Explain bug behaviour - c++

Can you please explain what's going on in this buggy example:
Base base; Derived* d = reinterpret_cast<Derived*> (&base);
d->method();
d->virtual_method();
//output: Derived-method() Base-virtual_method()
I would expect this code to behave the other way around. Probably the compiler shares a single memory layout for Base and Derived, and of course the vtable is common.
When d->method is invoked I would expect the compiler to say "I'm just calling method at offset 0 with respect to my pointer. The pointer points to Base object, the only object around.
When d->virtual_method is invoked the compiler should say I am going to resolve it through the vtable, and thus the Derived method should be called (though the Base object is the only one around, the layout extends to Derived).
So I am expecting to see:
//output: Base-method() Derived-virtual_method()

base is a Base object; you reinterpret its bytes as a Derived object and then attempt to use it as if it were a Derived object. The behavior when you do this is undefined. Your program might crash; it might appear to do the right thing; it might make your computer light on fire.
Note that it is never correct to use reinterpret_cast to cast up and down a class hierarchy. You must use static_cast or dynamic_cast (or, if you are converting to a base class, no cast may be necessary).
To explain why you see this particular behavior, though: when you call a nonvirtual member function (as you do with d->method(), assuming method is a nonvirtual member function of Derived), the function that gets called is determined at compile time, not at runtime.
Here, the compiler knows that d points to a D object (because you've lied to the compiler and said that it is), so it generates code that calls Derived::method(). There is no "offset with respect to a pointer" at all. No computation needs to be done because the function to be called is known when the program is compiled.
Only when you call a virtual member function is a table lookup required (and even then, the lookup is only required when the compiler doesn't know the dynamic type of the object on which the member function is being called).
When you call d->virtual_method(), Base::virtual_method gets called. Why? In this particular implementation of C++, the first few bytes of an object of a class type that has virtual member functions (a polymorphic class type) contain a tag (called a "vptr" or a "virtual table pointer") that identifies the actual type of the object. When you call a virtual member function, then at runtime that tag is inspected and the function that is called is selected based on that tag.
When you reinterpret base as a Derived object, you don't actually change the object itself, so its tag still states that it is a Base object, hence why Base::virtual_method gets called.
Remember, though, that all this just happens to be what happens when you compile this code with a particular version of a particular compiler. The behavior is undefined and this is just one way that the undefined behavior can manifest itself.

The compiler only allocates enough memory to hold the requested object. Base might be 20 bytes, and Derived might be an extra 10 bytes on top of that (so Derived is 30 bytes in size.)
When you allocate 20 bytes for Base, and then (via Derived) access byte position 25, it's past the end of the allocated memory and (at best) you will get a crash.
The compiler cannot allocate 30 bytes for Base as you suggest, because not only would this be wasteful, but Derived could be implemented in a third party library and it may not even be known about when Base is being compiled.

Related

When virtual functions are invoked statically?

