a files instead of .lib)?
I cannot change compilers from MSVC for my main app. I intend to use more libraries from the MAB Suite in the future, so I'd prefer to stay with MinGW for those dependencies if possible because I don't want to recompile all 70+ by hand.
Any help is appreciated. Thanks in advance.
Mixing compilers is tricky and prone to issues.
In some very simple cases it may work, but there are definitely a number of cases where you will run in to issues, for example:
if the different components use different runtime libraries
if memory management is being mixed (e.g. forget about freeing memory allocated with malloc() in MSVC using free() in MinGW)
when using exception handling in C++
My advice to do it all with the same compiler (and even the same version of this compiler).
Specifically in your case OpenAL can be built with MinGW-w64. So maybe you should look into that instead of downloading some prebuilt version from the web.
Or - somewhat easier - use MSYS2 and use its pacman package manager to get its own MinGW-w64 build of OpenAL.
I figured out what works for me, so I'll share.
I was not able to link a static library between compilers as I originally attempted. My understanding is that the extra info kept in the lib to allow link-time code generation is compiler-specific. Brecht Sanders's answer outlines a few possible reasons why the code wouldn't be compatible.
I was, however, able to link to a shared library, with a few extra steps.
Using the same suite (see the question), I compiled as shared and got libopenal.dll, libopenal.dll.a, and libopenal.def. In my case, the .def file was generated by the suite. Accoding to this answer, you can generate a .def file with gcc using:
gcc -shared -o your_dll.dll your_dll_src.c -Wl,--output-def,your_dll.def
Trying to link to libopenal.dll.a still gave me errors (I don't know exactly why, and I already discarded the logs.) What I did instead was generate a .lib file from the .def file. In Visual Studio's built-in terminal:
lib /machine:x64 /def:libopenal.def
This generated a libopenal.lib file in the working directory. Linking to this file worked perfectly, and I was able to successfully load the dll at runtime.
I've tested this same method with many other MinGW-compiled libraries from the suite, including libavformat, libavcodec, libavutil, libavdevice, swresample, and swscale, and thus far all of them have worked.
Kind of convoluted, but it seems to work well for me, so I hope this helps anyone else with the same problem.
I have an old library (in C++) that I'm only able to build on MinGW+MSYS32 on Windows. From that I can produce a .a static library file generated from GNU libtool. My primary development is done in Visual Studio 2008. If I try to take the MinGW produced library and link it in Visual Studio, it complains about missing externals. This is most likely due to the C++ symbol mangling that is done, and that it doesn't match whats in the .a file. Is there any know way to convert a static .a file to VC++ library format?
If symbols are mangled differently, the compilers are using a different ABI and you won't be able to "convert" or whatever the compiled libraries: the reason names are mangled in different ways is intentional to avoid users from ever succeeding with building an executable from object files using different ABIs. The ABI defines how arguments are passed, how virtual function tables are represented, how exceptions are thrown, the size of basic data types, and quite a number of other things. The name mangling is also part of this and carefully chosen to be efficient and different from other ABIs on the same platform. The easiest way to see if the name mangling is indeed different is to compiler a file with a couple of functions using only basic types with both compilers and have a look at the symbols (on UNIX I would use nm for this; I'm not a Windows programmer and thus I don't know what tool to use there).
Based on Wikipedia it seems that MinGW also uses a different run-time library: the layout and the implementation of the standard C++ library used by MinGW (libstdc++) and Visual Studio (Dinkumware) is not compatible. Even if the ABI between the two compilers is the same, the standard C++ library used isn't. If the ABI is the same you would need to replace set things up so that one compiler uses the standard library of the respective other compiler. There is no way to do this with the already compiled library. I don't know if this is doable.
Personally I wouldn't bother with trying to link things between these two different compiler because it is bound not to work at all. Instead, you'd need to port the implementation to a common compiler and go from there.
Search for the def file and run the command e.g. lib /machine:i386 /def:test.def it will generate
an import lib file.
Some projects provide a single set of "Windows" binaries for C (and possible C++ - not sure) libraries. For example, see the links on the right side of this libxml-related page.
