Signed INT Conversion of MSB ->LSB and LSB->MSB in C++ - c++

I checked out the SWAR algorithm (SIMD Within A Register) for reversing bit order of unsigned ints. Is there something similar for signed int?

The algorithm only works on unsigned integers, since sign-extension during bit-shifting is not wanted.
Since the algorithm uses only the binary representation, not the numeric value, you can just cast to an unsigned integer of equal size (it will have identical representation), use the algorithm, and cast back to signed. These conversions won't turn into any assembly instructions, they just cause the compiler to produce logical shift right instead of arithmetic shift right.

It depends on what you mean by reversing the bits of a signed integer. However, in general, if you plan to place the sign bit in the LSB position and the LSB in the sign bit (which is the normal way to swap anything) then the same algoritm could be used for both signed and unsigned integers.
If this isn't the case, please explain what you mean by reversing a signed integer.

Related

Bit shifting with leading 1

When I use the >> bitwise operator on 1000 in c++ it gives this result: 1100. I want the result to be 0100. When the 1 is in any other position this is exactly what happens, but with a leading 1 it goes wrong. Why is that and how can it be avoided?
The behavior you describe is coherent with what happens on some platforms when right-shifting a signed integer with the high bit set (so, negative values).
In this case, on many platforms compilers will emit code to perform an arithmetic shift, which propagates the sign bit; this, on platforms with 2's complement representation for negative integers (= virtually every current platform) has the effect of giving the "x >> i = floor(x/2i)" behavior even on negative values. Notice that this is not contractual - as far as the C++ standard is concerned, shifting negative integers in implementation-defined behavior, so any compiler is free to implement different semantics for it1.
To come to your question, to obtain the "regular" shift behavior (generally called "logical shift") you have to make sure to work on unsigned integers. This can be obtained either making sure that the variable you are shifting is of unsigned type (e.g. unsigned int) or, if it's a literal, by putting an U suffix to it (e.g. 1 is an int, 1U is an unsigned int).
If the data you have is of a signed type (e.g. int) you may cast it to the corresponding unsigned type before shifting without risks (conversion from a signed int to an unsigned one is well-defined by the standard, and doesn't change the bit values on 2's complement machines).
Historically, this comes from the fact that C strove to support even machines that didn't have "cheap" arithmetic shift functionality at hardware level and/or didn't use 2's complement representation.
As mentioned by others, when right shifting on a signed int, it is implementation defined whether you will get 1s or 0s. In your case, because the left most bit in 1000 is a 1, the "replacement bits" are also 1. Assuming you must work with signed ints, in order to get rid of it, you can apply a bitmask.

C++ why does this not provide the system maximum size for integer?

So, if I understand correctly, an integer is a collection of bytes, it represents numbers in base-two format, if you will.
Therefore, if I have unsigned int test=0, is should really just consist of a field of bits, all of which are zero. However,
unsigned int test=0;
test=~test;
produces -1.
I would've thought that this would've filled all the bits with '1', making the integer as large as it can be on that system....
Thanks for any help!
How do you print the value?
If it's displayed as "-1" or a large unsigned integer is just a manner of the bits are interpreted when printing them out, the bits themselves don't know the difference.
You need to print it as an unsigned value.
Also, as pointed out by other answers, you're assming a lot about how the system stores the numbers; there's no guarantee that there's a specific correlation between a number and the bits used to represent that number.
Anyway, the proper way to get this value is to #include <climits> and then just use UINT_MAX.
You're not understanding correctly. An integer represents an integer, and that's it. The specifics of the representation are not part of the standard (with a few exceptions), and you have no business assuming any correlation between bitwise operations and integer values.
(Ironically, what the standard does mandate via modular arithmetic rules is that -1 converted to an unsigned integer is in fact the largest possible value for that unsigned type.)
Update: To clarify, I'm speaking generally for all integral types. If you only use unsigned types (which I assumed you weren't because of your negative answer), you have a well-defined correspondence between bitwise operations and the represented value.
Alternatively you can use:
unsigned int test =0;
test--;

does in c++ the conversion from unsigned int to int always preserve the bit pattern?

