Cuda cudaMemcpy and cudaMalloc - c++

i always read that it is slow to allocate and transfer data form cpu to gpu. is this because cudaMalloc is slow? is it because cudaMemcpy is slow? or is it becuase both of them are slow?

It is mostly tied to 2 things, the first begin the speed of the PCIExpress bus between the card and the cpu. The other is tied to the way these functions operate. Now, I think the new CUDA 4 has better support for memory allocation (standard or pinned) and a way to access memory transparently across the bus.
Now, let's face it, at some point, you'll need to get data from point A to point B to compute something. Best way to handle is to either have a really large computation going on or use CUDA streams to overlap transfer and computation on the GPU.

In most applications, you should be doing cudaMalloc once at the beginning and then not call it any more. Thus, the bottleneck is really cudaMemcpy.
This is due to physical limitations. For a standard PCI-E 2.0 x16 link, you'll get 8GB/s theoretical but typically 5-6GB/s in practice. Compare this w/ even a mid range Fermi like the GTX460 which has 80+GB/s bandwidth on the device. You're in effect taking an order of magnitude hit in memory bandwidth, spiking your data transfer times accordingly.
GPGPUs are supposed to be supercomputers and I believe Seymour Cray (the supercomputer guy) said, "a supercomputer turns compute-bound problems into I/O bound problems". Thus, optimizing data transfers is everything.
In my personal experience, iterative algorithms are the ones that by far show the best improvements by porting to GPGPU (2-3 orders of magnitude) due to the fact that you can eliminate transfer time by keeping everything in-situ on the GPU.

Related

Does cudaMallocManaged() create a synchronized buffer in RAM and VRAM?

In an Nvidia developer blog: An Even Easier Introduction to CUDA the writer explains:
To compute on the GPU, I need to allocate memory accessible by the
GPU. Unified Memory in CUDA makes this easy by providing a single
memory space accessible by all GPUs and CPUs in your system. To
allocate data in unified memory, call cudaMallocManaged(), which
returns a pointer that you can access from host (CPU) code or device
(GPU) code.
I found this both interesting (since it seems potentially convenient) and confusing:
returns a pointer that you can access from host (CPU) code or device
(GPU) code.
For this to be true, it seems like cudaMallocManaged() must be syncing 2 buffers across VRAM and RAM. Is this the case? Or is my understanding lacking?
In my work so far with GPU acceleration on top of the WebGL abstraction layer via GPU.js, I learned the distinct performance difference between passing VRAM based buffers (textures in WebGL) from kernel to kernel (keeping the buffer on the GPU, highly performant) and retrieving the buffer value outside of the kernels to access it in RAM through JavaScript (pulling the buffer off the GPU, taking a performance hit since buffers in VRAM on the GPU don't magically move to RAM).
Forgive my highly abstracted understanding / description of the topic, since I know most CUDA / C++ devs have a much more granular understanding of the process.
So is cudaMallocManaged() creating synchronized buffers in both RAM
and VRAM for convenience of the developer?
If so, wouldn't doing so come with an unnecessary cost in cases where
we might never need to touch that buffer with the CPU?
Does the compiler perhaps just check if we ever reference that buffer
from CPU and never create the CPU side of the synced buffer if it's
not needed?
Or do I have it all wrong? Are we not even talking VRAM? How does
this work?
So is cudaMallocManaged() creating synchronized buffers in both RAM and VRAM for convenience of the developer?
Yes, more or less. The "synchronization" is referred to in the managed memory model as migration of data. Virtual address carveouts are made for all visible processors, and the data is migrated (i.e. moved to, and provided a physical allocation for) the processor that attempts to access it.
If so, wouldn't doing so come with an unnecessary cost in cases where we might never need to touch that buffer with the CPU?
If you never need to touch the buffer on the CPU, then what will happen is that the VA carveout will be made in the CPU VA space, but no physical allocation will be made for it. When the GPU attempts to actually access the data, it will cause the allocation to "appear" and use up GPU memory. Although there are "costs" to be sure, there is no usage of CPU (physical) memory in this case. Furthermore, once instantiated in GPU memory, there should be no ongoing additional cost for the GPU to access it; it should run at "full" speed. The instantiation/migration process is a complex one, and what I am describing here is what I would consider the "principal" modality or behavior. There are many factors that could affect this.
Does the compiler perhaps just check if we ever reference that buffer from CPU and never create the CPU side of the synced buffer if it's not needed?
No, this is managed by the runtime, not compile time.
Or do I have it all wrong? Are we not even talking VRAM? How does this work?
No you don't have it all wrong. Yes we are talking about VRAM.
The blog you reference barely touches on managed memory, which is a fairly involved subject. There are numerous online resources to learn more about it. You might want to review some of them. here is one. There are good GTC presentations on managed memory, including here. There is also an entire section of the CUDA programming guide covering managed memory.

