What is the difference between Pause(), Sleep() and Wait() in C++? - c++

I have been working through the CS106B course from Stanford, and while completing the Boggle assignment, I have noticed that the Sleep() function on Windows behaves differently from the Pause() function. For testing purposes, I have simply set up the board and used the provided gboggle.h file to highlight the Boggle cubes, then remove the highlighting. The following is the relevant code:
for(int row = 0; row < board.numRows(); row++)
{
for(int col = 0; col < board.numCols(); col++)
{
HighlightCube(row, col, true);
}
}
Pause(0.5);
for(int row = 0; row < board.numRows(); row++)
{
for(int col = 0; col < board.numCols(); col++)
{
HighlightCube(row, col, false);
}
}
If I use Pause(), the cubes highlight, then return to normal. If I use Sleep() or Wait(), the cubes never highlight, and the delay in the program occurs before the board is even drawn rather than between the for loops. The relevant Wait() function:
void wait ( int seconds )
{
clock_t endwait;
endwait = clock () + seconds * CLOCKS_PER_SEC ;
while (clock() < endwait) {}
}
taken from here. I am using Visual Studio 2005 on Windows XP.
What difference between these functions causes them to act this way?
Edit: I am aware that Sleep and wait require integers. I have tested them using integers and see a delay, but it occurs before the squares are written. Sorry I was not clear about that previously.
Edit2: After looking through some of the other libraries I used, I found that Pause is, in fact, part of the graphics library that simply pauses the graphics buffer.

Sleep wants an integer as milliseconds and you give it 0.5, so your wait for 0 milliseconds. Your wait function also takes ints, so it has the same problem.
Also your wait function is blocking. As long as you are waiting, your application is busy and uses the CPU for, well waiting. Whereas the windows Sleep function suspends the current thread, meaning your application really does nothing (does not use any CPU resources), until the time is over.
EDIT: I don't know what Pause does, as it is not a WinAPI function.
EDIT: It could be, that the results of HighlightCube are first seen, when the application get's back to it's event loop and then these cubes are drawn. This way you just highlight them, then wait, then un-highlight them. Then your function returns and the application gets to finally draw them. That is quite obvious, as Sleep (and also your wait) just block the application from processing any events (including window paint events). I suppose the Pause prevents that by checking back to the event loop. Actually that's what Greg Domjan already wrote.

I've never seen the Pause command before; perhaps you could provide some code for it?
Windows apps work on the idea of a message pump, and that painting is a low priority.
If you sleep or wait in the message pump thread then you block it from doing any further handling of messages such as drawing the screen.
You need to yield to the message pump so it can do it's work.
You might look at usage of Wait for multiple and running a second message pump. (guessing this is the body of Pause).

Since wait takes an int parameter, calling it with 0.5 (as you're example uses for Pause) will result in the 0.5 being truncated to 0, so you'll get no delay.

Related

How to call a function every x seconds but be able to do stuff in the meantime

I'm building a tetris game and I need the pieces to fall every x seconds; something like:
while(true){
moveDown();
sleep(x)
}
The problem is, I need to be able to move the pieces left and right in the meantime, i.e., call a function while it's sleeping.
How can I do that in c++?
Both time and key presses can be events which can be used to wait on. On UNIXes you'd use something like poll() with a suitable time for timeout and the input device used to recognize key presses. On other systems there are similar facilities (I'm a UNIX persons and I have never worked on Windows specific stuff although it seems the Windows facilities are actually more flexible). Depending on the result of poll() (timeout or activity on the I/O device in that case) you'd do the appropriate action.
This problem is solvable in multiple ways (another idea that comes to mind is multithreading, but that seems overkill). One approach would be to keep track of the number of "game cycles" and execute some function every n-th cycle like this:
for(int32_t count{1};;count++)
{
if (!count % 5)
{
// do something every 5th cycle
}
// do something every cycle
sleep(x);
}
you can measure how much time has passed since last fall and move piece down after given amount and then reset counter. In pseudo-code it could look like this:
while(true)
{
counter.update();
if(counter.value() == fall_period)
{
move_piece_down();
couter.reset();
}
// rotate pieces
}
If you are using typical implementation of game loop your counter can just accumulate elapsed time since last frame.

