I am trying to mimic a finally like effect. So i thought i should run a quick dirty test.
The idea was to use Most Important const to stop destruction and to put the finally block in a lambda. However apparently i did something wrong and its being called at the end of MyFinally(). How do i solve this problem?
#include <cassert>
template<typename T>
class D{
T fn;
public:
D(T v):fn(v){}
~D(){fn();}
};
template<typename T>
const D<T>& MyFinally(T t) { return D<T>(t); }
int d;
class A{
int a;
public:
void start(){
int a=1;
auto v = MyFinally([&]{a=2;});
try{
assert(a==1);
//do stuff
}
catch(int){
//do stuff
}
}
};
int main() {
A a;
a.start();
}
My Solution code (Note: You can not have two finally in the same block. as expect. But still kind of dirty)
#include <cassert>
template<typename T>
class D{
T fn; bool exec;
public:
D(T v):fn(v),exec(true){}
//D(D const&)=delete //VS doesnt support this yet and i didnt feel like writing virtual=0
D(D &&d):fn(move(d.fn)), exec(d.exec) {
d.exec = false;
}
~D(){if(exec) fn();}
};
template<typename T>
D<T> MyFinally(T t) { return D<T>(t); }
#define FINALLY(v) auto OnlyOneFinallyPlz = MyFinally(v)
int d;
class A{
public:
int a;
void start(){
a=1;
//auto v = MyFinally([&]{a=2;});
FINALLY([&]{a=2;});
try{
assert(a==1);
//do stuff
}
catch(int){
FINALLY([&]{a=3;}); //ok, inside another scope
try{
assert(a==1);
//do other stuff
}
catch(int){
//do other stuff
}
}
}
};
void main() {
A a;
a.start();
assert(a.a==2);
}
Funny enough, if you remove the & in MyFinally in the original code it works -_-.
// WRONG! returning a reference to a temporary that will be
// destroyed at the end of the function!
template<typename T>
const D<T>& MyFinally(T t) { return D<T>(t); }
You can fix it my introducing a move constructor
template<typename T>
class D{
T fn;
bool exec;
public:
D(T v):fn(move(v)),exec(true){}
D(D &&d):fn(move(d.fn)), exec(d.exec) {
d.exec = false;
}
~D(){if(exec) fn();}
};
And then you can rewrite your toy
template<typename T>
D<T> MyFinally(T t) { return D<T>(move(t)); }
Hope it helps. No "const reference" trick is needed when you work with auto. See here for how to do it in C++03 with const references.
Your code and Sutter's are not equivalent. His function returns a value, yours returns a reference to an object that will be destroyed when the function exits. The const reference in the calling code does not maintain the lifetime of that object.
The problem stems from the use of a function maker, as demonstrated by Johannes.
I would argue that you could avoid the issue by using another C++0x facility, namely std::function.
class Defer
{
public:
typedef std::function<void()> Executor;
Defer(): _executor(DoNothing) {}
Defer(Executor e): _executor(e) {}
~Defer() { _executor(); }
Defer(Defer&& rhs): _executor(rhs._executor) {
rhs._executor = DoNothing;
}
Defer& operator=(Defer rhs) {
std::swap(_executor, rhs._executor);
return *this;
}
Defer(Defer const&) = delete;
private:
static void DoNothing() {}
Executor _executor;
};
Then, you can use it as simply:
void A::start() {
a = 1;
Defer const defer([&]() { a = 2; });
try { assert(a == 1); /**/ } catch(...) { /**/ }
}
Well the problem is explained by others, so I will suggest a fix, exactly in the same way Herb Sutter has written his code (your code is not same as his, by the way):
First, don't return by const reference:
template<typename T>
D<T> MyFinally(T t)
{
D<T> local(t); //create a local variable
return local;
}
Then write this at call site:
const auto & v = MyFinally([&]{a=2;}); //store by const reference
This became exactly like Herb Sutter's code.
Demo : http://www.ideone.com/uSkhP
Now the destructor is called just before exiting the start() function.