At what code complexity does an OpenACC kernel lose efficiency on common GPU?

At about what code complexity do OpenACC kernels lose efficiency on common GPU and register, shared memory operations or some other aspect starts to bottleneck performance?
Also is there some point where too few tasks and overhead of transferring to GPU and cores would become a bottleneck?
Would cache sizes and if code fits indicate optimal task per kernel or something else?
About how big is the OpenACC overhead per kernel compared to potential performance and does it vary a lot with various directives?
I would refrain from using the complexity of the code as an indication of performance. You can have a highly complex code run very efficiently on a GPU and a simple code run poorly. Instead, I would look at the following factors:
Data movement between the device and host. Limit the frequency of data movement and try to transfer data in contiguous chunks. Use OpenACC unstructured data regions to match the host allocation on the device (i.e. use "enter data" at the same time as you allocate data via "new" or "malloc"). Move as much compute to the GPU as you can and only use the OpenACC update directive to synchronize host and device data when absolutely necessary. In case where data movement is unavoidable, investigate using the "async" clause to interleave the data movement with compute.
Data access on the device and limiting memory divergence. Be sure to have your data layout so that the stride-1 (contiguous) dimension of your arrays are accessed contiguously across the vectors.
Have a high compute intensity which is the ratio of computation to data movement. More compute and less data movement the better. However, lower compute intensity loops are fine if there are other high intensity loops and the cost to move the data to the host would offset the cost of running the kernel on the device.
Avoid allocating data on the device since it forces threads to serialize. This includes using Fortran "automatic" arrays, and declaring C++ objects with include allocation in their constructors.
Avoid atomic operations. Atomic operations are actually quite efficient when compared to host atomics, but still should be avoided if possible.
Avoid subroutine calls. Try to inline routines when possible.
Occupancy. Occupancy is the ratio of the number of threads that can potentially be running on the GPU over the maximum number of threads that could be running. Note that 100% occupancy does not guarantee high performance but you should try and get above 50% if possible. The limiters to occupancy are the number of registers used per thread (vector) and shared memory used per block (gang). Assuming you're using the PGI compiler, you can see the limits of your device by running the PGI "pgaccelinfo" utility. The number of registers used will depend upon the number of local scalars used (explicitly declared by the programmer and temporaries created by the compiler to hold intermediate calculations) and the amount of shared memory used will be determined by the OpenACC "cache" and "private" directives when "private" is used on a "gang" loop. You can see the how much each kernel uses by adding the flag "-ta=tesla:ptxinfo". You can limit the number of registers used per thread via "-ta=tesla:maxregcount:". Reducing the number of registers will increase the occupancy but also increase the number of register spills. Spills are fine so long as they only spill to L1/L2 cache. Spilling to global memory will hurt performance. It's often better to suffer lower occupancy than spilling to global memory.
Note that I highly recommend using a profiler (PGPROF, NVprof, Score-P, TAU, Vampir, etc.) to help discover a program's performance bottlenecks.

