Copying Methods from Member - c++

I have a simple, low-level container class that is used by a more high-level file class. Basically, the file class uses the container to store modifications locally before saving a final version to an actual file. Some of the methods, therefore, carry directly over from the container class to the file class. (For example, Resize().)
I've just been defining the methods in the file class to call their container class variants. For example:
void FileClass::Foo()
{
ContainerMember.Foo();
}
This is, however, growing to be a nuisance. Is there a better way to do this?
Here's a simplified example:
class MyContainer
{
// ...
public:
void Foo()
{
// This function directly handles the object's
// member variables.
}
}
class MyClass
{
MyContainer Member;
public:
void Foo()
{
Member.Foo();
// This seems to be pointless re-implementation, and it's
// inconvenient to keep MyContainer's methods and MyClass's
// wrappers for those methods synchronized.
}
}

Well, why not just inherit privatly from MyContainer and expose those functions that you want to just forward with a using declaration? That is called "Implementing MyClass in terms of MyContainer.
class MyContainer
{
public:
void Foo()
{
// This function directly handles the object's
// member variables.
}
void Bar(){
// ...
}
}
class MyClass : private MyContainer
{
public:
using MyContainer::Foo;
// would hide MyContainer::Bar
void Bar(){
// ...
MyContainer::Bar();
// ...
}
}
Now the "outside" will be able to directly call Foo, while Bar is only accessible inside of MyClass. If you now make a function with the same name, it hides the base function and you can wrap base functions like that. Of course, you now need to fully qualify the call to the base function, or you'll go into an endless recursion.
Additionally, if you want to allow (non-polymorphical) subclassing of MyClass, than this is one of the rare places, were protected inheritence is actually useful:
class MyClass : protected MyContainer{
// all stays the same, subclasses are also allowed to call the MyContainer functions
};
Non-polymorphical if your MyClass has no virtual destructor.

Yes, maintaining a proxy class like this is very annoying. Your IDE might have some tools to make it a little easier. Or you might be able to download an IDE add-on.
But it isn't usually very difficult unless you need to support dozens of functions and overrides and templates.
I usually write them like:
void Foo() { return Member.Foo(); }
int Bar(int x) { return Member.Bar(x); }
It's nice and symmetrical. C++ lets you return void values in void functions because that makes templates work better. But you can use the same thing to make other code prettier.

That's delegation inheritance and I don't know that C++ offers any mechanism to help with that.

Consider what makes sense in your case - composition (has a) or inheritance (is a) relationship between MyClass and MyContainer.
If you don't want to have code like this anymore, you are pretty much restricted to implementation inheritance (MyContainer as a base/abstract base class). However you have to make sure this actually makes sense in your application, and you are not inheriting purely for the implementation (inheritance for implementation is bad).
If in doubt, what you have is probably fine.
EDIT: I'm more used to thinking in Java/C# and overlooked the fact that C++ has the greater inheritance flexibility Xeo utilizes in his answer. That just feels like nice solution in this case.

This feature that you need to write large amounts of code is actually necessary feature. C++ is verbose language, and if you try to avoid writing code with c++, your design will never be very good.
But the real problem with this question is that the class has no behaviour. It's just a wrapper which does nothing. Every class needs to do something other than just pass data around.
The key thing is that every class has correct interface. This requirement makes it necessary to write forwarding functions. The main purpose of each member function is to distribute the work required to all data members. If you only have one data member, and you've not decided yet what the class is supposed to do, then all you have is forwarding functions. Once you add more member objects and decide what the class is supposed to do, then your forwarding functions will change to something more reasonable.
One thing which will help with this is to keep your classes small. If the interface is small, each proxy class will only have small interface and the interface will not change very often.

