C++ Virtual Destructors - c++

If I have a base class and a derived class, and I delcare the destructor in the parent virtual, but instantiate an object of type subclass, when destroyed it will invoke the parent destructor right(since virtual)? If I also declare a destructor in the derived class, will it call both destructors (base and derived). Thanks in advance :-).
The second part to my question is regarding the first. Why does the base class destructor need to be declared virtual. Don't constrcutors cycle up the hiearchy. They don't share the same name, so where's the need for it? Shouldn't it work the same for destrucotrs, or by default is only one called? Also does through late binding is it able to detect all the classes and object is made of?
EDIT: My question is not just about virtual destructors, but why does it need to be declared virtual, since they should all be called by default.

Yes, parent destructors will be called automatically.
The destructor should be virtualised so a derived instance can be destroyed properly by code that thinks it has a reference to a base class instance.
In very limited circumstances, it is OK not to virtualise, if you really need to save a few cycles on the vtable lookup.

The need for virtual destructors is because of polymorphism. If you have something like the following:
class A { ... };
class B : public A { ... };
void destroy_class(A* input)
{
delete input;
}
int main()
{
B* class_ptr = new B();
destroy_class(class_ptr); //you want the right destructor called
return 0;
}
While a bit of a contrived example, when you delete the passed-in pointer for the destroy_class() function, you want the correct destructor to get called. If the destructor for class A was not declared virtual, then only the destructor for class A would get called, not the destructor for class B or any other derived type of class A.
Stuff like this is very often a fact-of-life with non-template polymorphic data-structures, etc. where a single deletion function may have to delete pointers of some base-class type that actually points to an object of a derived type.

rubixibuc,
Yeah the subclasses destructor is invoked first, then it's superclass... then it's superclass, and so on until we get to Object's destructor.
More here: http://www.devx.com/tips/Tip/13059 ... it's worth the read... only a screen-full, but it's an INFORMATIVE screen-full.

Related

virtual destructor for pure abstract class [duplicate]

This question already has answers here:
When to use virtual destructors?
(20 answers)
Closed 3 years ago.
Based on what I found here and on other links on stackoverflow, we should always define a virtual destructor in the base class if we plan to use it polymorphically. I want to know if there is an exception to this rule.
I have seen production code that does not define virtual destructor for the pure abstract base classes and in one of cppcon 2014 video Accept no visitor, around 10:06 the BoolExp struct defined is a pure abstract class and has no virtual destructor.
So for a pure abstract class defined like this
class Base {
public:
virtual foo() = 0;
virtual bar() = 0;
}
My question is it absolutely must that we define a virtual destructor for "Base" class, even though it does have any data members? Are there any exceptions to the virtual destructor rule?
Thanks in advance.
Best,
RG
My question is it absolutely must that we define a virtual destructor for "Base" class, even though it does have any data members?
It depends. If you have a case like
base * foo = new child(stuff);
// doing stuff
delete foo;
then you absolutely must have a virtual destructor. Without it you'll never destroy the child part.
If you have a case like
child * foo = new child(stuff);
// doing stuff
delete foo;
Then you do not need a virtual destructor, as child's will be called.
So the rule is if you delete polymorphically, you need a polymorphic (virtual) destructor, if not, then you don't
The exception to the rule is if you never delete an object through a pointer to the base class. In that case the base class destructor does not need to be virtual.
But if you ever delete an object via a base class pointer, then the base class destructor must be virtual or your program has Undefined Behaviour.
My question is it absolutely must that we define a virtual destructor for "Base" class, even though it does have any data members?
Stricktly speaking, No.
However, whether the base class has any member variables is not relevant. If the destructor gets called using a pointer to the base class, your code has undefined behavior regardless of whether the base class has any member variables or not.
Are there any exceptions to the virtual destructor rule?
If you are able to manage lifetimes of derived classes in such a way that the call to delete the objects is done via derived class pointers, you don't invoke undefined behavior and your code will be well behaved, assuming everything else is in your code base is in good order.
we should always define a virtual destructor in the base class if we plan to use it polymorphically.
You should always define a virtual destructor in a base classs if we plan to delete it polymorphically through that base class.
Now, one problem is that "I don't intend to" isn't safe; you should make it impossible.
Make the destructor virtual (and empty), or make it protected (and empty). A protected destructor makes polymorphic deletion unlikely (it can be bypassed, but only through pretty insane means).
Barring that, you have to be careful. This is one of the reasons why inheriting from (say) std vector is a thing to be wary of.
is it absolutely must that we define a virtual destructor for "Base" class, even though it does have any data members? Are there any exceptions to the virtual destructor rule?
It is not a must. It's a good habit that can prevent bugs.
If you decide to create a base class that doesn't have a virtual destructor, it is the responsibility of you, the developer, to always ensure that derived objects are deleted as the correct type or as a base type that does have a virtual destructor.
Deleting a derived class object using a pointer to a base class that has a non-virtual destructor results in undefined behavior. 
Otherwise you are ok to not to have virtual destructor.
I would like to make an important (at least, in my view) practical amendment to correct answers describing the deletion through base object.
In particular, the destructors are called non-virtually if object life-time is managed through std::shared_ptr<Base> allocated via
std::shared_ptr<Base> sptr = std::make_shared<Derived>(args);