Hard disk contention using multiple threads

I have not performed any profile testing of this yet, but what would the general consensus be on the advantages/disadvantages of resource loading from the hard disk using multiple threads vs one thread? Note. I am not talking about the main thread.
I would have thought that using more than one "other" thread to do the loading to be pointless because the HD cannot do 2 things at once, and therefore would surely only cause disk contention.
Not sure which way to go architecturally, appreciate any advice.
EDIT: Apologies, I meant to mean an SSD drive not a magnetic drive. Both are HD's to me, but I am more interested in the case of a system with a single SSD drive.
As pointed out in the comments one advantage of using multiple threads is that a large file load will not delay the presentation of a smaller for to the receiver of the thread loader. In my case, this is a big advantage, and so even if it costs a little perf to do it, having multiple threads is desirable.
I know there are no simple answers, but the real question I am asking is, what kind of performance % penalty would there be for making the parallel disk writes sequential (in the OS layer) as opposed to allowing only 1 resource loader thread? And what are the factors that drive this? I don't mean like platform, manufacturer etc. I mean technically, what aspects of the OS/HD interaction influence this penalty? (in theory).
FURTHER EDIT:
My exact use case are texture loading threads which only exist to load from HD and then "pass" them on to opengl, so there is minimal "computation in the threads (maybe some type conversion etc). In this case, the thread would spend most of its time waiting for the HD (I would of thought), and therefore how the OS-HD interaction is managed is important to understand. My OS is Windows 10.
Note. I am not talking about the main thread.
Main vs non-main thread makes zero difference to the speed of reading a disk.
I would have thought that using more than one "other" thread to do the loading to be pointless because the HD cannot do 2 things at once, and therefore would surely only cause disk contention.
Indeed. Not only are the attempted parallel reads forced to wait for each other (and thus not actually be parallel), but they will also make access pattern of the disk random as opposed to sequential, which is much much slower due to disk head seek time.
Of course, if you were to deal with multiple hard disks, then one thread dedicated for each drive would probably be optimal.
Now, if you were using a solid state drive instead of a hard drive, the situation isn't quite so clear cut. Multiple threads may be faster, slower, or comparable. There are probably many factors involved such as firmware, file system, operating system, speed of the drive relative to some other bottle neck, etc.
In either case, RAID might invalidate assumptions made here.
It depends on how much processing of the data you're going to do. This will determine whether the application is I/O you bound or compute bound.
For example, if all you are going to do to the data is some simple arithmetic, e.g. add 1, then you will end up being I/O bound. The CPU can add 1 to data far quicker than any I/O system can deliver flows of data.
However, if you're going to do a large amount of work on each batch of data, e.g. a FFT, then a filter, then a convolution (I'm picking random DSP routine names here), then it's likely that you will end up being compute bound; the CPU cannot keep up with the data being delivered by the I/O subsystem which owns your SSD.
It is quite an art to judge just how an algorithm should be structured to match the underlying capabilities of the underlying machine, and vice versa. There's profiling tools like FTRACE/Kernelshark, Intel's VTune, which are both useful in analysing exactly what is going on. Google does a lot to measure how many searches-per-Watt their hardware accomplishes, power being their biggest cost.
In general I/O of any sort, even a big array of SSDs, is painfully slow. Even the main memory in a PC (DDR4) is painfully slow in comparison to what the CPU can consume. Even the L3 and L2 caches are sluggards in comparison to the CPU cores. It's hard to design and multi-threadify an algorithm just right so that the right amount of work is done on each data item whilst it is in L1 cache so that the L2, L3 caches, DDR4 and I/O subsystems can deliver the next data item to the L1 caches just in time to keep the CPU cores busy. And the ideal software design for one machine is likely hopeless on another with a different CPU, or SSD, or memory SIMMs. Intel design for good general purpose computer performance, and actually extracting peak performance from a single program is a real challenge. Libraries like Intel's MKL and IPP are very big helps in doing this.
General Guidance
In general one should look at it in terms of data bandwidth required by any particular arrangement of threads and work those threads are doing.
This means benchmarking your program's inner processing loop and measuring how much data it processed and how quickly it managed to do it in, choosing an number of data items that makes sense but much more than the size of L3 cache. A single 'data item' is an amount of input data, the amount of corresponding output data, and any variables used processing the input to the output, the total size of which fits in L1 cache (with some room to spare). And no cheating - use the CPUs SSE/AVX instructions where appropriate, don't forego them by writing plain C or not using something like Intel's IPP/MKL. [Though if one is using IPP/MKL, it kinda does all this for you to the best of its ability.]
These days DDR4 memory is going to be good for anything between 20 to 100GByte/second (depending on what CPU, number of SIMMs, etc), so long as your not making random, scattered accesses to the data. By saturating the L3 your are forcing yourself into being bound by the DDR4 speed. Then you can start changing your code, increasing the work done by each thread on a single data item. Keep increasing the work per item and the speed will eventually start increasing; you've reached the point where you are no longer limited by the speed of DDR4, then L3, then L2.
If after this you can still see ways of increasing the work per data item, then keep going. You eventually get to a data bandwidth somewhere near that of the IO subsystems, and only then will you be getting the absolute most out of the machine.
It's an iterative process, and experience allows one to short cut it.
Of course, if one runs out of ideas for things to increase the work done per data item then that's the end of the design process. More performance can be achieved only by improving the bandwidth of whatever has ended up being the bottleneck (almost certainly the SSD).
For those of us who like doing this software of thing, the PS3's Cell processor was a dream. No need to second guess the cache, there was none. One had complete control over what data and code was where and when it was there.
A lot people will tell you that an HD can't do more than one thing at once. This isn't quite true because modern IO systems have a lot of indirection. Saturating them is difficult to do with one thread.
Here are three scenarios that I have experienced where multi-threading the IO helps.
Sometimes the IO reading library has a non-trivial amount of computation, think about reading compressed videos, or parity checking after the transfer has happened. One example is using robocopy with multiple threads. Its not unusual to launch robocopy with 128 threads!
Many operating systems are designed so that a single process can't saturate the IO, because this would lead to system unresponsiveness. In one case I got a 3% percent read speed improvement because I came closer to saturating the IO. This is doubly true if some system policy exists to stripe the data to different drives, as might be set on a Lustre drive in a HPC cluster. For my application, the optimal number of threads was two.
More complicated IO, like a RAID card, contains a substantial cache that keep the HD head constantly reading and writing. To get optimal throughput you need to be sure that whenever the head is spinning its constantly reading/writing and not just moving. The only way to do this is, in practice, is to saturate the card's on-board RAM.
So, many times you can overlap some minor amount of computation by using multiple threads, and stuff starts getting tricky with larger disk arrays.
Not sure which way to go architecturally, appreciate any advice.
Determining the amount of work per thread is the most common architectural optimization. Write code so that its easy to increase the IO worker count. You're going to need to benchmark.