A different implementation which doesn't use auto keyword anymore:
struct base { virtual ~base(){} };
template<typename TLambda>
struct exec : base
{
TLambda lambda;
exec(TLambda l) : lambda(l){}
~exec() { lambda(); }
};
class lambda{
base *pbase;
public:
template<typename TLambda>
lambda(TLambda l): pbase(new exec<TLambda>(l)){}
~lambda() { delete pbase; }
};
And use it as:
lambda finally = [&]{a=2; std::cout << "finally executed" << std::endl; };
Looks interesting?
Complete demo : http://www.ideone.com/DYqrh
You could return a shared_ptr:
template<typename T>
std::shared_ptr<D<T>> MyFinally(T t) {
return std::shared_ptr<D<T>>(new D<T>(t));
}
Related
Suppose I have a class in C++11 like this:
class Something
{
...
private:
class1* a;
class2* b;
class3* c;
public:
class1* reada() { return a; }
class2* readb() { return b; }
class3* readc() { return c; }
void customFunctionForclass1();
void customFunctionForclass2();
void customFunctionForclass3();
}
}
I'd like to make the read functions templated so that if another programmer adds another member class, the corresponding read function will be template-magic created.
Something like this maybe?
class Something
{
...
private:
templateContainer = {class1*,class2*,class3*}
template<thing in templateContainer>
thing variableOfTypeThing;
public:
template<thing in templateContainer>
<thing> read() {return variableOfTypeThing<thing>;}
void customFunctionForclass1();
void customFunctionForclass2();
void customFunctionForclass3();
}
As you can tell from the example, I'm confused.
Basically, I have a class which acts as a container for guaranteed unique class variables (no class1 A; class1 B)
Some function groups for the class are almost identical some function groups are highly varied. It would be great for future people to only have to modify the different parts of the class and get the rest from the templates.
I thought maybe there would be a way by splitting this class up into lots of classes and stuffing them into an array of void pointers, but that seems unwise.
Suggestions?
I'd like to make the read functions templated so that if another programmer adds another member class, the corresponding read function will be template-magic created.
You could encapsulate the user defined classes in a thin wrapper class with a read() function that returns the contained instance. Adding a user defined class to Something would then be done by inheriting wrapper<user_defined_class>.
Basically, I have a class which acts as a container for guaranteed unique class variables
Inheriting this wrapper prevents you from including the same class twice so it could possibly be a way forward:
#include <iostream>
// the "thing" wrapper
template<typename T>
struct thing {
// forward construction arguments to the contained variable
template<class... Args>
thing(Args&&... args) : variable(std::forward<Args>(args)...) {}
// basic interface, const and non-const. I called it get() instead of read()
T const& get() const { return variable; }
T& get() { return variable; }
private:
T variable;
};
// a troublesome user defined class that is not default constructibe :-(
struct user_defined {
user_defined() = delete; // silly example really, but it's just to demonstrate
user_defined(const std::string& v) : str(v) {}
user_defined& operator=(const std::string& v) {
str = v;
return *this;
}
std::string const& say() const { return str; }
private:
std::string str;
};
std::ostream& operator<<(std::ostream& os, const user_defined& ud) {
return os << ud.say();
}
// ... and the "Something" class that inherits the wrapped types.
class Something : thing<int>,
thing<double>,
thing<user_defined>
{
public:
// add initial values for types that are not default constructible
Something(const std::string& val) : thing<user_defined>(val) {}
Something() : Something("") {} // default ctor
// access via derived class, const and non-const
template<typename T>
T const& get() const {
return thing<T>::get(); // get() from the correct base
}
template<typename T>
T& get() {
return thing<T>::get(); // get() from the correct base
}
};
void print(const Something& s) {
// using the const interface
std::cout << s.get<int>() << "\n";
std::cout << s.get<double>() << "\n";
std::cout << s.get<user_defined>() << "\n";
}
int main() {
Something foo;
// using the non-const interface to set
foo.get<int>() = 10;
foo.get<double>() = 3.14159;
foo.get<user_defined>() = "Hello world";
print(foo);
}
Edit: It doesn't fulfill the index part of your question though. You access it using the type you'd like to get() as a tag. You basically build a very rudimentary tuple I guess.