Understanding virtual destructors

I was trying to familiarize myself with the OOP concepts but could not quite understand the concept of virtual.
One can create a virtual destructor but not a virtual constructor. Why?
How are virtual destructors handled internally? I mean the link Virtual Destructors illustrates the concept but my question is how the vptr of both the vtables (Derived and Base) are called? (In case of virtual member functions when such a scenario occurs generally the function that vptr of Derived class points to is only called)
Are there any other scenarios where one may need to use a virtual destructor?
Can anyone please help me understand the above concepts with links/examples?
First, a little about the difference between virtual functions and non-virtual functions:
Every non-virtual function-call that you have in your code can be resolved during compilation or linkage.
By resolved, we mean that the address of the function can be computed by the compiler or the linker.
So in the object code created, the function-call can be replaced with an op-code for jumping to the address of that function in memory.
With virtual functions, you have the ability to invoke functions which can be resolved only during runtime.
Instead of explaining it, let's run through a simple scenario:
class Animal
{
virtual void Eat(int amount) = 0;
};
class Lion : public Animal
{
virtual void Eat(int amount) { ... }
};
class Tiger : public Animal
{
virtual void Eat(int amount) { ... }
};
class Tigon : public Animal
{
virtual void Eat(int amount) { ... }
};
class Liger : public Animal
{
virtual void Eat(int amount) { ... }
};
void Safari(Animal* animals[], int numOfAnimals, int amount)
{
for (int i=0; i<numOfAnimals; i++)
animals[i]->Eat(amount);
// A different function may execute at each iteration
}
As you can probably understand, the Safari function allows you to be flexible and feed different animals.
But since the exact type of each animal is not known until runtime, so is the exact Eat function to be called.
The constructor of a class cannot be virtual because:
Calling a virtual function of an object is performed through the V-Table of the object's class.
Every object holds a pointer to the V-Table of its class, but this pointer is initialized only at runtime, when the object is created.
In other words, this pointer is initialized only when the constructor is called, and therefore the constructor itself cannot be virtual.
Besides that, there is no sense for the constructor to be virtual in the first place.
The idea behind virtual functions is that you can call them without knowing the exact type of the object with which they are called.
When you create an object (i.e., when you implicitly call a constructor), you know exactly what type of object you are creating, so you have no need for this mechanism.
The destructor of a base-class has to be virtual because:
When you statically allocate an object whose class inherits from the base-class, then at the end of the function (if the object is local) or the program (if the object is global), the destructor of the class is automatically invoked, and in turn, invokes the destructor of the base-class.
In this case, there is no meaning to the fact that the destructor is virtual.
On the other hand, when you dynamically allocate (new) an object whose class inherits from the base-class, then you need to dynamically deallocate (delete) it at some later point in the execution of the program.
The delete operator takes a pointer to the object, where the pointer's type may be the base-class itself.
In such case, if the destructor is virtual, then the delete operator invokes the destructor of the class, which in turn invokes the destructor of the base-class.
But if the destructor is not virtual, then the delete operator invokes the destructor of the base-class, and the destructor of the actual class is never invoked.
Consider the following example:
class A
{
A() {...}
~A() {...}
};
class B: public A
{
B() {...}
~B() {...}
};
void func()
{
A* b = new B(); // must invoke the destructor of class 'B' at some later point
...
delete b; // the destructor of class 'B' is never invoked
}
One can create a virtual destructor but not a virtual constructor. Why?
Virtual functions are dispatched according to the type of the object they're called on. When a constructor is called, there is no object - it's the constructor's job to create one. Without an object, there's no possibility of virtual dispatch, so the constructor can't be virtual.
How are virtual destructors handled internally?
The internal details of virtual dispatch are implementation-defined; the language doesn't specify the implementation, only the behaviour. Typically, the destructor is called via a vtable just like any virtual function.
how the vptr of both the vtables (Derived and Base) are called?
Only the most-derived destructor will be called virtually. All destructors, virtual or not, will implicitly call the destructors of all member and direct base-class subobjects. (The situation is slightly more complicated in the presence of virtual inheritance; but that's beyond the scope of this question).