Related

C++ Generic wrapper class which adds extra processing for some functions

I am trying to create a wrapper class for a legacy inheritance hierarchy, which is not strictly polymorphic. And in the wrapper class, I add extra functionality for a few methods, but for many other methods, I just want to call the wrapped class method.
I was wondering if there is a way in which I can write a generic wrapper function in the wrapper class which would allow me to call the wrapped function in a normal way as if there was no wrapper class.
May be I am wrong, but I didn't think overloading operator-> would work because there are some methods of the wrapped class, for which I wanted to do some processing before calling the wrapped class function (though for many others, I don't need to do that).
I also had a look at Herb Sutter's wrapper pattern, (again, I might be wrong) but that would need me to have a lambda to access the wrapped function.
I was wondering whether anyone had any ideas about whether this is achievable?
I have placed the code # cpp.sh/2ombu
Here instead of
wrapper->operator()([](Derived& x)
{
x.print();
});
or
wrapper->operator->()->print();
is there someway I can have
wrapper->print();
Thanks in advance for the answers..
Your problem is that you use pointers actually.
Currently, instead of
wrapper->operator->()->print();
you might write
(*wrapper)->print();
If you replace unneeded pointers
wrap<Derived> *wrapper = new wrap<Derived>(der);
by
wrap<Derived> wrapper(der);
Then, you might replace
wrapper->operator->()->print();
by
wrapper->print();
// or wrapper.operator->()->print(); :)
In the same way
wrapper->operator()([](Derived& x)
{
x.print();
});
would become
wrapper(([](Derived& x)
{
x.print();
});
Not exactly giving you the result you wanted, but still relatively cheap (in sense of code necessary to be written): inheritance:
class Wrapped
{
public:
void f();
void g();
};
class Wrapper : private Wrapped
{
public:
// replacing Wrapped's f with own variant:
void f() { pre(); Wrapped::f(); post(); };
// pulling Wrapped's g into public domain again:
using Wrapped::g;
};
So all you have to do is adding the corresponding using declarations. If you now ask: "Why not inherit publicly, then I don't have to?", then consider the following:
Wrapped* w = new Wrapper();
w->f(); //Wrapped's version of f will be called, as f in given example is not virtual!
Maybe you say "I won't ever use Wrapped directly.". That would work out, but the danger of still using it somewhere and then getting bugs remains immanent with public inheritance...

How to avoid pass-through functions

A class I am currently working on has a member of some type that defines various functions. My class shall be a wrapper around this type for various reasons (e.g. make it thread-safe). Anyway, some of the type's functions can just be passed through, like the following:
class MyClass {
// ... some functions to work with member_
/* Pass through clear() function of member_ */
void clear() {
member_.clear()
}
private:
WrappedType member_;
};
This is not that bad, plus I get the flexibility of easily being able to add further functionality to MyClass::clear() in case I need it. Nevertheless, if I have a few of these pass-through functions, it bloats MyClass and for me makes it harder to read.
So I was wondering if there is a nice one-line-way (besides writing the upper definition into one line) of passing through WrappedType's member functions, much like making base class members available:
/* Pass through clear() in an easier and cleaner way */
using clear = member_.clear; // Unfortunately, this obviously doesn't compile
Privately inherit from your base class and expose a subset of the interface with the using keyword:
class MyClass : private WrappedType
{
public:
using WrappedType::clear;
};