WinAPI calling code at specific timestamp

Using functions available in the WinAPI, is it possible to ensure that a specific function is called according to a milisecond precise timestamp? And if so what would be the correct implementation?
I'm trying to write tool assisted speedrun software. This type of software sends user input commands at very exact moments after the script is launched to perform humanly impossible inputs that allow faster completion of videogames. A typical sequence looks something like this:
At 0 miliseconds send right key down event
At 5450 miliseconds send right key up, and up key down event
At 5460 miliseconds send left key down event
etc..
What I've tried so far is listed below. As I'm not experienced in the low level nuances of high precision timers I have some results, but no understanding of why they are this way:
Using Sleep in combination with timeBeginPeriod set to 1 between inputs gave the worst results. Out of 20 executions 0 have met the timing requirement. I believe this is well explained in the documentation for sleep Note that a ready thread is not guaranteed to run immediately. Consequently, the thread may not run until some time after the sleep interval elapses. My understanding is that Sleep isn't up for this task.
Using a busy wait loop checking GetTickCount64 with timeBeginPeriod set to 1 produced slightly better results. Out of 20 executions 2 have met the timing requirement, but apparently that was just a fortunate circumstance. I've looked up some info on this timing function and my suspicion is that it doesn't update often enough to allow 1 milisecond accuracy.
Replacing the GetTickCount64 with the QueryPerformanceCounter improved the situation slightly. Out of 20 executions 8 succeded. I wrote a logger that would store the QPC timestamps right before each input is sent and dump the values in a file after the sequence is finished. I even went as far as to preallocate space for all variables in my code to make sure that time isn't wasted on needless explicit memory allocations. The log values diverge from the timestamps I supply the program by anything from 1 to 40 miliseconds. General purpose programming can live with that, but in my case a single frame of the game is 16.7 ms, so in the worst possible case with delays like these I can be 3 frames late, which defeats the purpose of the whole experiment.
Setting the process priority to high didn't make any difference.
At this point I'm not sure where to look next. My two guesses are that maybe the time that it takes to iterate the busy loop and check the time using (QPCNow - QPCStart) / QPF is itself somehow long enough to introduce the mentioned delay, or that the process is interrupted by the OS scheduler somwhere along the execution of the loop and control returns too late.
The game is 100% deterministic and locked at 60 fps. I am convinced that if I manage to make the input be timed accurately the result will always be 20 out of 20, but at this point I'm begining to suspect that this may not be possible.
EDIT: As per request here is a stripped down testing version. Breakpoint after the second call to ExecuteAtTime and view the TimeBeforeInput variables. For me it reads 1029 and 6017(I've omitted the decimals) meaning that the code executed 29 and 17 miliseconds after it should have.
Disclaimer: the code is not written to demonstrate good programming practices.
#include "stdafx.h"
#include <windows.h>
__int64 g_TimeStart = 0;
double g_Frequency = 0.0;
double g_TimeBeforeFirstInput = 0.0;
double g_TimeBeforeSecondInput = 0.0;
double GetMSSinceStart(double& debugOutput)
{
LARGE_INTEGER now;
QueryPerformanceCounter(&now);
debugOutput = double(now.QuadPart - g_TimeStart) / g_Frequency;
return debugOutput;
}
void ExecuteAtTime(double ms, INPUT* keys, double& debugOutput)
{
while(GetMSSinceStart(debugOutput) < ms)
{
}
SendInput(2, keys, sizeof(INPUT));
}
INPUT* InitKeys()
{
INPUT* result = new INPUT[2];
ZeroMemory(result, 2*sizeof(INPUT));
INPUT winKey;
winKey.type = INPUT_KEYBOARD;
winKey.ki.wScan = 0;
winKey.ki.time = 0;
winKey.ki.dwExtraInfo = 0;
winKey.ki.wVk = VK_LWIN;
winKey.ki.dwFlags = 0;
result[0] = winKey;
winKey.ki.dwFlags = KEYEVENTF_KEYUP;
result[1] = winKey;
return result;
}
int _tmain(int argc, _TCHAR* argv[])
{
INPUT* keys = InitKeys();
LARGE_INTEGER qpf;
QueryPerformanceFrequency(&qpf);
g_Frequency = double(qpf.QuadPart) / 1000.0;
LARGE_INTEGER qpcStart;
QueryPerformanceCounter(&qpcStart);
g_TimeStart = qpcStart.QuadPart;
//Opens windows start panel one second after launch
ExecuteAtTime(1000.0, keys, g_TimeBeforeFirstInput);
//Closes windows start panel 5 seconds later
ExecuteAtTime(6000.0, keys, g_TimeBeforeSecondInput);
delete[] keys;
Sleep(1000);
return 0;
}