Are there any other scenarios where one may need to use a virtual destructor?
You need one in order to support polymorphic deletion; that is, to be able to delete an object of derived type via a pointer to a base type. Without a virtual destructor for the base type, that's not allowed, and will give undefined behaviour.
because a Virtual function is invoked at runtime phase, however constructors are invoked at initialization phase, object is not constructed. So it's meaningless to have a virtual constructor.
a. the reason why only the base class desctructor is invoked in your link, the destructor is not marked as virtual, so the desctructor address is linked to Base class destructor at compile/link time, and obviously the type of the pointer is Base instead of Derived at compile time.
b. for why both of Base and Derived constructors are invoked after adding virtual to Base desctructor. It's same behavior like below:
Derived d; // when d exits the lifecycle, both Derived and Base's desctructor will be invoked.
Suppose when you have at least one virtual function, you should have a virtual desctructor.
One can create a virtual destructor but not a virtual constructor.
Why?
I'll try and explain this in layman's terms.
A class in c++ only exists after it's constructor completes. Each base class exists prior to initialisation of derived class and its members (vtable links included). Hence, having a virtual constructor does not make sense (since to construct, you need to know the type). Furthermore (in c++), calling virtual functions from a constructor does not work (as the derived class's vtable part has not been set up). If one thinks about it carefully, allowing virtual functions to be called from a contructor opens up a can of worms (such as what if virtual functions of derived classes are called prior to member initialization).
As far as destructors are concerned, at the point of destruction, the vtable is "intact", and we (c++ runtime) are fully aware of the type (so to speak). The destructor of the most derived part of the type is found (if virtual, through vtable), and therefore that destructor, and naturally that of all bases can be called.
How are virtual destructors handled internally? I mean the link
Virtual Destructors illustrates the concept but my question is how the
vptr of both the vtables (Derived and Base) are called?
Destructors are handled the same as normal virtual functions (that is, there addresses are looked up in a vtable if they are virtual at the expense of one (perhaps 2?) extra level/s of indirection). Furthermore, c++ guarantees that all base destructors shall execute (in opposite order of construction which relies on order of declaration) after completion of a derived destructor.
One can mimick/simulate virtual construction by using patterns such as the prototype pattern (or cloning), or by using factories. In such cases either an instance of the real type exists (to be used polymorphically), or a factory exists (deriving from abstract factory), that creates a type (via virtual function) based on some knowledge provided.
Hope this helps.
I assume we have a Base class A, and it's derived B.
1.: You can delete B via an A pointer, and then the correct method is to call the B destructor too.
However, you just can't say, that a B object should be created while you actually just call the A constructor. There is just not such a case.
You can say:
A* a = new B ();
or
B b;
But both directly call the B's constructor.
2.: Well, i am not entirely sure, but i guess it will iterate through the relevant part of the class hierarchy, and search for the closest call of the function. If a function is not virtual, it stop iterating and call it.
3.: You should always use virtual destructor, if you want to inherit something from that class. If it's a final class, you shouldn't.
I wasted a couple of days trying to discover why my derived virtual destructors were not being called before discovering the answer so hopefully I can save other a lot of grief with this reply.
I started using derived classes three and four levels deep in my project. Virtual functions seemed to work fine but then I discovered I had massive memory leaks because my destructors were not being called. No compiler or runtime error - the destructors just were not being called.
There is a ton of documentation and examples about this on the web but none of it was useful because my syntax was correct.
I decided that if the compiler wasn't going to call my destructors, I needed to create my own virtual destruct method to call. Then I got the compiler error that solved the problem - "class if a Forward Reference". Adding an include for the derived class header files in the base class solved the problem. The compiler needs the class definition to call the destructor!
I suggest when creating a new derived class, include the header file in the base and intermediate classes. Probably also a good idea to add conditional debug code to your destructors to check that they are bing called.
Bob Rice