Code based on #Ted Lyngmo's answer:
#include <iostream>
#include <string>
template<typename T>
struct thing {
// forward construction arguments to the contained variable
template<class... Args>
thing(Args&&... args) : variable(std::forward<Args>(args)...) {}
// basic interface, const and non-const. I called it get() instead of read()
T const& get() const { return variable; }
T& get() { return variable; }
protected:
T variable;
};
template<typename ...Ts>
struct things : thing<Ts>... {
template<class... SubTs>
things(thing<SubTs>&&... ts) : thing<SubTs>(std::move(ts))... {}
// access via derived class, const and non-const
template<typename T>
T const& get() const {
return thing<T>::get(); // get() from the correct base
}
template<typename T>
T& get() {
return thing<T>::get(); // get() from the correct base
}
};
// a troublesome user defined class that is not default constructibe :-(
struct user_defined {
user_defined() = delete; // silly example really, but it's just to demonstrate
user_defined(const std::string& v) : str(v) {}
user_defined& operator=(const std::string& v) {
str = v;
return *this;
}
std::string const& say() const { return str; }
private:
std::string str;
};
struct non_default {
non_default() = delete;
non_default(int) {}
};
std::ostream& operator<<(std::ostream& os, const user_defined& ud) {
return os << ud.say();
}
// ... and the "Something" class that inherits the wrapped types.
class Something : public things<int, double, user_defined, non_default>
{
public:
// add initial values for types that are not default constructible
Something(const std::string& val) : things(thing<user_defined>(val), thing<non_default>(0)) {}
Something() : Something("") {} // default ctor
};
void print(const Something& s) {
// using the const interface
std::cout << s.get<int>() << "\n";
std::cout << s.get<double>() << "\n";
std::cout << s.get<user_defined>() << "\n";
}
int main() {
Something foo;
// using the non-const interface to set
foo.get<int>() = 10;
foo.get<double>() = 3.14159;
foo.get<user_defined>() = "Hello world";
print(foo);
}
I have a class Task:
template <typename T>
class Task {
Task(const std::function<T()>& func)
: m_func(func)
{
// some stuff here
}
std::shared_ptr<T> getValue() {
return m_value;
}
void execute() {
m_value = std::make_shared<T>(m_func());
}
std::shared_ptr<T> m_value;
std::function<T()> m_func;
}
Now, I want to alias this Task class to a shared_ptr so I do the following...
template <typename T> using TaskPtr = std::shared_ptr<Task<T> >;
I have another class that will store a container of of TaskPtr, I would like for the consumer of the api to specify T when calling addTask as follows.
Class X {
// some boiler plate code
template <typename T>
addTask(TaskPtr<T> task) {
m_queue.push(task);
}
void loop() {
// do some stuff
auto item = m_queue.front();
item->execute();
m_queue.pop();
// continue looping
}
std::queue<TaskPtr<T> > m_queue;
}
I was wondering what the best way to do this would be. This code gives me the error that T is undefined. Duh! I need to add template <tyepname T> above my m_queue definition, that makes sense. When I do that, I get that I am putting the keyword typedef in an incorrect location. When I remove the template declaration and the T to just have std::queue<Taskptr> m_queue;, it tells me I am missing a template argument. Which makes sense, except I don't understand where it should go.
I have searched for an answer and couldn't find anything. What is the correct syntactical implementation for what I am trying do?
The error is at:
class X {
....
std::queue<TaskPtr<T> > m_queue; // <--- T is unknown
};
At that point, the compiler wants to know what is the type of the task, but you want simply to store all tasks regardless to their type. To figure out how to make this work, look at the uses of T and see how to get rid of it.
template <typename T>
class Task {
std::shared_ptr<T> getValue() {
return m_value;
}
void execute() {
m_value = std::make_shared<T>(m_func());
}
....
};
Had it been only execute then life would have been simple, sine the caller of execute() does not care what T is, only that the operation is executed. If it were only that, then the solution would have been trivial:
class TaskBase
{
public:
virtual ~TaskBase() = default;
TaskBase(const TaskBase &) = default; // and so on....
virtual void execute() = 0;
};
template <typename T>
class Task : public TaskBase {
....
};
Then, simply store a pointer to TaskBase instead of to Task<T>.
