I am trying an example, which causes race condition to apply the mutex. However, even with the mutex, it still happens. What's wrong? Here is my code:
#include <iostream>
#include <boost/thread.hpp>
#include <vector>
using namespace std;
class Soldier
{
private:
boost::thread m_Thread;
public:
static int count , moneySpent;
static boost::mutex soldierMutex;
Soldier(){}
void start(int cost)
{
m_Thread = boost::thread(&Soldier::process, this,cost);
}
void process(int cost)
{
{
boost::mutex::scoped_lock lock(soldierMutex);
//soldierMutex.lock();
int tmp = count;
++tmp;
count = tmp;
tmp = moneySpent;
tmp += cost;
moneySpent = tmp;
// soldierMutex.unlock();
}
}
void join()
{
m_Thread.join();
}
};
int Soldier::count, Soldier::moneySpent;
boost::mutex Soldier::soldierMutex;
int main()
{
Soldier s1,s2,s3;
s1.start(20);
s2.start(30);
s3.start(40);
s1.join();
s2.join();
s3.join();
for (int i = 0; i < 100; ++i)
{
Soldier s;
s.start(30);
}
cout << "Total soldier: " << Soldier::count << '\n';
cout << "Money spent: " << Soldier::moneySpent << '\n';
}
It looks like you're not waiting for the threads started in the loop to finish. Change the loop to:
for (int i = 0; i < 100; ++i)
{
Soldier s;
s.start(30);
s.join();
}
edit to explain further
The problem you saw was that the values printed out were wrong, so you assumed there was a race condition in the threads. The race in fact was when you printed the values - they were printed while not all the threads had a chance to execute
Based on this and your previous post (were it does not seem you have read all the answers yet). What you are looking for is some form of synchronization point to prevent the main() thread from exiting the application (because when the main thread exits the application all the children thread die).
This is why you call join() all the time to prevent the main() thread from exiting until the thread has exited. As a result of your usage though your loop of threads is not parallel and each thread is run in sequence to completion (so no real point in using the thread).
Note: join() like in Java waits for the thread to complete. It does not start the thread.
A quick look at the boost documentation suggests what you are looking for is a thread group which will allow you to wait for all threads in the group to complete before exiting.
//No compiler so this is untested.
// But it should look something like this.
// Note 2: I have not used boost::threads much.
int main()
{
boost::thread_group group;
boost::ptr_vector<boost::thread> threads;
for(int loop = 0; loop < 100; ++loop)
{
// Create an object.
// With the function to make it start. Store the thread in a vector
threads.push_back(new boost::thread(<Function To Call>));
// Add the thread to the group.
group.add(threads.back());
}
// Make sure main does not exit before all the threads have completed.
group.join_all();
}
If we go back to your example and retrofit your Soldier class:
int main()
{
boost::thread batallion;
// Make all the soldiers part of a group.
// When you start the thread make the thread join the group.
Soldier s1(batallion);
Soldier s2(batallion);
Soldier s3(batallion);
s1.start(20);
s2.start(30);
s3.start(40);
// Create 100 soldiers outside the loo
std::vector<Soldier> lotsOfSoldiers;
lotsOfSoldiers.reserve(100); // to prevent reallocation in the loop.
// Because you are using objects we need to
// prevent copying of them after the thread starts.
for (int i = 0; i < 100; ++i)
{
lotsOfSoldiers.push_back(Solder(batallion));
lotsOfSoldiers.back().start(30);
}
// Print out values while threads are still running
// Note you may get here before any thread.
cout << "Total soldier: " << Soldier::count << '\n';
cout << "Money spent: " << Soldier::moneySpent << '\n';
batallion.join_all();
// Print out values when all threads are finished.
cout << "Total soldier: " << Soldier::count << '\n';
cout << "Money spent: " << Soldier::moneySpent << '\n';
}
Related
I have two heavy tasks that have to be done one after the other (the second task can't start if the first is not fully completed).
These tasks can be divided in equal parts that have no interaction with each other, and that can be completed independently.
The following implementation works and is significantly faster than the single thread version. But here I create 4 threads for the first task, and then 4 new threads to start the second task.