Virtual destructors for interfaces

Do interfaces need a virtual destructor, or is the auto-generated one fine? For example, which of the following two code snippets is best, and why? Please note that these are the WHOLE class. There are no other methods, variables, etc. In Java-speak, this is an "interface".
class Base
{
public:
virtual void foo() = 0;
virtual ~Base() {}
};
OR...
class Base
{
public:
virtual void foo() = 0;
~Base() {} // This line can be omitted, but included for clarity.
};
EDIT DUE TO "NOT WHAT I'M LOOKING FOR" ANSWERS:
Exactly what are the consequences of each route. Please don't give vague answers like "it won't be destructed properly". Please tell me exactly what will happen. I'm a bit of an assembly nerd.
Edit 2:
I am well aware that the "virtual" tag means that the destructor won't get called if deleted through a pointer to derived, but (I think) this question ultimately boils down to "is it safe to omit that destructor, for is it truly trivial?"
EDIT 3:
My second edit is just plain wrong and disinformation. Please read the comments by actual smart people for more info.
Consider the following case:
Base *Var = new Derived();
delete Var;
You need the virtual destructor, otherwise when you delete Var, the derived class' destructor will never be called.
If you delete a derived class object via a base class pointer in C++, the result is undefined behaviour. UB is something you really want to avoid, so you must give base classes a virtual destructor. To quote from the C++ Standard, section 5.3.5:
if the static type of the operand is
different from its dynamic type, the
static type shall be a base class of
the operand’s dynamic type and the
static type shall have a virtual
destructor or the behavior is
undefined.
You should use a virtual destructor if you expect people to try to delete objects of a derived class via pointers or references of the parent class. If this is the case, then without a virtual destructor, the derived class will never be properly destructed.
For example,
Derived::~Derived() { // important stuff }
Base *foo = new Derived();
delete foo;
Without a virtual destructor in Base, Derived's destructor will never be called, and important stuff will therefore never happen.
Replying mostly to the edit:
Nobody can tell you what will happen because the result is "undefined behavior". When you delete a derived class through a pointer to a base that has no virtual destructor, the implementation is free to break down in any number of ways.
In general, a destructor should be either (1) public and virtual, or (2) protected and non-virtual.
Assuming you never expect anyone to delete a class instance via an interface pointer, a protected non-virtual destructor is 100% safe.
If someone tries to delete an interface pointer in case (2), they'll get a compile-time error.
No... virtual destructors are not auto generated. You have to declare them explicitely in your base class.
But you won't need to declare your destructors virtual for the child classes of Base. This is done by the compiler.
The compiler will also make sure that the destructors are called in reversed order of construction (from derived to base).
public class Base
{
//...
}
public class Derived
{
int i = 0;
//...
}
//...
Base* b = new Derived();
If you didn't have a virtual destructor
delete b;
would cause memory leaks (at least 4 bytes for the integer field), because it would destruct only Base and not Derived. The virtuality makes sure that the derived classes are destroyed, too. You won't have to declare a virtual constructor in Derived, this will be inferred by the compiler, if you declared a virtual destructor in Base.