C++ : Access a sub-object's methods inside an object

I am starting to code bigger objects, having other objects inside them.
Sometimes, I need to be able to call methods of a sub-object from outside the class of the object containing it, from the main() function for example.
So far I was using getters and setters as I learned.
This would give something like the following code:
class Object {
public:
bool Object::SetSubMode(int mode);
int Object::GetSubMode();
private:
SubObject subObject;
};
class SubObject {
public:
bool SubObject::SetMode(int mode);
int SubObject::GetMode();
private:
int m_mode(0);
};
bool Object::SetSubMode(int mode) { return subObject.SetMode(mode); }
int Object::GetSubMode() { return subObject.GetMode(); }
bool SubObject::SetMode(int mode) { m_mode = mode; return true; }
int SubObject::GetMode() { return m_mode; }
This feels very sub-optimal, forces me to write (ugly) code for every method that needs to be accessible from outside. I would like to be able to do something as simple as Object->SubObject->Method(param);
I thought of a simple solution: putting the sub-object as public in my object.
This way I should be able to simply access its methods from outside.
The problem is that when I learned object oriented programming, I was told that putting anything in public besides methods was blasphemy and I do not want to start taking bad coding habits.
Another solution I came across during my research before posting here is to add a public pointer to the sub-object perhaps?
How can I access a sub-object's methods in a neat way?
Is it allowed / a good practice to put an object inside a class as public to access its methods? How to do without that otherwise?
Thank you very much for your help on this.
The problem with both a pointer and public member object is you've just removed the information hiding. Your code is now more brittle because it all "knows" that you've implemented object Car with 4 object Wheel members. Instead of calling a Car function that hides the details like this:
Car->SetRPM(200); // hiding
You want to directly start spinning the Wheels like this:
Car.wheel_1.SetRPM(200); // not hiding! and brittle!
Car.wheel_2.SetRPM(200);
And what if you change the internals of the class? The above might now be broken and need to be changed to:
Car.wheel[0].SetRPM(200); // not hiding!
Car.wheel[1].SetRPM(200);
Also, for your Car you can say SetRPM() and the class figures out whether it is front wheel drive, rear wheel drive, or all wheel drive. If you talk to the wheel members directly that implementation detail is no longer hidden.
Sometimes you do need direct access to a class's members, but one goal in creating the class was to encapsulate and hide implementation details from the caller.
Note that you can have Set and Get operations that update more than one bit of member data in the class, but ideally those operations make sense for the Car itself and not specific member objects.
I was told that putting anything in public besides methods was blasphemy
Blanket statements like this are dangerous; There are pros and cons to each style that you must take into consideration, but an outright ban on public members is a bad idea IMO.
The main problem with having public members is that it exposes implementation details that might be better hidden. For example, let's say you are writing some library:
struct A {
struct B {
void foo() {...}
};
B b;
};
A a;
a.b.foo();
Now a few years down you decide that you want to change the behavior of A depending on the context; maybe you want to make it run differently in a test environment, maybe you want to load from a different data source, etc.. Heck, maybe you just decide the name of the member b is not descriptive enough. But because b is public, you can't change the behavior of A without breaking client code.
struct A {
struct B {
void foo() {...}
};
struct C {
void foo() {...}
};
B b;
C c;
};
A a;
a.c.foo(); // Uh oh, everywhere that uses b needs to change!
Now if you were to let A wrap the implementation:
class A {
public:
foo() {
if (TESTING) {
b.foo();
} else {
c.foo();
}
private:
struct B {
void foo() {...}
};
struct C {
void foo() {...}
};
B b;
C c;
};
A a;
a.foo(); // I don't care how foo is implemented, it just works
(This is not a perfect example, but you get the idea.)
Of course, the disadvantage here is that it requires a lot of extra boilerplate, like you have already noticed. So basically, the question is "do you expect the implementation details to change in the future, and if so, will it cost more to add boilerplate now, or to refactor every call later?" And if you are writing a library used by external users, then "refactor every call" turns into "break all client code and force them to refactor", which will make a lot of people very upset.
Of course instead of writing forwarding functions for each function in SubObject, you could just add a getter for subObject:
const SubObject& getSubObject() { return subObject; }
// ...
object.getSubObject().setMode(0);
Which suffers from some of the same problems as above, although it is a bit easier to work around because the SubObject interface is not necessarily tied to the implementation.
All that said, I think there are certainly times where public members are the correct choice. For example, simple structs whose primary purpose is to act as the input for another function, or who just get a bundle of data from point A to point B. Sometimes all that boilerplate is really overkill.

virtual overloading vs `std::function` member?