Solving the getValue() is slightly more involved. You need to use dynamic cast from TaskBase to the actual Task from getValue<T>():
template <typename T>
std::shared_ptr<T> Task<T>::getValue() {
return m_value;
}
template<typename T>
std::shared_ptr<T> TaskBase::getValue()
{
auto childThis = dynamic_cast<Task<T>*>(this);
if (childThis == nullptr) {
// or maybe throw an exception
return nullptr;
}
return childThis->getValue();
}
The use is more tricky, since the user has to know what type is stored in the task:
void foo(std::shared_ptr<TaskBase> ptr)
{
auto ifInt = ptr->getValue<int>();
auto ifDouble = ptr->getValue<double>();
... more code ..
}
In this case Task<int> would be detected by ifInt, but with Task<unsigned> this would fail since ifInt==nullptr.
Apparently the above explanation is not clear enough, so here is the complete source that compiles and works:
#include <memory>
#include <functional>
#include <queue>
#include <iostream>
class TaskBase
{
public:
virtual ~TaskBase() = default;
TaskBase() = default;
TaskBase(const TaskBase &) = default; // and so on....
virtual void execute() = 0;
template <typename T>
std::shared_ptr<T> getValue();
};
template <typename T>
class Task : public TaskBase {
public:
Task(const std::function<T()>& func)
: m_func(func)
{
// some stuff here
}
void execute() override {
m_value = std::make_shared<T>(m_func());
}
std::shared_ptr<T> getValue() {
return m_value;
}
private:
std::shared_ptr<T> m_value;
std::function<T()> m_func;
};
template <typename T>
std::shared_ptr<T> TaskBase::getValue()
{
auto downCast = dynamic_cast<Task<T>*>(this);
if (downCast)
return downCast->getValue();
else
return nullptr;
}
using TaskPtr = std::shared_ptr<TaskBase>;
class X {
// some boiler plate code
public:
void addTask(TaskPtr task) {
m_queue.push(task);
}
void loop() {
// do some stuff
auto item = m_queue.front();
item->execute();
m_queue.pop();
// continue looping
}
std::queue<TaskPtr> m_queue;
};
int main()
{
X x;
TaskPtr task = std::make_shared<Task<int>>(
[] { std::cout << "int task execution\n"; return 5;});
x.addTask(task);
x.loop();
std::cout << "getValue<int> --> ";
auto valPtr = task->getValue<int>();
if (valPtr)
std::cout << *valPtr << '\n';
else
std::cout << "nullptr\n";
std::cout << "getValue<float> --> ";
auto valPtr2 = task->getValue<float>();
if (valPtr2)
std::cout << *valPtr2 << '\n';
else
std::cout << "nullptr\n";
}
I realize that I'll most likely get a lot of "you shouldn't do that because..." answers and they are most welcome and I'll probably totally agree with your reasoning, but I'm curious as to whether this is possible (as I envision it).
Is it possible to define a type of dynamic/generic object in C++ where I can dynamically create properties that are stored and retrieved in a key/value type of system? Example:
MyType myObject;
std::string myStr("string1");
myObject.somethingIJustMadeUp = myStr;
Note that obviously, somethingIJustMadeUp is not actually a defined member of MyType but it would be defined dynamically. Then later I could do something like:
if(myObject.somethingIJustMadeUp != NULL);
or
if(myObject["somethingIJustMadeUp"]);
Believe me, I realize just how terrible this is, but I'm still curious as to whether it's possible and if it can be done in a way that minimizes it's terrible-ness.
C++Script is what you want!
Example:
#include <cppscript>
var script_main(var args)
{
var x = object();
x["abc"] = 10;
writeln(x["abc"]);
return 0;
}
and it's a valid C++.
You can do something very similar with std::map:
std::map<std::string, std::string> myObject;
myObject["somethingIJustMadeUp"] = myStr;
Now if you want generic value types, then you can use boost::any as:
std::map<std::string, boost::any> myObject;
myObject["somethingIJustMadeUp"] = myStr;
And you can also check if a value exists or not:
if(myObject.find ("somethingIJustMadeUp") != myObject.end())
std::cout << "Exists" << std::endl;
If you use boost::any, then you can know the actual type of value it holds, by calling .type() as:
if (myObject.find("Xyz") != myObject.end())
{
if(myObject["Xyz"].type() == typeid(std::string))
{
std::string value = boost::any_cast<std::string>(myObject["Xyz"]);
std::cout <<"Stored value is string = " << value << std::endl;
}
}
This also shows how you can use boost::any_cast to get the value stored in object of boost::any type.