What is the performance difference between calling a virtual function from a derived class pointer directly vs from a base class pointer to the same derived class?
In the derived pointer case, will the call be statically bound, or dynamically bound? I think it'll be dynamically bound because there's no guarantee the derived pointer isn't actually pointing to a further derived class. Would the situation change if I have the derived class directly by value (not through pointer or reference)? So the 3 cases:
base pointer to derived
derived pointer to derived
derived by value
I'm concerned about performance because the code will be run on a microcontroller.
Demonstrating code
struct Base {
// virtual destructor left out for brevity
virtual void method() = 0;
};
struct Derived : public Base {
// implementation here
void method() {
}
}
// ... in source file
// call virtual method from base class pointer, guaranteed vtable lookup
Base* base = new Derived;
base->method();
// call virtual method from derived class pointer, any difference?
Derived* derived = new Derived;
derived->method();
// call virtual method from derived class value
Derived derivedValue;
derived.method();
In theory, the only C++ syntax that makes a difference is a member function call that uses qualified member name. In terms of your class definitions that would be
derived->Derived::method();
This call ignores the dynamic type of the object and goes directly to Derived::method(), i.e. it's bound statically. This is only possible for calling methods declared in the class itself or in one of its ancestor classes.
Everything else is a regular virtual function call, which is resolved in accordance with the dynamic type of the object used in the call, i.e. it is bound dynamically.
In practice, compilers will strive to optimize the code and replace dynamically-bound calls with statically-bound calls in contexts where the dynamic type of the object is known at compile time. For example
Derived derivedValue;
derivedValue.method();
will typically produce a statically-bound call in virtually every modern compiler, even though the language specification does not provide any special treatment for this situation.
Also, virtual method calls made directly from constructors and destructors are typically compiled into statically-bound calls.
Of course, a smart compiler might be able to bind the call statically in a much greater variety of contexts. For example, both
Base* base = new Derived;
base->method();
and
Derived* derived = new Derived;
derived->method();
can be seen by the compiler as trivial situations that easily allow for statically-bound calls.
Virtual functions must be compiled to work as if they were always called virtually. If your compiler compiles a virtual call as a static call, that's an optimization that must satisfy this as-if rule.
From this, it follows that the compiler must be able to prove the exact type of the object in question. And there are some valid ways in which it can do this:
If the compiler sees the creation of the object (the new expression or the automatic variable from which the address is taken) and can prove that that creation is actually the source of the current pointer value, that gives it the precise dynamic type it needs. All your examples fall into this category.
While a constructor runs, the type of the object is exactly the class containing the running constructor. So any virtual function call made in a constructor can be resolved statically.
Likewise, while a destructor runs, the type of the object is exactly the class containing the running destructor. Again, any virtual function call can be resolved statically.
Afaik, these are all the cases that allow the compiler to convert a dynamic dispatch into a static call.
All of these are optimizations, though, the compiler may decide to perform the runtime vtable lookup anyway. But good optimizing compilers should be able to detect all three cases.
There should be no difference between the first two cases, since the very idea of virtual functions is to call always the actual implementation. Leaving compiler optimisations aside (which in theory could optimise all virtual function calls away if you construct the object in the same compilation unit and there is no way the pointer can be altered in between), the second call must be implemented as a indirect (virtual) call as well, since there could be a third class inheriting from Derived and implementing that function as well. I would assume that the third call will not be virtual, since the compiler knows the actual type already at compile time. Actually you could make sure of this by not defining the function as virtual, if you know you will always do the call on the derived class directly.
For really lightweight code running on a small microcontroller I would recommend avoiding defining functions as virtual at all. Usually there is no runtime abstraction required. If you write a library and need some kind of abstraction, you can maybe work with templates instead (which give you some compile-time abstraction).
At least on PC CPUs I often find virtual calls one of the most expensive indirections you can have (probably because branch prediction is more difficult). Sometimes one can also transform the indirection to the data level, e.g. you keep one generic function which operates on different data which is indirected with pointers to the actual implementation. Of course this will work only in some very specific cases.
At run-time.
BUT: Performance as compared to what? It isn't valid to compare a virtual function call to a non-virtual function call. You need to compare it to a non-virtual function call plus an if, a switch, an indirection, or some other means of providing the same function. If the function doesn't embody a choice among implementations, i.e. doesn't need to be virtual, don't make it virtual.