I'm in a situation where I have a class, let's call it Generic. This class has members and attributes, and I plan to use it in a std::vector<Generic> or similar, processing several instances of this class.
Also, I want to specialize this class, the only difference between the generic and specialized objects would be a private method, which does not access any member of the class (but is called by other methods). My first idea was to simply declare it virtual and overload it in specialized classes like this:
class Generic
{
// all other members and attributes
private:
virtual float specialFunc(float x) const =0;
};
class Specialized_one : public Generic
{
private:
virtual float specialFunc(float x) const{ return x;}
};
class Specialized_two : public Generic
{
private:
virtual float specialFunc(float x) const{ return 2*x; }
}
And thus I guess I would have to use a std::vector<Generic*>, and create and destroy the objects dynamically.
A friend suggested me using a std::function<> attribute for my Generic class, and give the specialFunc as an argument to the constructor but I am not sure how to do it properly.
What would be the advantages and drawbacks of these two approaches, and are there other (better ?) ways to do the same thing ? I'm quite curious about it.
For the details, the specialization of each object I instantiate would be determined at runtime, depending on user input. And I might end up with a lot of these objects (not yet sure how many), so I would like to avoid any unnecessary overhead.
virtual functions and overloading model an is-a relationship while std::function models a has-a relationship.
Which one to use depends on your specific use case.
Using std::function is perhaps more flexible as you can easily modify the functionality without introducing new types.
Performance should not be the main decision point here unless this code is provably (i.e. you measured it) the tight loop bottleneck in your program.
First of all, let's throw performance out the window.
If you use virtual functions, as you stated, you may end up with a lot of classes with the same interface:
class generic {
virtual f(float x);
};
class spec1 : public generic {
virtual f(float x);
};
class spec2 : public generic {
virtual f(float x);
};
Using std::function<void(float)> as a member would allow you to avoid all the specializations:
class meaningful_class_name {
std::function<void(float)> f;
public:
meaningful_class_name(std::function<void(float)> const& p_f) : f(p_f) {}
};
In fact, if this is the ONLY thing you're using the class for, you might as well just remove it, and use a std::function<void(float)> at the level of the caller.
Advantages of std::function:
1) Less code (1 class for N functions, whereas the virtual method requires N classes for N functions. I'm making the assumption that this function is the only thing that's going to differ between classes).
2) Much more flexibility (You can pass in capturing lambdas that hold state if you want to).
3) If you write the class as a template, you could use it for all kinds of function signatures if needed.
Using std::function solves whatever problem you're attempting to tackle with virtual functions, and it seems to do it better. However, I'm not going to assert that std::function will always be better than a bunch of virtual functions in several classes. Sometimes, these functions have to be private and virtual because their implementation has nothing to do with any outside callers, so flexibility is NOT an advantage.
Disadvantages of std::function:
1) I was about to write that you can't access the private members of the generic class, but then I realized that you can modify the std::function in the class itself with a capturing lambda that holds this. Given the way you outlined the class however, this shouldn't be a problem since it seems to be oblivious to any sort of internal state.
What would be the advantages and drawbacks of these two approaches, and are there other (better ?) ways to do the same thing ?
The issue I can see is "how do you want your class defined?" (as in, what is the public interface?)
Consider creating an API like this:
class Generic
{
// all other members and attributes
explicit Generic(std::function<float(float)> specialFunc);
};
Now, you can create any instance of Generic, without care. If you have no idea what you will place in specialFunc, this is the best alternative ("you have no idea" means that clients of your code may decide in one month to place a function from another library there, an identical function ("receive x, return x"), accessing some database for the value, passing a stateful functor into your function, or whatever else).
Also, if the specialFunc can change for an existing instance (i.e. create instance with specialFunc, use it, change specialFunc, use it again, etc) you should use this variant.
This variant may be imposed on your code base by other constraints. (for example, if want to avoid making Generic virtual, or if you need it to be final for other reasons).
If (on the other hand) your specialFunc can only be a choice from a limited number of implementations, and client code cannot decide later they want something else - i.e. you only have identical function and doubling the value - like in your example - then you should rely on specializations, like in the code in your question.
TLDR: Decide based on the usage scenarios of your class.
Edit: regarding beter (or at least alternative) ways to do this ... You could inject the specialFunc in your class on an "per needed" basis:
That is, instead of this:
class Generic
{
public:
Generic(std::function<float(float> f) : specialFunc{f} {}
void fancy_computation2() { 2 * specialFunc(2.); }
void fancy_computation4() { 4 * specialFunc(4.); }
private:
std::function<float(float> specialFunc;
};
You could write this:
class Generic
{
public:
Generic() {}
void fancy_computation2(std::function<float(float> f) { 2 * f(2.); }
void fancy_computation4(std::function<float(float> f) { 4 * f(4.); }
private:
};
This offers you more flexibility (you can use different special functions with single instance), at the cost of more complicated client code. This may also be a level of flexibility that you do not want (too much).