This can be a solution, using RTTI polymorphism
#include <map>
#include <memory>
#include <iostream>
#include <stdexcept>
namespace dynamic
{
template<class T, class E>
T& enforce(T& z, const E& e)
{ if(!z) throw e; return z; }
template<class T, class E>
const T& enforce(const T& z, const E& e)
{ if(!z) throw e; return z; }
template<class Derived>
class interface;
class aggregate;
//polymorphic uncopyable unmovable
class property
{
public:
property() :pagg() {}
property(const property&) =delete;
property& operator=(const property&) =delete;
virtual ~property() {} //just make it polymorphic
template<class Interface>
operator Interface*() const
{
if(!pagg) return 0;
return *pagg; //let the aggregate do the magic!
}
aggregate* get_aggregate() const { return pagg; }
private:
template<class Derived>
friend class interface;
friend class aggregate;
static unsigned gen_id()
{
static unsigned x=0;
return enforce(++x,std::overflow_error("too many ids"));
}
template<class T>
static unsigned id_of()
{ static unsigned z = gen_id(); return z; }
aggregate* pagg;
};
template<class Derived>
class interface: public property
{
public:
interface() {}
virtual ~interface() {}
unsigned id() const { return property::id_of<Derived>(); }
};
//sealed movable
class aggregate
{
public:
aggregate() {}
aggregate(const aggregate&) = delete;
aggregate& operator=(const aggregate&) = delete;
aggregate(aggregate&& s) :m(std::move(s.m)) {}
aggregate& operator=(aggregate&& s)
{ if(this!=&s) { m.clear(); std::swap(m, s.m); } return *this; }
template<class Interface>
aggregate& add_interface(interface<Interface>* pi)
{
m[pi->id()] = std::unique_ptr<property>(pi);
static_cast<property*>(pi)->pagg = this;
return *this;
}
template<class Inteface>
aggregate& remove_interface()
{ m.erase[property::id_of<Inteface>()]; return *this; }
void clear() { m.clear(); }
bool empty() const { return m.empty(); }
explicit operator bool() const { return empty(); }
template<class Interface>
operator Interface*() const
{
auto i = m.find(property::id_of<Interface>());
if(i==m.end()) return nullptr;
return dynamic_cast<Interface*>(i->second.get());
}
template<class Interface>
friend aggregate& operator<<(aggregate& s, interface<Interface>* pi)
{ return s.add_interface(pi); }
private:
typedef std::map<unsigned, std::unique_ptr<property> > map_t;
map_t m;
};
}
/// this is a sample on how it can workout
class interface_A: public dynamic::interface<interface_A>
{
public:
virtual void methodA1() =0;
virtual void methodA2() =0;
};
class impl_A1: public interface_A
{
public:
impl_A1() { std::cout<<"creating impl_A1["<<this<<"]"<<std::endl; }
virtual ~impl_A1() { std::cout<<"deleting impl_A1["<<this<<"]"<<std::endl; }
virtual void methodA1() { std::cout<<"interface_A["<<this<<"]::methodA1 on impl_A1 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodA2() { std::cout<<"interface_A["<<this<<"]::methodA2 on impl_A1 in aggregate "<<get_aggregate()<<std::endl; }
};
class impl_A2: public interface_A
{
public:
impl_A2() { std::cout<<"creating impl_A2["<<this<<"]"<<std::endl; }
virtual ~impl_A2() { std::cout<<"deleting impl_A2["<<this<<"]"<<std::endl; }
virtual void methodA1() { std::cout<<"interface_A["<<this<<"]::methodA1 on impl_A2 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodA2() { std::cout<<"interface_A["<<this<<"]::methodA2 on impl_A2 in aggregate "<<get_aggregate()<<std::endl; }
};
class interface_B: public dynamic::interface<interface_B>
{
public:
virtual void methodB1() =0;
virtual void methodB2() =0;
};
class impl_B1: public interface_B
{
public:
impl_B1() { std::cout<<"creating impl_B1["<<this<<"]"<<std::endl; }
virtual ~impl_B1() { std::cout<<"deleting impl_B1["<<this<<"]"<<std::endl; }
virtual void methodB1() { std::cout<<"interface_B["<<this<<"]::methodB1 on impl_B1 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodB2() { std::cout<<"interface_B["<<this<<"]::methodB2 on impl_B1 in aggregate "<<get_aggregate()<<std::endl; }