memcpy derived class to base class, why still called base class function

I am reading Inside the C++ Object Model. In section 1.3
So, then, why is it that, given
Bear b;
ZooAnimal za = b;
// ZooAnimal::rotate() invoked
za.rotate();
the instance of rotate() invoked is the ZooAnimal instance and not that of Bear? Moreover, if memberwise initialization copies the values of one object to another, why is za's vptr not addressing Bear's virtual table?
The answer to the second question is that the compiler intercedes in the initialization and assignment of one class object with another. The compiler must ensure that if an object contains one or more vptrs, those vptr values are not initialized or changed by the source object .
So I wrote the test code below:
#include <stdio.h>
class Base{
public:
virtual void vfunc() { puts("Base::vfunc()"); }
};
class Derived: public Base
{
public:
virtual void vfunc() { puts("Derived::vfunc()"); }
};
#include <string.h>
int main()
{
Derived d;
Base b_assign = d;
Base b_memcpy;
memcpy(&b_memcpy, &d, sizeof(Base));
b_assign.vfunc();
b_memcpy.vfunc();
printf("sizeof Base : %d\n", sizeof(Base));
Base &b_ref = d;
b_ref.vfunc();
printf("b_assign: %x; b_memcpy: %x; b_ref: %x\n",
*(int *)&b_assign,
*(int *)&b_memcpy,
*(int *)&b_ref);
return 0;
}
The result
Base::vfunc()
Base::vfunc()
sizeof Base : 4
Derived::vfunc()
b_assign: 80487b4; b_memcpy: 8048780; b_ref: 8048780
My question is why b_memcpy still called Base::vfunc()
What you are doing is illegal in C++ language, meaning that the behavior of your b_memcpy object is undefined. The latter means that any behavior is "correct" and your expectations are completely unfounded. There's not much point in trying to analyze undefined behavior - it is not supposed to follow any logic.
In practice, it is quite possible that your manipulations with memcpy did actually copy Derived's virtual table pointer to b_memcpy object. And your experiments with b_ref confirm that. However, when a virtual method is called though an immediate object (as is the case with b_memcpy.vfunc() call) most implementations optimize away the access to the virtual table and perform a direct (non-virtual) call to the target function. Formal rules of the language state that no legal action can ever make b_memcpy.vfunc() call to dispatch to anything other than Base::vfunc(), which is why the compiler can safely replace this call with a direct call to Base::vfunc(). This is why any virtual table manipulations will normally have no effect on b_memcpy.vfunc() call.
The behavior you've invoked is undefined because the standard says it's undefined, and your compiler takes advantage of that fact. Lets look at g++ for a concrete example. The assembly it generates for the line b_memcpy.vfunc(); with optimizations disabled looks like this:
lea rax, [rbp-48]
mov rdi, rax
call Base::vfunc()
As you can see, the vtable wasn't even referenced. Since the compiler knows the static type of b_memcpy it has no reason to dispatch that method call polymorphically. b_memcpy can't be anything other than a Base object, so it just generates a call to Base::vfunc() as it would with any other method call.
Going a bit further, lets add a function like this:
void callVfunc(Base& b)
{
b.vfunc();
}
Now if we call callVfunc(b_memcpy); we can see different results. Here we get a different result depending on the optimization level at which I compile the code. On -O0 and -O1 Derived::vfunc() is called and on -O2 and -O3 Base::vfunc() is printed. Again, since the standard says the behavior of your program is undefined, the compiler makes no effort to produce a predictable result, and simply relies on the assumptions made by the language. Since the compiler knows b_memcpy is a Base object, it can simply inline the call to puts("Base::vfunc()"); when the optimization level allows for it.
You aren't allowed to do
memcpy(&b_memcpy, &d, sizeof(Base));
- it's undefined behaviour, because b_memcpy and d aren't "plain old data" objects (because they have virtual member functions).
If you wrote:
b_memcpy = d;
then it would print Base::vfunc() as expected.
Any use of a vptr is outside the scope of the standard
Granted, the use of memcpy here has UB
The answers pointing out that any use of memcpy, or other byte manipulation of non-PODs, that is, of any object with a vptr, has undefined behavior, are strictly technically correct but do not answer the question. The question is predicated on the existence of a vptr (vtable pointer) which isn't even mandated by the standard: of course the answer will involve facts outside the standard and the result bill not be guaranteed by the standard!
Standard text is not relevant regarding the vptr