Possible to instantiate object given its type in C++?

I've been programming in Java way too long, and finding my way back to some C++. I want to write some code that given a class (either a type_info, or its name in a string) can create an instance of that class. For simplicity, let's assume it only needs to call the default constructor. Is this even possible in C++, and if not is it coming in a future TR?
I have found a way to do this, but I'm hoping there is something more "dynamic". For the classes I expect to wish to instantiate (this is a problem in itself, as I want to leave that decision up to configuration), I have created a singleton factory with a statically-created instance that registers itself with another class. eg. for the class Foo, there is also a FooFactory that has a static FooFactory instance, so that at program startup the FooFactory constructor gets called, which registers itself with another class. Then, when I wish to create a Foo at runtime, I find the FooFactory and call it to create the Foo instance. Is there anything better for doing this in C++? I'm guessing I've just been spoiled by rich reflection in Java/C#.
For context, I'm trying to apply some of the IOC container concepts I've become so used to in the Java world to C++, and hoping I can make it as dynamic as possible, without needing to add a Factory class for every other class in my application.
You could always use templates, though I'm not sure that this is what your looking for:
template <typename T>
T
instantiate ()
{
return T ();
}
Or on a class:
template <typename T>
class MyClass
{
...
};
Welcome in C++ :)
You are correct that you will need a Factory to create those objects, however you might not need one Factory per file.
The typical way of going at it is having all instanciable classes derive from a common base class, that we will call Base, so that you'll need a single Factory which will serve a std::unique_ptr<Base> to you each time.
There are 2 ways to implement the Factory:
You can use the Prototype pattern, and register an instance of the class to create, on which a clone function will be called.
You can register a pointer to function or a functor (or std::function<Base*()> in C++0x)
Of course the difficulty is to register those entries dynamically. This is typically done at start-up during static initialization.
// OO-way
class Derived: public Base
{
public:
virtual Derived* clone() const { return new Derived(*this); }
private:
};
// start-up...
namespace { Base* derived = GetFactory().register("Derived", new Derived); }
// ...or in main
int main(int argc, char* argv[])
{
GetFactory().register("Derived", new Derived(argv[1]));
}
// Pointer to function
class Derived: public Base {};
// C++03
namespace {
Base* makeDerived() { return new Derived; }
Base* derived = GetFactory().register("Derived", makeDerived);
}
// C++0x
namespace {
Base* derived = GetFactory().register("Derived", []() { return new Derived; });
}
The main advantage of the start-up way is that you can perfectly define your Derived class in its own file, tuck the registration there, and no other file is impacted by your changes. This is great for handling dependencies.
On the other hand, if the prototype you wish to create requires some external information / parameters, then you are forced to use an initialization method, the simplest of which being to register your instance in main (or equivalent) once you have the necessary parameters.
Quick note: the pointer to function method is the most economic (in memory) and the fastest (in execution), but the syntax is weird...
Regarding the follow-up questions.
Yes it is possible to pass a type to a function, though perhaps not directly:
if the type in question is known at compile time, you can use the templates, though you'll need some time to get acquainted with the syntax
if not, then you'll need to pass some kind of ID and use the factory approach
If you need to pass something akin to object.class then it seems to me that you are approaching the double dispatch use case and it would be worth looking at the Visitor pattern.
No. There is no way to get from a type's name to the actual type; rich reflection is pretty cool, but there's almost always a better way.
no such thing as "var" or "dynamic" in C++ last time I've checked(although that was a WHILE ago). You could use a (void*) pointer and then try casting accordingly. Also, if memory serves me right, C++ does have RTTI which is not reflection but can help with identifying types at runtime.