How does one update the GTK+ GUI in C++ with time consuming operations?

I am using OpenMP to perform a time consuming operation. I am unable to update a ProgressBar from GTK+ from within the time consuming loop at the same time the operations are carried out. The code I have updtates the ProgressBar, but it does so after everything is done. Not as the code progresses.
This is my dummy code that doesn't update the ProgressBar until everything is done:
void largeTimeConsumingFunction (GtkProgressBar** progressBar) {
int extensiveOperationSize = 1000000;
#pragma omp parallel for ordered schedule(dynamic)
for (int i = 0; i < extensiveOperationSize; i++) {
// Do something that will take a lot of of time with data
#pragma omp ordered
{
// Update the progress bar
gtk_progress_bar_set_fraction(*progressBar, i/(double)extensiveOperationSize);
}
}
}
When I do the same, but without using OpenMP, the same happens. It doesn't get updated until the end.
How could I get that GTK+ Widget to update at the same time the loop is working?
Edit: This is just a dummy code to keep it short and readable. It has the same structure as my actual code, but in my actual code I don't know before hand the size of the items I will be processing. It could be 10 or more than 1 million items and I will have to perform some action for each of them.
There are two potential issues here:
First, if you are performing long running computations that might block main thread, you have to call
while (gtk_events_pending ())
gtk_main_iteration ();
every now and then to keep UI responsive (which includes redrawing itself).
Second, you should call GTK+ functions only from main thread.

Switching an image at specific frequencies c++

I am currently developing a stimuli provider for the brain's visual cortex as a part of a university project. The program is to (preferably) be written in c++, utilising visual studio and OpenCV. The way it is supposed to work is that the program creates a number of threads, accordingly to the amount of different frequencies, each running a timer for their respective frequency.
The code looks like this so far:
void timerThread(void *param) {
t *args = (t*)param;
int id = args->data1;
float freq = args->data2;
unsigned long period = round((double)1000 / (double)freq)-1;
while (true) {
Sleep(period);
show[id] = 1;
Sleep(period);
show[id] = 0;
}
}
It seems to work okay for some of the frequencies, but others vary quite a lot in frame rate. I have tried to look into creating my own timing function, similar to what is done in Arduino's "blinkWithoutDelay" function, though this worked very badly. Also, I have tried with the waitKey() function, this worked quite like the Sleep() function used now.
Any help would be greatly appreciated!
You should use timers instead of "sleep" to fix this, as sometimes the loop may take more or less time to complete.
Restart the timer at the start of the loop and take its value right before the reset- this'll give you the time it took for the loop to complete.
If this time is greater than the "period" value, then it means you're late, and you need to execute right away (and even lower the period for the next loop).
Otherwise, if it's lower, then it means you need to wait until it is greater.
I personally dislike sleep, and instead constantly restart the timer until it's greater.
I suggest looking into "fixed timestep" code, such as the one below. You'll need to put this snippet of code on every thread with varying values for the period (ns) and put your code where "doUpdates()" is.
If you need a "timer" library, since I don't know OpenCV, I recommend SFML (SFML's timer docs).
The following code is from here:
long int start = 0, end = 0;
double delta = 0;
double ns = 1000000.0 / 60.0; // Syncs updates at 60 per second (59 - 61)
while (!quit) {
start = timeAsMicro();
delta+=(double)(start - end) / ns; // You can skip dividing by ns here and do "delta >= ns" below instead //
end = start;
while (delta >= 1.0) {
doUpdates();
delta-=1.0;
}
}
Please mind the fact that in this code, the timer is never reset.
(This may not be completely accurate but is the best assumption I can make to fix your problem given the code you've presented)