Is it possible to make a more elegant / efficient version that don't create 8 threads in total, but only 4?
void func1()
{
cout << "Executing first task" << endl;
}
void func2()
{
cout << "Executing second task" << endl;
}
int main()
{
// First part of the work
std::thread worker1(&func1);
std::thread worker2(&func1);
std::thread worker3(&func1);
std::thread worker4(&func1);
worker1.join();
worker2.join();
worker3.join();
worker4.join();
// Second part of the work
std::thread worker5(&func2);
std::thread worker6(&func2);
std::thread worker7(&func2);
std::thread worker8(&func2);
worker5.join();
worker6.join();
worker7.join();
worker8.join();
}
Use thread pool and barrier, something like below
#define NUM_THREADS 4
std::barrier barr(NUM_THREADS+1);
void func()
{
cout << "Executing first task" << endl;
barr.wait();
cout << "Executing second task" << endl;
}
int main()
{
std::thread* threads[NUM_THREADS];
// First part of the work
for (int i = 0; i < NUM_THREADS; ++i)
threads[i] = new std::thread(&func);
barr.wait();
for (int i = 0; i < NUM_THREADS; ++i) {
threads[i]->join();
delete threads[i];
}
}
I'm trying to figure out how to use std::condition_variable in C++ implementing a "strange" producer and consumer program in which I had set a limit to the count variable.
The main thread ("producer") increments the count and must wait for this to return to zero to issue a new increment.
The other threads enters in a loop where they have to decrease the counter and issue the notification.
I am blocked because it is not clear to me how to conclude the program by orderly exiting the while loop inside the function of all threads.
Could someone give me some guidance on how to implement it, please?
Code
#include <iostream>
#include <thread>
#include <condition_variable>
#include <vector>
int main() {
int n_core = std::thread::hardware_concurrency();
std::vector<std::thread> workers;
int max = 100;
int count = 0;
std::condition_variable cv;
std::mutex mutex;
int timecalled = 0;
for (int i = 0; i < n_core; i++) {
workers.emplace_back(std::thread{[&max, &count, &mutex, &cv]() {
while (true) {
std::unique_lock<std::mutex> lk{mutex};
std::cout << std::this_thread::get_id() << " cv" << std::endl;
cv.wait(lk, [&count]() { return count == 1; });
std::cout << std::this_thread::get_id() << " - " << count << std::endl;
count--;
std::cout << std::this_thread::get_id() << " notify dec" << std::endl;
cv.notify_all();
}
}});
}
while (max > 0) {
std::unique_lock<std::mutex> lk{mutex};
std::cout << std::this_thread::get_id() << " cv" << std::endl;
cv.wait(lk, [&count]() { return count == 0; });
std::cout << std::this_thread::get_id() << " created token" << std::endl;
count++;
max--;
timecalled++;
std::cout << std::this_thread::get_id() << " notify inc" << std::endl;
cv.notify_all();
}
for (auto &w : workers) {
w.join();
}
std::cout << timecalled << std::endl; // must be equal to max
std::cout << count << std::endl; // must be zero
}
Problem
The program doesn't end because it is stuck on some final join.
Expected Result
The expected result must be:
100
0
Edits Made
EDIT 1 : I replaced max > 0 in the while with a true. Now the loops are unbounded, but using the solution of #prog-fh seems to work.
EDIT 2 : I added a variable to check the result in the end.
EDIT 3: I changed while(true) to while(max >0). Could this be a problem in concurrency because we are reading it without a lock?
The threads are waiting for something new in the call cv.wait().
But the only change that can be observed with the provided lambda-closure is the value of count.
The value of max must be checked too in order to have a chance to leave this cv.wait() call.
A minimal change in your code could be
cv.wait(lk, [&max, &count]() { return count == 1 || max<=0; });
if(max<=0) break;
assuming that changes to max always occur under the control of the mutex.
An edit to clarify around the accesses to max.
If the loop run by the threads is now while(true), then the max variable is only read in its body which is synchronised by mutex (thanks to lk).
The loop run by the main program is while (max > 0): max is read without synchronisation here but the only thread that can change this variable is the main program itself, so it's pure serial code from this perspective.
The whole body of this loop is synchronised by mutex (thanks to lk) so it is safe to change the value of max here since the read operations in the threads are synchronised in the same way.
You're having race conditions: in your code max may be read by multiple threads, whilst it is being modified in main, which is a race condition according to C++ standard.
The predicates you are using in wait seems to be incorrect (you're using ==).
I'm trying to turn a code from a single thread to a multi thread(example, create 6 threads instead of 1) while making sure they all start and finish without any interference from each other. What would be a way to do this? Could I just do a for loop that creates a thread until i < 6? And just add a mutex class with lock() and unlock()?
#include <iostream>
#include <boost/thread.hpp>
#include <boost/date_time.hpp>
void workerFunc()
{
boost::posix_time::seconds workTime(3);
std::cout << "Worker: running" << std::endl;
// Pretend to do something useful...
boost::this_thread::sleep(workTime);
std::cout << "Worker: finished" << std::endl;
}
int main(int argc, char* argv[])
{
std::cout << "main: startup" << std::endl;
boost::thread workerThread(workerFunc);
std::cout << "main: waiting for thread" << std::endl;
workerThread.join();
std::cout << "main: done" << std::endl;
system("pause");
return 0;
}
Yes, it's certainly possible. Since you don't want any interference between them, give them unique data to work with so that you do not need to synchronize the access to that data with a std::mutex or making it std::atomic. To further minimize the interference between threads, align the data according to std::hardware_destructive_interference_size.