The issue is not that you are not allowed to manipulate the vptr; the notion of being allowed by the standard to manipulate anything that is not even described in the standard text is absurd. Of course not standard way to change the vptr will exist and this is beside the point.
The vptr encodes the type of a polymorphic object
The issue here is not what the standard says about the vptr, the issue is what the vptr represents, and what the standard says about that: the vptr represents the dynamic type of an object. Whenever the result of an operation depends on the dynamic type, the compiler will generate code to use the vptr.
[Note regarding MI: I say "the" vptr (as if the only one vptr), but when MI (multiple inheritance) is involved, objects can have more than one vptr, each representing the complete object viewed as a particular polymorphic base class type. (A polymorphic class is a class with a least one virtual function.)]
[Note regarding virtual bases: I mention only the vptr, but some compilers insert other pointers to represent aspects of the dynamic type, like the location of virtual base subobjects, and some other compilers use the vptr for that purpose. What is true about the vptr is also true about these other internal pointers.]
So a particular value of the vptr corresponds to a dynamic type: that is the type of most derived object.
Changes of the dynamic type of an object during its lifetime
During construction, the dynamic type changes, and that is why virtual function calls from inside the constructor can be "surprising". Some people say that the rules of calling virtual functions during construction are special, but they are absolutely not: the final overrider is called; that override is the one the class corresponding to the most derived object that has been constructed, and in a constructor C::C(arg-list), it is always the type of the class C.
During destruction, the dynamic type changes, in the reverse order. Calls to virtual function from inside destructors follow the same rules.
What it means when something is left undefined
You can do low level manipulations that are not sanctioned in the standard. That a behavior is not explicitly defined in the C++ standard does not imply that it is not described elsewhere. Just because the result of a manipulation is explicitly described has having UB (undefined behavior) in the C++ standard does not mean your implementation cannot define it.
You can also use your knowledge of the way the compilers work: if strict separate compilation is used, that is when the compiler can get no information from separately compiled code, every separately compiled function is a "black box". You can use this fact: the compiler will have to assume that anything that a separately compiled function could do will be done. Even with inside a given function, you can use asm directive to get the same effects: an asm directive with no constraint can do anything that is legal in C++. The effect is a "forget what you know from code analysis at that point" directive.
The standard describes what can change the dynamic type, and nothing is allowed to change it except construction/destruction, so only an "external" (blackbox) function is is otherwise allowed to perform construction/destruction can change a dynamic type.
Calling constructors on an existing object is not allowed, except to reconstruct it with the exact same type (and with restrictions) see [basic.life]/8 :
If, after the lifetime of an object has ended and before the storage
which the object occupied is reused or released, a new object is
created at the storage location which the original object occupied, a
pointer that pointed to the original object, a reference that referred
to the original object, or the name of the original object will
automatically refer to the new object and, once the lifetime of the
new object has started, can be used to manipulate the new object, if:
(8.1) the storage for the new object exactly overlays the storage
location which the original object occupied, and
(8.2) the new object is of the same type as the original object
(ignoring the top-level cv-qualifiers), and
(8.3) the type of the original object is not const-qualified, and, if
a class type, does not contain any non-static data member whose type
is const-qualified or a reference type, and
(8.4) the original object was a most derived object ([intro.object])
of type T and the new object is a most derived object of type T (that
is, they are not base class subobjects).
This means that the only case where you could call a constructor (with placement new) and still use the same expressions that used to designate the objects (its name, pointers to it, etc.) are those where the dynamic type would not change, so the vptr would still be the same.
On other words, if you want to overwrite the vptr using low level tricks, you could; but only if you write the same value.
On other words, don't try to hack the vptr.