I'm pretty sure there's no way to convert between VC++ .lib files and MinGW GCC .a files, so calling them "Windows" rather than "Microsoft" binaries seems a tad misleading. But I'm also surprised that there's no apparent need for different binaries for different VC++ versions.
I seem to remember, many years ago, having problems writing plugins for tracker-style music program (Jeskola Buzz) because that program was using VC++6, and I had upgraded to VC++7. I don't remember the exact issue - it may have been partly DLL related, but I know those don't need to care about VC++ version. I think the issue related to the .lib files provided and maybe also to the runtime libraries that they linked to. It was a long while ago, though, so it's all a bit vague.
Anyway, can libraries compiled by one version of MS VC++ be linked into projects built with another version? What limitations apply, if any?
I'm interested in both C and C++ libraries, which will be called from C++ projects (I rarely use C, except for C libraries called from C++).
The MS COFF format (.lib, .obj, etc) is the same for all VC++ versions and even for other languages.
The problem is that .obj files depend on other .obj (.lib) files.
For C++ code, there is a happy chance that code won't compile with new version of VC++ standard library implementation. For example, an old version of CRT used extern "C++" void internal_foo(int), and newer CRT uses extern "C++" void internal_foo(int, int), so linker will fail with "unresolved external symbol" error.
For C code, there is a chance that code will compile, because for extern "C", symbol names doesn't encode whole signature. But at runtime application will crash after this function will be called.
The same thing can happen if layout of some data structure will change, linker will not detect it.
Thinking of using MinGW as an alternative to VC++ on Windows, but am worried about compatibility issues. I am thinking in terms of behaviour, performance on Windows (any chance a MinGW compiled EXE might act up). Also, in terms of calling the Windows API, third-party DLLs, generatic and using compatible static libraries, and other issues encountered with mixing parts of the same application with the two compilers.
First, MinGW is not a compiler, but an environment, it is bundled with gcc.
If you think of using gcc to compile code and have it call the Windows API, it's okay as it's C; but for C++ DLLs generated by MSVC, you might have a harsh wake-up call.
The main issue is that in C++, each compiler has its own name mangling (or more generally ABI) and its own Standard library. You cannot mix two different ABI or two different Standard Libraries. End of the story.
Clang has a specific MSVC compatibility mode, allowing it to accept code that MSVC accepts and to emit code that is binary compatible with code compiled with MSVC. Indeed, it is even officially supported in Visual Studio.
Obviously, you could also simply do the cross-DLL communication in C to circumvent most issues.
EDIT: Kerrek's clarification.
It is possible to compile a large amount of C++ code developed for VC++ with the MinGW toolchain; however, the ease with which you complete this task depends significantly on how C++-standards-compliant the code is.
If the C++ code utilizes VC++ extensions, such as __uuidof, then you will need to rewrite these portions.
You won't be able to compile ATL & MFC code with MinGW because the ATL & MFC headers utilize a number of VC++ extensions and depend on VC++-specific behaviors:
try-except Statements
__uuidof
throw(...)
Calling a function without forward-declaring it.
__declspec(nothrow)
...
You won't be able to use VC++-generated LIB files, so you can't use MinGW's linker, ld, to link static libraries without recompiling the library code as a MinGW A archive.
You can link with closed-source DLLs; however, you will need to export the symbols of the DLL as a DEF file and use dlltool to make the corresponding A archive (similar to the VC++ LIB file for each DLL).
MinGW's inclusion of the w32api project basically means that code using the Windows C API will compile just fine, although some of the newer functions may not be immediately available. For example, a few months ago I was having trouble compiling code that used some of the "secure" functions (the ones with the _s suffix), but I got around this problem by exporting the symbols of the DLL as a DEF, preparing an up-to-date A archive, and writing forward declarations.
In some cases, you will need to adjust the arguments to the MinGW preprocessor, cpp, to make sure that all header files are properly included and that certain macros are predefined correctly.
What I recommend is just trying it. You will definitely encounter problems, but you can usually find a solution to each by searching on the Internet or asking someone. If for no other reason, you should try it to learn more about C++, differences between compilers, and what standards-compliant code is.