Who calls the Destructor of the class when operator delete is used in multiple inheritance

This question may sound too silly, however , I don't find concrete answer any where else.
With little knowledge on how late binding works and virtual keyword used in inheritance.
As in the code sample, when in case of inheritance where a base class pointer pointing to a derived class object created on heap and delete operator is used to deallocate the memory , the destructor of the of the derived and base will be called in order only when the base destructor is declared virtual function.
Now my question is :
1) When the destructor of base is not virtual, why the problem of not calling derived dtor occur only when in case of using "delete" operator , why not in the case given below:
derived drvd;
base *bPtr;
bPtr = &drvd; //DTOR called in proper order when goes out of scope.
2) When "delete" operator is used, who is reponsible to call the destructor of the class? The operator delete will have an implementation to call the DTOR ? or complier writes some extra stuff ? If the operator has the implementation then how does it looks like , [I need sample code how this would have been implemented].
3) If virtual keyword is used in this example, how does operator delete now know which DTOR to call?
Fundamentaly i want to know who calls the dtor of the class when delete is used.
<h1> Sample Code </h1>
class base
{
public:
base(){
cout<<"Base CTOR called"<<endl;
}
virtual ~base(){
cout<<"Base DTOR called"<<endl;
}
};
class derived:public base
{
public:
derived(){
cout<<"Derived CTOR called"<<endl;
}
~derived(){
cout<<"Derived DTOR called"<<endl;
}
};
I'm not sure if this is a duplicate, I couldn't find in search.
int main()
{
base *bPtr = new derived();
delete bPtr;// only when you explicitly try to delete an object
return 0;
}
This is due to tha fact that in this case the compiler know everything about the object to be destructed which in this case is drvd and is of type derived. When drvd goes out of scope the compiler inserts code to call its destructer
delete is a keyword for compiler. When compiler see delete it inserts the code to call the destructer and the code to call operator delete to deallocate the memory.Please keep in mind that keyword delete and operater delete are different.
When compiler sees keyword delete being used for a pointer it needs to generate code for its proper destruction. For this it needs to know the type information of the pointer. The only thing the compiler know about the pointer is the pointer type, not the type of object to which the pointer is pointing to. The object to which the pointer is pointing to may be a base class or a derived class. In some cases the type of object may be very clearly defined for example
void fun()
{
Base *base= new Derived();
delete base;
}
But in most cases it is not, for example this one
void deallocate(Base *base)
{
delete base;
}
So the compiler does not know which destructer to call of base or of derived. This is the way then it works
If the Base class does not have a virtual function (member function or destructer). It directly insetrts thr code to call the destructer of base class
If the Base class has virtual functions, then the compiler takes the information of destructer from vtable.
If destructer is not virtual. The vtable will have the address of base destructer and thats what will be called. This is not right since the proper destructer is not being called here. This is why it is always recommended to declare destructer of base class as virtual
If the destructer is virtual the vtable will have correcte address of destructer and compiler will insert proper code over there
+1 Good question BTW.
Look at how the virtual mechanism works for a non destructor method and you'll find a destructor behaves no differently.
There are 2 mechanism in play which may confuse the issue a little
.
Firstly a mechanism that isn't virtual is happening on construction and destruction of an object. The object is constructed from base class to derived class, in that order, and when destructed the destructor order is the reversed, so derived to based class. Nothing new here.
Consider calling a non virtual method on a based class pointer to a derived class object, what happens? The base class implementation is called. Now consider calling a virtual method from a base class pointer to a derived class object, what happens? The derived version of the method is called. Nothing you didn't already know.
Lets now consider the destructor scenario. Call delete on a base class pointer to a derived class object which has a non virtual destructor. The base class destructor is called, and if the base class had been derived from another class, then it's destructor would get called next. Because the virtual mechanism isn't in play , the derived destructor won't be called because destruction starts from the destructor you call in the hierarchy and works it way down to the base class.
Now consider the virtual destructor case. delete is called on a based class pointer to a derived class object. What happens when you call any virtual method on a base class pointer? The derived version gets called. So our derived class destructor is called . What happens during destruction, the object destructs from derived destructor to base class, but this time we started the destruction at the derived class level because of the virtual method mechanism.
Why does a stack object with either a non virtual or virtual destructor destruct from derived to base class when it goes out of scope? Because the destructor of the declared class is called in this case and the virtual mechanism has nothing to do with it.
The compiler generates all necessary code to call destructors in the right order, whether it be a stack object or member variable going out of scope, or a heap object being deleted.
You instantiate the derived type, when it goes out of scope it calls the destructor, virtual or not.
The compiler will generate code which makes a call to the destructors. It does not all happen on compile time. Code generation does, but lookin up what the address of the dtor is happens at runtime. Think about the case where you have more then 1 derived type and you do the delete using a base pointer.
A base class destructor needs to be virtual to make a polymorphic delete call the dtor of the derived type.
If you want to find out more try overloading new and delete.