};
class impl_B2: public interface_B
{
public:
impl_B2() { std::cout<<"creating impl_B2["<<this<<"]"<<std::endl; }
virtual ~impl_B2() { std::cout<<"deleting impl_B2["<<this<<"]"<<std::endl; }
virtual void methodB1() { std::cout<<"interface_B["<<this<<"]::methodB1 on impl_B2 in aggregate "<<get_aggregate()<<std::endl; }
virtual void methodB2() { std::cout<<"interface_B["<<this<<"]::methodB2 on impl_B2 in aggregate "<<get_aggregate()<<std::endl; }
};
int main()
{
dynamic::aggregate agg1;
agg1 << new impl_A1 << new impl_B1;
dynamic::aggregate agg2;
agg2 << new impl_A2 << new impl_B2;
interface_A* pa = 0;
interface_B* pb = 0;
pa = agg1; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
pa = agg2; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
agg2 = std::move(agg1);
pa = agg2; if(pa) { pa->methodA1(); pa->methodA2(); }
pb = *pa; if(pb) { pb->methodB1(); pb->methodB2(); }
return 0;
}
tested with MINGW4.6 on WinXPsp3
Yes it is terrible. :D
It had been done numerous times to different extents and success levels.
QT has Qobject from which everything related to them decends.
MFC has CObject from which eveything decends as does C++.net
I don't know if there is a way to make it less bad, I guess if you avoid multiple inheritance like the plague (which is otherwise a useful language feature) and reimplement the stdlib it would be better. But really if that is what you are after you are probably using the wrong language for the task.
Java and C# are much better suited to this style of programming.
#note if I have read your question wrong just delete this answer.
Check out Dynamic C++
I have two methods f(vector<int>& x, ....) and g(DBConn& x, ....)
where the (....) parameters are all identical.
The code inside the two methods are completely identical except for one statement
where we do different actions based on the type of x:
in f(): we do x.push_back(i)
in g(): we do x.DeleteRow(i)
What is the simplest way to extract the common code into one method and yet
have the two different statements?
I am thinking of having a templated functor that overloads operator () (int a) but that seems overkill.
common_function(....)
{
}
f(vector<int>x,... )
{
x.push_back(i);
common_f(...);
}
g(DBConn& x, ....)
{
x.DeleteRow(i);
common_f(...);
}
You could write a simple adapter with two implementations, each calling the desired method of a different class.
class MyInterface {
public:
virtual doIt(int i) = 0;
}
class VectorImp : public MyInterface {
public:
vector<int>& v;
VectorImp(vector<int>& theVector) : v(theVector) {}
doIt(int i) { x.push_back(i); }
}
class DbImp : public MyInterface {
public:
DBConn& c;
VectorImp(DBConn& conn) : c(conn) {}
doIt(int i) { c.DeleteRow(i); }
}
template<class T>
struct Adapter;
template<>
struct Adapter<vector<int> >
{
static void execute(vector<int> &x, int i)
{
x.push_back(i);
}
};
template<>
struct Adapter<DBConn>
{
static void execute(DBConn &x, int i)
{
v.DeleteRow(i);
}
};
template<class T>
void f(T &t, ...)
{
...
Adapter<T>::execute(t, i);
...
}
OR:
template<class T>
struct adapter_traits;
template<>
struct adapter_traits<vector<int> >
{
typedef void (vector<int>::*PMF)(int);
static const PMF pmf = &vector<int>::push_back;
}
template<>
struct adapter_traits<DBConn>
{
typedef void (DBConn::*PMF)(int);
static const PMF pmf = &DBConn::DeleteRow;
}
template<class T>
void f(T &t, ...)
{
...
(t.*adapter_traits<T>::pmf)(i);
...
}
NOTE: I might have some syntax wrong but you get the idea.
Yet another idea:
template<class T>
void f(T &t, void (T::*p)(int), ...)
{
...
(t.*p)(i);
}
void g()
{
DBConn x;
vector<int> y;
f(x, &DBConn::DeleteRow, ...);
f(y, &vector<int>::push_back, ...);
}
Classic case for a functor:
#include <vector>
#include <DBConn.h>
// T: The type of the object that is to be manipulated.