From the standard (4.7) it looks like the conversion from int to unsigned int, when they both use the same number of bits, is purely conceptual:
If the destination type is unsigned, the resulting value is the least
unsigned integer congruent to the source integer (modulo 2 n where n
is the number of bits used to represent the unsigned type). [ Note: In
a two’s complement representation, this conversion is conceptual and
there is no change in the bit pattern (if there is no truncation). —
end note ]
So in this direction the conversion preserves the bitmask. I am not sure the standard guarantees the same for the conversion from unsigned int to int (again, assuming the same number of bits are used). The standard here says:
If the destination type is signed, the value is unchanged if it can be
represented in the destination type (and bit-field width); otherwise,
the value is implementation-defined.
What does it exactly mean "the destination type" here? For instance 2^32-1 cannot be represented by a 32 bit int. Does that mean that it cannot be represented in the destination type and therefore it cannot be assumed that the bit pattern will stay the same?
You cannot assume anything.
The first quote doesn't state that the bitmask remains the same. It may be the same in two's complement, but not in one's complement or other representations.
Second, implementation-defined means implementation-defined, you can't assume anything in general.
In theory, the representation can be completely different after each conversion. That's it.
If you look at it in a realistic way things come more concrete. Usually, int's are stored in two's complement and signed->unsigned preserves the pattern as unsigned->signed does (since the value can be implementation-defined, the cheapest way is doing nothing).
int is the destination type in this case. As you say 2^32-1 cannot be represented so in this case so it is implementation-specific. Although, I've only ever seen it preserve bit patterns.
EDIT: I should add that in the embedded world often whats done when one storage location needs multiple representations that are bit-for-bit identical we often use unions.
so in this case
union FOO {
int32_t signedVal;
uint32_t unsignedVal;
} var;
var can be accessed as var.signedVal to get the 32 bits stored as a signed int and var.unsignedVal to get the 32 bits stored as an unsigned value. In this case bits will be preserved.
"Destination type" refers to the type you're assigning/casting to.
The whole paragraph means a 32 bit unsigned int converted to a 32 bit signed int will stay as-is, given the value fits into the signed int. If they don't fit, it depends on the implementation on what it does (e.g. truncate). That means it really depends on the implementation whether the bits stay or whether they're changed (there's no guarantee).
Or in other words: If the unsigned int uses its most significant bit, the result is no longer predictable. Otherwise there's no change (other than changing the "name on the box").

What do the C and C++ standards say about bit-level integer representation and manipulation?