C++ casting to base and "overwriting" vptr issue

I was just reading a new C++ challenge:
http://blogs.msdn.com/b/vcblog/archive/2014/02/04/challenge-vulnerable-code.aspx
The supplied code if full of issues, some obvious to anybody with good programming habits, some visible only to C++ natives :-)
It is described in the comments, that one particular line (37) is particularly dangerous:
ImageFactory::DebugPrintDimensions((ImageFactory::CustomImage*)image);
the function then calls a virtual method of CustomImage (defined first time in CustomImage).
This allegedly causes the first member of CustomImage to be treated as the vptr of the instance (it's an unique_ptr actually) and make the binary pointed by it treated as executable (perhaps malicious) code..
While I can understand this, I wonder why does this really work.
CustomImage is a virtual class, so (probably) its first 4 bytes (just assume X86) are THE vptr, and the unique_ptr member is next.. And since the cast doesn't seem to be shifting anything...
... how would it be possible to execute data held by unique_ptr?
My take (and I'm more than happy to be corrected):
Here, CustomImage is a polymorphic class (with a vptr as the first "member" under the Windows ABI), but Imageis not. The order of the definitions means that the ImageFactory functions know that CustomImage is an Image, but main() does not.
So when the factory does:
Image* ImageFactory::LoadFromDisk(const char* imageName)
{
return new (std::nothrow) CustomImage(imageName);
}
the CustomImage* pointer is converted to an Image* and everything is fine. Because Image is not polymorphic, the pointer is adjusted to point to the (POD) Image instance inside the CustomImage -- but crutially, this is after the vptr, because that always comes first in a polymorphic class in the MS ABI (I assume).
However, when we get to
ImageFactory::DebugPrintDimensions((ImageFactory::CustomImage*)image);
the compiler sees a C-style cast from one class it knows nothing about to another. All it does is take the address it has and pretend it's a CustomImage* instead. This address in fact points to the Image within the custom image; but because Image is empty, and presumably the empty base class optimisation is in effect, it ends up pointing to the first member within CustomImage, i.e. the unique_ptr.
Now, ImageFactory::DebugPrintDimensions() assumes it's been handed a pointer to a fully-complete CustomImage, so that the address is equal to the address of the vptr. But it hasn't -- it's been handed the address of the unique_ptr, because at the point at which is was called, the compiler didn't know any better. So now it dereferences what it thinks is the vptr (really data we're in control of), looks for the offset of the virtual function and blindly exectutes that -- and now we're in trouble.
There are a couple of things that could have helped mitigate this. Firstly, since we're manipulating a derived class via a base class pointer, Image should have a virtual destructor. This would have made Image polymorphic, and in all probability we wouldn't have had a problem (and we wouldn't leak memory, either).
Secondly, because we're casting from base-to-derived, dynamic_cast should have been used rather than the C style cast, which would have involved a run-time check and correct pointer adjustment.
Lastly, if the compiler had all the information to hand when compiling main(), it might have been able to warn us (or performed the cast correctly, adjusting for the polymorphic nature of CustomImage). So moving the class definitions above main() is recommended too.
Presumably, the memory layout is such that the vptr comes before the base sub-object, like this:
class CustomImage {
void * __vptr;
Image __base; // empty
unique_ptr<whatever> evil;
};
This means that a valid conversion from Image* to CustomImage* requires subtracting a few bytes from the pointer. However, the evil cast you've posted comes before the class definitions, so it doesn't know how to correctly adjust the pointer. Instead, it acts like reinterpret_cast, simply pretending that the pointer points to CustomImage without adjusting its value.
Now, since the base class is empty, the pointer inside unique_ptr will be misinterpreted as the vptr. This points to another pointer, which will be misinterpreted as the vtable's pointer to the first virtual member function. This in turn points to data loaded from the file, which will be executed as code when that virtual function is called. As the icing on the cake, the memory protection flags are loaded from the file, and not adjusted to prevent execution.
Some lessons here are:
Avoid C-style casts, especially on pointer or reference types. They fall back to reinterpret_cast, leading to a minefield of undefined behaviour, if the conversion isn't valid. (To compound the evil, their syntax is also ungreppable, and easy to miss if you don't read the code too carefully.)
Avoid non-polymorphic base classes. As well as being conceptually dubious, and making deletion more awkward and error-prone, it can do surprising things to the memory layout as we see here. If the base class were polymorphic, we could use dynamic_cast (or avoid the cast altogether by providing suitable virtual functions), with no possibility of an invalid conversion.
Avoid unnecessary levels of indirection - there's no particular need for m_imageData to be a pointer.
Never put user data in executable memory.

PODs and inheritance in C++11. Does the address of the struct == address of the first member?