// A: The type of the object that will do the manipulating
// This may be a functor object or a function pointer.
//
// As this is a template function the template parameters will
// be deduced by the compiler at compile time.
template<typename T,typename A>
void action(T& obj,A const& action/*,....*/)
{
// Do Stuff
action(obj,5);
// Do more Stuff
}
// Functor object
struct MyVectorAction
{
// Just defines the operator()
// Make sure it is a const method.
// This does the unique bit of code. The parameters should be what you pass into action
void operator()(std::vector<int>& data,int val) const {data.push_back(val);}
};
void f(std::vector<int>& x)
{
action(x,MyVectorAction()/*.... Params ....*/);
}
struct MyDBConnAction
{ void operator()(DBConn& data,int val) const {data.DeleteRow(val);} };
void g(DBConn& x)
{
action(x, MyDBConnAction());
}
int main()
{
std::vector<int> x;
f(x);
}
You could make a function that has the parameters of what you call (...), and this function can implement the logic that is the same in f() and g(). You could then change the implementation of f() and g() to call this new function instead of duplicating the logic. Be careful though if you're doing something duplicated before and after your unique lines. You may need two functions in that case. At any rate I think this would be preferable to having duplicated blocks of code.
Following code does NOT work, but it expresses well what I wish to do. There is a problem with the template struct container, which I think SHOULD work because it's size is known for any template argument.
class callback {
public:
// constructs a callback to a method in the context of a given object
template<class C>
callback(C& object, void (C::*method)())
: ptr.o(object), ptr.m(method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
template<class C>
struct {
C& o;
void (C::*m)();
} ptr;
};
Is there any way to do such a thing? I mean have a non-template class callback which wraps any pointer to method?
Thanks C++ gurus!
Edit:
Please see this:
Callback in C++, template member? (2)
This is a complete working example that does what I think you're trying to do:
#include <iostream>
#include <memory>
// INTERNAL CLASSES
class CallbackSpecBase
{
public:
virtual ~CallbackSpecBase() {}
virtual void operator()() const = 0;
};
template<class C>
class CallbackSpec : public CallbackSpecBase
{
public:
CallbackSpec(C& o, void (C::*m)()) : obj(o), method(m) {}
void operator()() const { (&obj->*method)(); }
private:
C& obj;
void (C::*method)();
};
// PUBLIC API
class Callback
{
public:
Callback() {}
void operator()() { (*spec)(); }
template<class C>
void set(C& o, void (C::*m)()) { spec.reset(new CallbackSpec<C>(o, m)); }
private:
std::auto_ptr<CallbackSpecBase> spec;
};
// TEST CODE
class Test
{
public:
void foo() { std::cout << "Working" << std::endl; }
void bar() { std::cout << "Like a charm" << std::endl; }
};
int main()
{
Test t;
Callback c;
c.set(t, &Test::foo);
c();
c.set(t, &Test::bar);
c();
}
I recently implemented this:
#define UNKOWN_ITEM 0xFFFFFFFF
template <typename TArg>
class DelegateI
{
public:
virtual void operator()(TArg& a)=0;
virtual bool equals(DelegateI<TArg>* d)=0;
};
template <class TArg>
class Event
{
public:
Event()
{
}
~Event()
{
for (size_t x=0; x<m_vDelegates.size(); x++)
delete m_vDelegates[x];
}
void operator()(TArg& a)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
m_vDelegates[x]->operator()(a);
}
}
void operator+=(DelegateI<TArg>* d)
{
if (findInfo(d) != UNKOWN_ITEM)
{
delete d;
return;
}
m_vDelegates.push_back(d);
}
void operator-=(DelegateI<TArg>* d)
{
uint32 index = findInfo(d);
delete d;
if (index == UNKOWN_ITEM)
return;
m_vDelegates.erase(m_vDelegates.begin()+index);
}
protected:
int findInfo(DelegateI<TArg>* d)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
if (m_vDelegates[x]->equals(d))
return (int)x;
}
return UNKOWN_ITEM;
}
private:
std::vector<DelegateI<TArg>*> m_vDelegates;
};
template <class TObj, typename TArg>
class ObjDelegate : public DelegateI<TArg>
{
public:
typedef void (TObj::*TFunct)(TArg&);
ObjDelegate(TObj* t, TFunct f)
{
m_pObj = t;
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