You can use boost::thread::hardware_concurrency() to get the number of hardware threads available on the current system so that you don't have to hardcode the number of threads to run.
Passing references to the thread can be done using std::ref (or else the thread will get a ref to a copy of the data).
Here I create a std::list of threads and a std::vector of data to work on.
#include <cstdint> // std::int64_t
#include <iostream>
#include <list>
#include <new> // std::hardware_destructive_interference_size
#include <vector>
#include <boost/thread.hpp>
unsigned hardware_concurrency() {
unsigned rv = boost::thread::hardware_concurrency();
if(rv == 0) rv = 1; // fallback if hardware_concurrency returned 0
return rv;
}
// if you don't have hardware_destructive_interference_size, use something like this
// instead:
//struct alignas(64) data {
struct alignas(std::hardware_destructive_interference_size) data {
std::int64_t x;
};
void workerFunc(data& d) {
// work on the supplied data
for(int i = 0; i < 1024*1024-1; ++i) d.x -= i;
for(int i = 0; i < 1024*1024*1024-1; ++i) d.x += i;
}
int main() {
std::cout << "main: startup" << std::endl;
size_t number_of_threads = hardware_concurrency();
std::list<boost::thread> threads;
std::vector<data> dataset(number_of_threads);
// create the threads
for(size_t idx = 0; idx < number_of_threads; ++idx)
threads.emplace_back(workerFunc, std::ref(dataset[idx]));
std::cout << "main: waiting for threads" << std::endl;
// join all threads
for(auto& th : threads) th.join();
// display results
for(const data& d : dataset) std::cout << d.x << "\n";
std::cout << "main: done" << std::endl;
}
If you are using C++11 (or later), I suggest using std::thread instead.
Starting and stopping a bunch of Boost threads
std::vector<boost::thread> threads;
for (int i = 0; i < numberOfThreads; ++i) {
boost::thread t(workerFunc);
threads.push_back(std::move(t));
}
for (auto& t : threads) {
t.join();
}
Keep in mind that join() doesn't terminate the threads, it only waits until they are finished.
Synchronization
Mutexes are required if multiple threads access the same data and at least one of them is writing the data. You can use a mutex to ensure that multiple threads enter the critical sections of the code. Example:
std::queue<int> q;
std::mutex q_mu;
void workerFunc1() {
// ...
{
std::lock_guard<std::mutex> guard(q_mu);
q.push(foo);
} // lock guard goes out of scope and automatically unlocks q_mu
// ...
}
void workerFunc2() {
// ...
{
std::lock_guard<std::mutex> guard(q_mu);
foo = q.pop();
} // lock guard goes out of scope and automatically unlocks q_mu
// ...
}
This prevents undefined behavior like reading an item from the queue that hasn't been written completely. Be careful - data races can crash your program or corrupt your data. I'm frequently using tools like Thread Sanitizer or Helgrind to ensure I didn't miss anything. If you only want to pass results back into the main program but don't need to share data between your threads you might want to consider using std::promise and std::future.
Yes, spawning new threads can be done with a simple loop. You will have to keep a few things in mind though:
If threads will operate on shared data, it will need to be protected with mutexes, atomics or via some other way to avoid data races and undefined behaviour (bear in mind that even primitive types such as int have to be wrapped with an atomic or mutex according to the standard).
You will have to make sure that you will eventually either call join() or detach() on every spawned thread before its object goes out of scope to prevent it from suddenly terminating.
Its best to do some computations on the main thread while waiting for worker threads to use this time efficiently instead of wasting it.
You generally want to spawn 1 thread less than the number of total threads you want as the program starts running with with one thread by default (the main thread).
I'm trying to understand C++ Multithreading and synchronize between many threads.
Thus I created 2 threads the first one increments a value and the second one decrements it. what I can't understand why the resulted value after the execution is different than the first one, since I added and subtracted from the same value.
static unsigned int counter = 100;
static bool alive = true;
static Lock lock;
std::mutex mutex;
void add() {
while (alive)
{
mutex.lock();
counter += 10;
std::cout << "Counter Add = " << counter << std::endl;
mutex.unlock();
}
}
void sub() {
while (alive)
{
mutex.lock();
counter -= 10;
std::cout << "Counter Sub = " << counter<< std::endl;
mutex.unlock();
}
}
int main()
{
std::cout << "critical section value at the start " << counter << std::endl;
std::thread tAdd(add);
std::thread tSub(sub);
Sleep(1000);
alive = false;
tAdd.join();
tSub.join();
std::cout << "critical section value at the end " << counter << std::endl;
return 0;
}
Output
critical section value at the start 100
critical section value at the end 220
So what I need is how to keep my value as it's, I mean counter equal to 100 using those two threads.