(I've edited this question to avoid distractions. There is one core question which would need to be cleared up before any other question would make sense. Apologies to anybody whose answer now seems less relevant.)
Let's set up a specific example:
struct Base {
int i;
};
There are no virtual method, and there is no inheritance, and is generally a very dumb and simple object. Hence it's Plain Old Data (POD) and it falls back on a predictable layout. In particular:
Base b;
&b == reinterpret_cast<B*>&(b.i);
This is according to Wikipedia (which itself claims to reference the C++03 standard):
A pointer to a POD-struct object, suitably converted using a reinterpret cast, points to its initial member and vice versa, implying that there is no padding at the beginning of a POD-struct.[8]
Now let's consider inheritance:
struct Derived : public Base {
};
Again, there are no virtual methods, no virtual inheritance, and no multiple inheritance. Therefore this is POD also.
Question: Does this fact (Derived is POD in C++11) allow us to say that:
Derived d;
&d == reinterpret_cast<D*>&(d.i); // true on g++-4.6
If this is true, then the following would be well-defined:
Base *b = reinterpret_cast<Base*>(malloc(sizeof(Derived)));
free(b); // It will be freeing the same address, so this is OK
I'm not asking about new and delete here - it's easier to consider malloc and free. I'm just curious about the regulations about the layout of derived objects in simple cases like this, and where the initial non-static member of the base class is in a predictable location.
Is a Derived object supposed to be equivalent to:
struct Derived { // no inheritance
Base b; // it just contains it instead
};
with no padding beforehand?
You don't care about POD-ness, you care about standard-layout. Here's the definition, from the standard section 9 [class]:
A standard-layout class is a class that:
has no non-static data members of type non-standard-layout class (or array of such types) or reference,
has no virtual functions (10.3) and no virtual base classes (10.1),
has the same access control (Clause 11) for all non-static data members,
has no non-standard-layout base classes,
either has no non-static data members in the most derived class and at most one base class with non-static data members, or has no base classes with non-static data members, and
has no base classes of the same type as the first non-static data member.
And the property you want is then guaranteed (section 9.2 [class.mem]):
A pointer to a standard-layout struct object, suitably converted using a reinterpret_cast, points to its initial member (or if that member is a bit-field, then to the unit in which it resides) and vice versa.
This is actually better than the old requirement, because the ability to reinterpret_cast isn't lost by adding non-trivial constructors and/or destructor.
Now let's move to your second question. The answer is not what you were hoping for.
Base *b = new Derived;
delete b;
is undefined behavior unless Base has a virtual destructor. See section 5.3.5 ([expr.delete])
In the first alternative (delete object), if the static type of the object to be deleted is different from its dynamic type, the static type shall be a base class of the dynamic type of the object to be deleted and the static type shall have a virtual destructor or the behavior is undefined.
Your earlier snippet using malloc and free is mostly correct. This will work:
Base *b = new (malloc(sizeof(Derived))) Derived;
free(b);
because the value of pointer b is the same as the address returned from placement new, which is in turn the same address returned from malloc.
Presumably your last bit of code is intended to say:
Base *b = new Derived;
delete b; // delete b, not d.
In that case, the short answer is that it remains undefined behavior. The fact that the class or struct in question is POD, standard layout or trivially copyable doesn't really change anything.
Yes, you're passing the right address, and yes, you and I know that in this case the dtor is pretty much a nop -- nonetheless, the pointer you're passing to delete has a different static type than dynamic type, and the static type does not have a virtual dtor. The standard is quite clear that this gives undefined behavior.
From a practical viewpoint, you can probably get away with the UB if you really insist -- chances are pretty good that there won't be any harmful side effects from what you're doing, at least with most typical compilers. Beware, however, that even at best the code is extremely fragile so seemingly trivial changes could break everything -- and even switching to a compiler with really heavy type checking and such could do so as well.
As far as your argument goes, the situation's pretty simple: it basically means the committee probably could make this defined behavior if they wanted to. As far as I know, however, it's never been proposed, and even if it had it would probably be a very low priority item -- it doesn't really add much, enable new styles of programming, etc.
This is meant as a supplement to Ben Voigt's answer', not a replacement.
You might think that this is all just a technicality. That the standard calling it 'undefined' is just a bit of semantic twaddle that has no real-world effects beyond allowing compiler writers to do silly things for no good reason. But this is not the case.
I could see desirable implementations in which:
Base *b = new Derived;
delete b;
Resulted in behavior that was quite bizarre. This is because storing the size of your allocated chunk of memory when it is known statically by the compiler is kind of silly. For example:
struct Base {
};
struct Derived {
int an_int;
};
In this case, when delete Base is called, the compiler has every reason (because of the rule you quoted at the beginning of your question) to believe that the size of the data pointed at is 1, not 4. If it, for example, implements a version of operator new that has a separate array in which 1 byte entities are all densely packed, and a different array in which 4 byte entities are all densely packed, it will end up assuming the Base * points to somewhere in the 1-byte entity array when in fact it points somewhere in the 4-byte entity array, and making all kinds of interesting errors for this reason.
I really wish operator delete had been defined to also take a size, and the compiler passed in either the statically known size if operator delete was called on an object with a non-virtual destructor, or the known size of the actual object being pointed at if it were being called as a result of a virtual destructor. Though this would likely have other ill effects and maybe isn't such a good idea (like if there are cases in which operator delete is called without a destructor having been called). But it would make the problem painfully obvious.
There is lots of discussion on irrelevant issues above. Yes, mainly for C compatibility there are a number of guarantees you can rely as long as you know what you are doing. All this is, however, irrelevant to your main question. The main question is: Is there any situation where an object can be deleted using a pointer type which doesn't match the dynamic type of the object and where the pointed to type doesn't have a virtual destructor. The answer is: no, there is not.
The logic for this can be derived from what the run-time system is supposed to do: it gets a pointer to an object and is asked to delete it. It would need to store information on how to call derived class destructors or about the amount of memory the object actually takes if this were to be defined. However, this would imply a possibly quite substantial cost in terms of used memory. For example, if the first member requires very strict alignment, e.g. to be aligned at an 8 byte boundary as is the case for double, adding a size would add an overhead of at least 8 bytes to allocate memory. Even though this might not sound too bad, it may mean that only one object instead of two or four fits into a cache line, reducing performance substantially.