C++ multithreaded application using std::thread works fine on Windows but not Ubuntu

I have a somewhat simple multithreaded application written using the C++ std::thread library for both Ubuntu 14.04 and Windows 8.1. The code is nearly completely identical except that I'm using the operating system respective libraries windows.h and unistd.h to use Sleep/sleep to pause execution for a time. They both actually begin to run and the Ubuntu version does keep running for a short time but then hangs. I am using the proper arguments to the sleep/Sleep functions since I know Windows Sleep takes milliseconds, while Unix sleep takes seconds.
I've run the code multiple times and on Ubuntu it never makes it past two minutes whereas I've run it on windows twice for 20 minutes and then multiple times for roughly five minutes each to see if I was just lucky. Is this just an incompatibility with the thread library or does sleep not do what I think it does, or something else? The infinite loops are there because this is a school project and is expected to run without deadlocks or crashing.
The gist is that this is a modified 4-way stop where cars who arrive first don't have to slow down and stop. We only had to let one car through the intersection at a time which takes 3 seconds to cross, hence Sleep(3000), and don't have to worry about turns. Three threads run the spawnCars function and there are four other threads that each monitor one of the four directions N, E, S, and W. I hope that it's understandable why I can't post the entire code in the chance some other student stumbles upon this. These two functions are the only place where code is different aside from the operating system dependent library inclusion at the top. Thanks.
edit: Since I've just gone and posted all the code for the project, if the problem does end up being a deadlock, may I request that you only say so, and not post an in depth solution? I'm new here so if that's against the spirit of SO then fire away and I'll try to figure it out without reading the details.
/* function clearIntersection
Makes a car go through the intersection. The sleep comes before the removal from the queue
because my understanding is that the wait condition simulates the go signal for drivers.
It wouldn't make sense for the sensors to tell a car to go if the intersection isn't yet
clear even if the lock here would prevent that.
*/
void clearIntersection(int direction)
{
lock->lock();
Sleep(3000);
dequeue(direction);
lock->unlock();
}
/* function atFront(int direction)
Checks whether the car waiting at the intersection from a particular direction
has permission to pass, meaning it is at the front of the list of ALL waiting cars.
This is the waiting condition.
*/
bool isAtFront(int direction)
{
lock->lock();
bool isAtFront = cardinalDirections[direction].front() == list->front();
lock->unlock();
return isAtFront;
}
void waitInLine()
{
unique_lock<mutex> conditionLock(*lock);
waitForTurn->wait(conditionLock);
conditionLock.unlock();
}
//function broadcast(): Let all waiting threads know they can check whether or not their car can go.
void broadcast()
{
waitForTurn->notify_all();
}
};
/* function monitorDirection(intersectionQueue,int,int)
Threads will run this function. There are four threads that run this function
in total, one for each of the cardinal directions. The threads check to see
if the car at the front of the intersectionQueue, which contains the arrival order
of cars regardless of direction, is the car at the front of the queue for the
direction the thread is assigned to monitor. If not, it waits on a condition
variable until it is the case. It then calls the function to clear the intersection.
Broadcast is then used on the condition variable so all drivers will check if they
are allowed to pass, which one will unless there are 0 waiting cars, waiting again if not the case.
*/
void monitorDirection(intersectionQueue *intersection, int direction, int id)
{
while (true) //Do forever to see if crashes can occur.
{
//Do nothing if there are no cars coming from this direction.
//Possibly add more condition_variables for each direction?
if (!intersection->empty(direction))
{
while (!intersection->isAtFront(direction))
intersection->waitInLine();
intersection->clearIntersection(direction);
cout << "A car has gone " << numberToDirection(direction) << endl;
//All cars at the intersection will check the signal to see if it's time to go so broadcast is used.
intersection->broadcast();
}
}
}
Your culprit is likely your while (!isAtFront(...)) loop. If another thread gets scheduled between the check and the subsequent call to waitInLine(), the state of your queues could change, causing all of your consumer threads to end up waiting. At that point there's no thread to signal your condition_variable, so they will wait forever.