When should I prefer write-combined CUDA-allocated mapped host memory?

the cudaHostAlloc() API call has, among others, the flags:
cudaHostAllocMapped: Maps the allocation into the CUDA address space. The device pointer to the memory may be obtained by calling cudaHostGetDevicePointer().
cudaHostAllocWriteCombined: Allocates the memory as write-combined (WC). WC memory can be transferred across the PCI Express bus more quickly on some system configurations, but cannot be read efficiently by most CPUs. WC memory is a good option for buffers that will be written by the CPU and read by the device via mapped pinned memory or host->device transfers.
I could quite understand when exactly I would prefer the "write-combined" option. I mean, it didn't say the transfer may be faster just in one direction, so why do they only recommend it for one direction? Also, which kind of systems benefit from this "write-combining"?
I read this white paper, Section 4.7, and still could not get it. Ok, so reading by the CPU is inefficient; but what if other benefits offset this inefficiency? Or - if they cannot, why can't they?
An elucidation would be appreciated.
Write-combined memory allows the CPU to combine multiple narrow writes into fewer wider writes, thus increasing the efficiency of memory writes. If memory serves, WC memory was first introduced with the Intel PentiumPro around 1995 to speed up CPU writes into the frame buffer of video cards. I am not up to speed on which modern system platforms use or support this.
The efficiency of reads performed by the CPU is going to be the same for both cudaHostAllocMapped and cudaHostAllocWriteCombined. But because the latter allows more efficient writes by the CPU, it is recommended for "buffers that will be written by the CPU and read by the device", as stated by quoted documentation.