Derived to base class conversion

How does the conversion between derived and base class internally occurs and how does compiler knows or does it store the size of object?
For example in the following:
class A
{
public:
A():x(2){};
private:
int x;
};
class B : public A
{
public:
B():A(),y(5){};
private:
int y;
};
class C : public B
{
public:
C():B(),z(9){};
private:
int z;
};
int main()
{
C *CObj = new C;
B *pB = static_cast<B*>(CObj);
delete CObj;
}
Edit: It must have been this:
B BObj = static_cast<B>(*CObj);
You don't have any "derived to base" conversion in your code. What you have in your code is a pointer-to-derived to pointer-to-base conversion. (This conversion does not require any explicit cast, BTW)
B *pB = CObj; // no need for the cast
In order to perform the pointer conversion, there's no need to know the size of the object. So, it is not clear where your reference to "size of the object" comes from.
In fact, in the typical implementation the above conversion for single-inheritance hierarchy of non-polymorphic classes is purely conceptual. I.e. the compiler does not do anything besides simply copying the numerical value of the derived pointer into the base pointer. No extra information is needed to perform this operation. No size, no nothing.
In more complicated situations (like multiple inheritance), the compiler might indeed have to generate code that would adjust the value of the pointer. And it will indeed need to know the sizes of the objects involved. But the sizes involved are always compile-time ones, i.e. they are compile-time constants, meaning that the compiler does immediately know them.
In even more complicated cases, like virtual inheritance, this conversion is normally supported by run-time structures implicitly built into the object, which will include everything deemed necessary. Run-time size of the object might be included as well, if the implementation chooses to do so.
Note that you don't need the static_cast here; it's perfectly legal to "up-cast" a pointer-to-derived-class to a pointer-to-parent-class.
In this example, there is no conversion going on. The pointer value stays the same (i.e. under the hood, CObj and pB point at the same memory, though things get more complex with multiple inheritance). The compiler organises the members of B and C objects in memory so that everything just works. As we're dealing with pointers, the size of the object doesn't matter (that was only relevant when you created a new C).
If you had any virtual methods, then we could talk about vtables and vptrs (http://en.wikipedia.org/wiki/Vtable).
A derived class object has base class subobjects. Specifically the Standard says in 10.3
"The order in which the base class
subobjects are allocated in the most
derived object (1.8) is unspecified"
This means that even though many a times, the base subobject could be right at the beginning of the derived object, it is not necessary. Hence the conversion from Derived* to Base* is completely unspecified and is probably left as a degree of latitude to compiler developers.
I would say that it is important to know the rules of the language and the reason behind the same, rather than worry about how compiler implements them. As an example, I have seen far too many discussions on VTABLE and VPTR which is a compiler specific implementation to achieve dynamic binding. Instead it helps to know about the concept of 'unique final overrider' that is enough to understand the concept of virtual functions and dynamic binding. The point is to focus on 'what' rather than 'how', because 'how' most of the times is not required. I say most of the times because in some cases it helps. An example is to understand the concept of 'pointer to members'. It helps to know that it is usually implemented in some form of 'offset' rather than being a regular pointer.
How does the conversion between derived and base class internally occurs
Implementation defined.
Imposable to answer unless you tell us which compiler you are using.
But generally not worth knowing or worrying about (unless you are writing a compiler).
and how does compiler knows [editor] size of the object
The compiler knows the size (It has worked out the size of C during compilation).
or does it store the size of object?
The object does not need to know the size and thus it is not stored as part of the class.
The runtime memory management (used via new) may need to know (but it is implementation defined) so that it can correctly release the memory (but anything it stores will not be stroed in the object).
If you have ever done any C, the answer would come from itself.
A memory allocator doesn't care at all about what it is storing. It just have to know what memory ranges has been allocated. It doesn't see the difference between a C and an int[4]. It just have to know how to free the memory range that starts at the given pointer.