Resolve C++ virtual functions from base class

Sorry if this is a dupe, I cant find an answer quite right.
I want to call a function from a base class member, and have it resolve to the subclass version. I thought declaring it virtual would do it, but it isn't. Here's my approach:
class GUIWindow
{
public:
GUIWindow()
{
SetupCallbacks();
}
virtual void SetupCallbacks()
{
// This function always called
}
};
class GUIListbox : public GUIWindow
{
public:
void SetupCallbacks()
{
// This never called
}
};
GUIListbox lb; // GUIWindow::SetupCallbacks is called :(
What am I doing wrong?
Many thanks
Si
Never call a virtual function in the constructor.
When you call virtual functions during construction of some class C (i.e. while the constructor of C is active), the virtual mechanism works, but it works in restricted mode. The resolution of the virtual calls in the class hierarchy is limited by the class that is currently being constructed (C). This means that the virtual calls will resolve as if the class C is the "final" class in the hierarchy, as if it has no descendants.
The same is true for destructors.
In your example, you are calling a virtual function from constructor of class GUIWindow. As long as the constructor of GUIWindow is active, its virtual mechanism will work as if there are no other classes derived from GUIWindow. This mechanism will completely ignore the existence of GUIListbox class. This is why the resolution of virtual call "stops" at GUIWindow and calls GUIWindow::SetupCallbacks, as if GUIListbox::SetupCallbacks doesn't exist.
You can read about in in C++ FAQ
http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.5
Your derived type is not constructed yet.
Class Cat : Animal
{
//...
};
When you create a create a Cat object the following happens:
Construct Animal
Construct Cat
When your object goes out of scope or gets destroyed via delete if on the heap, the following happens:
Destruct Cat
Destruct Animal
For this reason you should not call virtual functions in your constructor or destructor. You would even have a pure virtual function call if you did not have an implementation in your base class.
You are going to have to:
GUIListbox lb;
lb.SetupCallbacks();
The point of virtual is so that you can do things like:
GuiWindow *lb = new GuiListbox();
lb->SetupCallback();//Gets correctly resolved to GuiListBox's version
The problem is that you are trying to call the virtual function form the constructor. The base class constructor is called before the constructor of the derived class, so the "derived parts" of the object are not created yet when the base classes constructor runs.
The object will behave like an object of the base class type until the base classes constructor is finished and the derived classes constructor starts. This means that calls to virtual functions will not call implementations defined in the derived class, they will just execute the version from the base class.
Also see the C++ FAQ lite for more details and possible workarounds.
The quick answer is that you may have to declare a constructor in GUIListbox which calls SetupCallbacks. The reason is more complicated: because GUIListbox doesn't declare a constructor, when you declare an object of that type the GUIWindow constructor is called. When the GUIWindow constructor is running, the object isn't a GUIListbox yet. From the compiler's perspective, it only becomes a GUIListbox once the (empty) constructor for that class starts. So when the first constructor runs, the methods from GUIWindow are called. IOWs, this doesn't work, and will never work in C++ the way that you want it to.
Here's a reference describing this pitfall in detail: http://www.artima.com/cppsource/nevercall.html.
And here's an explanation from my favorite C++ resource: http://yosefk.com/c++fqa/inheritance-mother.html#fqa-23.5