The problem is that both threads will get into an "infinite" loop for 1 second and they will get greedy with the mutex. Do a print in both functions and see which thread gets the lock more often.
Mutexes are used to synchronize access to resources so that threads will not read/write incomplete or corrupted data, not create a neat sequence.
If you want to keep that value at 100 at the end of execution you need to use a semaphore so that there will be an ordered sequence of access to the variable.
I think, what you want is to signal to the subtracting thread, that you just have sucessfully added in the add thread, and vice versa. You'll have to additionally communicate the information, which thread is next. A naive solution:
bool shouldAdd = true;
add() {
while( alive ) {
if( shouldAdd ) {
// prefer lock guards over lock() and unlock() for exception safety
std::lock_guard<std::mutex> lock{mutex};
counter += 10;
std::cout << "Counter Add = " << counter << std::endl;
shouldAdd = false;
}
}
}
sub() {
while( alive ) {
if( !shouldAdd ) {
std::lock_guard<std::mutex> lock{mutex};
counter -= 10;
std::cout << "Counter Sub = " << counter << std::endl;
shouldAdd = true;
}
}
}
Now add() will busy wait for sub() to do its job before it will try and acquire the lock again.
To prevent busy waiting, you might chose a condition variable, instead of trying to only use a single mutex. You can wait() on the condition variable, before you add or subtract, and notify() the waiting thread afterwards.
I am beginning to use the thread class.
In the main() thread below, an Example class is created.
Inside the constructor of Example, two threads are created in the Example::start() function.
Example::foo() is designed to print a message every second.
Example::bar() is designed to print a message every 5 seconds.
Inside the main() function, a loop is designed to print every 3 seconds.
I decided to not use join() in Example::start() because I would like to have the main() function continuously run.
Why does the main thread crash during run-time?
// thread example
#include <iostream> // std::cout
#include <thread> // std::thread
#include <chrono> // std::chrono::seconds
using namespace std;
class Example
{
public:
Example();
void start();
void foo();
void bar(int x);
};
Example::Example()
{
start();
}
void Example::start()
{
std::thread first (&Example::foo, this); // spawn new thread that calls foo()
std::thread second (&Example::bar, this, 5); // spawn new thread that calls bar(0)
// synchronize threads:
//first.join(); // pauses until first finishes
//second.join(); // pauses until second finishes
}
void Example::foo()
{
cout << "entered foo()" << endl;
int count = 0;
while(1) {
std::this_thread::sleep_for (std::chrono::seconds(1));
++count;
cout << "foo() count = " << count << endl;
}
}
void Example::bar(int x)
{
cout << "entered bar() x = " << x << endl;
int count = 0;
while(1) {
std::this_thread::sleep_for (std::chrono::seconds(5));
++count;
cout << "bar() count = " << count << endl;
}
}
int main() {
Example* c = new Example();
cout << "Example() created" << endl;
while(true) {
std::this_thread::sleep_for(std::chrono::seconds(3));
cout << "main() thread loop..." << endl;
}
std::cout << "end of main()";
delete c;
return 0;
}
Foo::Start() initalizes two threads, thread Foo and thread bar. When the function Start returns to the main thread, the two thread objects go out of scope and the destructor is called for clearing out of scope variables.
A simple solution would be to make threads part of the class.
On another note, std::cout is not a synchronized class, when writing your text might be garbled: Is cout synchronized/thread-safe?
Also, when creating your class Example, delete is never called which causes a memory leak.
Your comment here:
void Example::start()
{
std::thread first (&Example::foo, this); // spawn new thread that calls foo()
std::thread second (&Example::bar, this, 5); // spawn new thread that calls bar(0)
// synchronize threads:
//first.join(); // pauses until first finishes
//second.join(); // pauses until second finishes
}
Is wrong.
Not only does the the join pause until the threads finish. But they also allow the thread to be cleaned up. A thread destructor calls terminate while the thread is join-able (ie it is still running). So you must call join() on the thread (to wait for it to finish) before you can allow the destructor to be called.
One of the comments above suggests calling detach(). This detaches the thread of execution from the thread object (thus making it not join-able). This will work (as your code is in infinite loop), but is a bad idea generally. As allowing main() to exit while threads are still running is undefined behavior.