ObjDelegate<TObj,TArg> *d = dynamic_cast<ObjDelegate<TObj,TArg>*>(di);
if (!d)
return false;
return ((m_pObj == d->m_pObj) && (m_pFunct == d->m_pFunct));
}
virtual void operator()(TArg& a)
{
if (m_pObj && m_pFunct)
{
(*m_pObj.*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
TObj* m_pObj; // pointer to object
};
template <typename TArg>
class FunctDelegate : public DelegateI<TArg>
{
public:
typedef void (*TFunct)(TArg&);
FunctDelegate(TFunct f)
{
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
FunctDelegate<TArg> *d = dynamic_cast<FunctDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pFunct == d->m_pFunct);
}
virtual void operator()(TArg& a)
{
if (m_pFunct)
{
(*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
};
template <typename TArg>
class ProxieDelegate : public DelegateI<TArg>
{
public:
ProxieDelegate(Event<TArg>* e)
{
m_pEvent = e;
}
virtual bool equals(DelegateI<TArg>* di)
{
ProxieDelegate<TArg> *d = dynamic_cast<ProxieDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pEvent == d->m_pEvent);
}
virtual void operator()(TArg& a)
{
if (m_pEvent)
{
(*m_pEvent)(a);
}
}
Event<TArg>* m_pEvent; // pointer to member function
};
template <class TObj, class TArg>
DelegateI<TArg>* delegate(TObj* pObj, void (TObj::*NotifyMethod)(TArg&))
{
return new ObjDelegate<TObj, TArg>(pObj, NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(void (*NotifyMethod)(TArg&))
{
return new FunctDelegate<TArg>(NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(Event<TArg>* e)
{
return new ProxieDelegate<TArg>(e);
}
use it like so:
define:
Event<SomeClass> someEvent;
enlist callbacks:
someEvent += delegate(&someFunction);
someEvent += delegate(classPtr, &class::classFunction);
someEvent += delegate(&someOtherEvent);
trigger:
someEvent(someClassObj);
You can also make your own delegates and overide what they do. I made a couple of others with one being able to make sure the event triggers the function in the gui thread instead of the thread it was called.
You need to use polymorphism. Use an abstract base class with a virtual invocation method (operator() if you please), with a templated descendant that implements the virtual method using the correct type signature.
The way you have it now, the data holding the type is templated, but the code meant to invoke the method and pass the object isn't. That won't work; the template type parameters need to flow through both construction and invocation.
#Barry Kelly
#include <iostream>
class callback {
public:
virtual void operator()() {};
};
template<class C>
class callback_specialization : public callback {
public:
callback_specialization(C& object, void (C::*method)())
: o(object), m(method) {}
void operator()() {
(&o ->* m) ();
}
private:
C& o;
void (C::*m)();
};
class X {
public:
void y() { std::cout << "ok\n"; }
};
int main() {
X x;
callback c(callback_specialization<X>(x, &X::y));
c();
return 0;
}
I tried this, but it does not work (print "ok")... why?
Edit:
As Neil Butterworth mentioned, polymorphism works through pointers and references,
X x;
callback& c = callback_specialization<X>(x, &X::y);
c();
Edit:
With this code, I get an error:
invalid initialization of non-const reference of type ‘callback&’
from a temporary of type ‘callback_specialization<X>’
Now, I don't understand that error, but if I replace callback& c with const callback& c and virtual void operator()() with virtual void operator()() const, it works.
You didn't say what errors you found, but I found that this worked:
template<typename C>
class callback {
public:
// constructs a callback to a method in the context of a given object
callback(C& object, void (C::*method)())
: ptr(object,method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
// template<class C>
struct Ptr{
Ptr(C& object, void (C::*method)()): o(object), m(method) {}
C& o;
void (C::*m)();
} ptr;
};
Note that Ptr needs a constructor as it has a reference member.
You could do without struct Ptr and have the raw members.
Tested with VS2008 express.
Improving the OP's answer:
int main() {
X x;
callback_specialization<X> c(x, &X::y);
callback& ref(c);
c();
return 0;
}
This prints "ok".
Tested on VS2008 express.
Please see this
Callback in C++, template member? (2)