CUDA - operations on single elements of a matrix - getting ideas

I'm about writing a CUDA kernel to perform a single operation on every single element of a matrix (e.g. squarerooting every element, or exponentiation, or calculating the sine/cosine if all the numbers are between [-1;1], etc..)
I chose the blocks/threads grid dimensions and I think the code is pretty straightforward and simple, but I'm asking myself... what can I do to maximize coalescence/SM occupancy?
My first idea was: making all semiwarp (16 threads) load data ensemble from global memory and then putting them all to compute, but it finds out that there are no enough memory-transfer/calculations parallelization.. I mean all threads load data, then compute, then load again data, then calculate again.. this sounds really poor in terms of performance.
I thought using shared memory would be great, maybe using some sort of locality to make a thread load more data than it actually needs to facilitate other threads' work, but this sounds stupid too because the second would wait for the former to finish loading data before starting its work.
I'm not really sure I gave the right idea regarding my problem, I'm just getting ideas before commencing to work on something concrete.
Every comment/suggestion/critic is well accepted, and thanks.
If you have defined the grid so that threads read along the major dimension of the array containing your matrix, then you have already guaranteed coalesced memory access, and there is little else to be done to improve performance. These sort of O(N) complexity operations really do not contain sufficient arithmetic intensity to give good parallel speed up over an optimized CPU implementation. Often the best strategy is to fuse multiple O(N) operations together into a single kernel to improve the FLOP to memory transaction ratio.
In my eyes your problem is this
load data ensemble from global memory
It seems that your algorithm idea is:
Do something on cpu - have some matrix
Transfer matrix from global to device memory
Perform your operation on every element
Transfer matrix back from device to global memory
Do something else on cpu - go sometimes back 1.
This kind of computations are almost everytime I/O-bandwidth limited (IO = memory IO), not computation power limited. GPGPU computations can sustain a very high memory bandwidth - but only from device memory to the gpu - transfer from global memory goes always over the very slow PCIe (slow compared to the device memory connection, that can deliver up to 160 GB/s + on fast cards). So one main thing to get good results is to keep the data (matrix) in device memory - preferable generate it even there if possible (depends on your problem). Never try to migrate data between cpu and gpu for and back as the transfer overhead eats all your speedup up. Also keep in mind that your matrix must have a certain size to amortize the transfer overhead, that you cant avoid (to compute a matrix with 10 x 10 elements would bring almost nothing, heck it would even cost more)
The interchanging transfer/compute/transfer is full ok, thats how such gpu algorithms work - but only if the the tranfer is from device memory.
The GPU for something this trivial is overkill and will be slower than just keeping it on the CPU. Especially if you have a multicore CPU.
I have seen many projects showing the "great" advantages of the GPU over the CPU. They rarely stand up to scrutiny. Of course, goofy managers who want to impress their managers want to show how "leading edge" his group is.
Someone in the department toils months on getting silly GPU code optimized (which is generally 8x harder to read than equivalent CPU code), then have the "equivalent" CPU code written by some Indian sweat shop (the programmer whose last project was PGP), compile it with the slowest version of gcc they can find, with no optimization, then tout their 2x speed improvement. And BTW, many overlook I/O speed as somehow not important.