I know the C and C++ standards don't dictate a particular representation for numbers (could be two's complement, sign-and-magnitude, etc.). But I don't know the standards well enough (and couldn't find if it's stated) to know if there are any particular restrictions/guarantees/reserved representations made when working with bits. Particularly:
If all the bits in an integer type are zero, does the integer as whole represent zero?
If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
Is there a guaranteed way to check if any bit is not set?
Is there a guaranteed way to check if any bit is set? (#3 and #4 kind of depend on #1 and #2, because I know how to set, for example the 5th bit (see #5) in some variable x, and I'd like to check a variable y to see if it's 5th bit is 1, I would like to know if if (x & y) will work (because as I understand, this relies on the value of the representation and not whether nor not that bit is actually 1 or 0))
Is there a guaranteed way to set the left-most and/or right-most bits? (At least a simpler way than taking a char c with all bits true (set by c = c | ~c) and doing c = c << (CHAR_BIT - 1) for setting the high-bit and c = c ^ (c << 1) for the low-bit, assuming I'm not making any assumptions I should't be, given these questions)
If the answer to #1 is "no" how could one iterate over the bits in an integer type and check if each one was a 1 or a 0?
I guess my overall question is: are there any restrictions/guarantees/reserved representations made by the C and C++ standards regarding bits and integers, despite the fact that an integer's representation is not mandated (and if the C and C++ standards differ in this regard, what's their difference)?
I came up with these questions while doing my homework which required me to do some bit manipulating (note these aren't questions from my homework, these are much more "abstract").
Edit: As to what I refer to as "bits," I mean "value forming" bits and am not including "padding" bits.
(1) If all the bits in an integer type are zero, does the integer as whole represent zero?
Yes, the bit pattern consisting of all zeroes always represents 0:
The representations of integral types shall define values by use of a pure binary numeration system.49 [§3.9.1/7]
49 A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive bits are additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest position.
(2) If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
No. In fact, signed magnitude is specifically allowed:
[ Example: this International Standard permits 2’s complement, 1’s complement and signed magnitude representations for integral types. —end
example ] [§3.9.1/7]
(3) Is there a guaranteed way to check if any bit is not set?
I believe the answer to this is "no," if you consider signed types. It is equivalent to equality testing with a bit pattern of all ones, which is only possible if you have a way to produce a signed number with bit pattern of all ones. For an unsigned number this representation is guaranteed, but casting from unsigned to signed is undefined if the number is unrepresentable:
If the destination type is signed, the value is unchanged if it can be represented in the destination type (and bit-field width); otherwise, the value is implementation-defined. [§4.7/3]
(4) Is there a guaranteed way to check if any bit is set?
I don't think so, because signed magnitude is allowed—0 would compare equal to −0. But it should be possible with unsigned numbers.
(5) Is there a guaranteed way to set the left-most and/or right-most bits?
Again, I believe the answer is "yes" for unsigned numbers, but "no" for signed numbers. Shifts are undefined for negative signed numbers:
Otherwise, if E1 has a signed type and non-negative value, and E1 × 2E2 is representable in the result type, then that is the resulting value; otherwise, the behavior is undefined. [§5.8/2]
You use the term "all bits" repeatedly, but you do not clarify what "all bits" you are referring to. Object representation of integer types in C/C++ might include value-forming bits and padding bits. The only integer type that is guaranteed not to have padding bits is [signed/unsigned] char.
The language always guaranteed that if all value-forming bits are zero, then the represented integer value is also zero.
As for padding bits, things are/were a bit more complicated. The original specification of C language (C89/90 as well as the original C99) did not guarantee that setting all object bits to zero produced a valid integer representation. It could've produced an invalid trap representation. I.e. in the original C (and even in C99 at first) using memset(..., 0, ...) on integer types did not guarantee that the objects will receive valid zero values (with the exception of [signed/unsigned] char). This was changed in later specifications, namely in one of the technical corrigendums for C99. Now it is required that all-zero bit pattern in an integer object (that involves all bits, including padding ones) represents a valid zero value.
I.e. in modern C it is legal to use memset(..., 0, ...) to set any integer objects to zero, but it became legal only after C99.
You already got some answers about the representation of integer values. There is exactly one way that is guaranteed to give you all the individual bits of any object that is represented in memory: view it as array of unsigned char. This is the only integral type that has no padding bits and is guaranteed to have no trap representation. So casting a pointer of type T* to your object to unsigned char* will always work, as long as you only access the first sizeof(T) bytes. By that you could inspect and set all bytes (and thus bits) to your liking.
If you are interested in more details, here I have written something up about the anatomy of integer types in C. C++ might differ a bit from that, in particular type puning through union as described there doesn't seem to be well defined in C++.
Q: If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
No. The standards for C and C++ don't rule out signed magnitude or one's complement, both of which have +0 and -0. While +0 and -0 do have to compare equal, but they do not have to have the same representation.
Good luck finding a machine nowadays that uses signed magnitude or one's complement.
If you want your brain to explode, consider this: If you interpret an int or long or long long as an array of unsigned char (which is the most reasonable thing to do if you want to see all the bits), you know that the order of bytes is not defined, for example "bigendian" vs. "littleendian". We all (hopefully) know that.
But it is worse: Each bit of an int could be stored in any of the bits of the array of char. So there are 32! ways how the bits of a 32 bit integer could be mapped to an array of four 8-bit unsigned chars by a truly bizarre implementation. Fortunately, I haven't encountered more than two ways myself (and I know of one more ordering in a real computer).
If all the bits in an integer type are zero, does the integer as whole represent zero?
Edit: since you have now clarified that you are not concerned with the padding bits, the answer to this is actually "yes". But I leave the original:
Not necessarily, it could be a trap representation. See C99 6.2.6.1:
For unsigned integer types other than unsigned char, the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need not be any of the latter)
The presence of padding bits allows for the possibility that all 0 is a trap representation. (As noted by Keith Thompson in the comment below, the more recent C11 makes explicit that such a representation is not a trap representation).
and
The values of any padding bits are unspecified
and
44) Some combinations of padding bits might generate trap representations
If you restrict the question to value and sign bits, the answer is yes, due to 6.2.6.2:
If there are N value bits, each bit shall represent a different
power of 2 between 1 and 2 N −1 , so that objects of that type shall be capable of representing values from 0 to 2 N − 1 using a pure binary representation; this shall be known as the value representation.
and
If the sign bit is zero, it shall not affect the resulting value.
If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
Not necessarily, and in fact sign-and-magnitude is explicitly supported in 6.2.6.2.
Is there a guaranteed way to check if any bit is not set?
If you do not care about padding and sign bits, you could just compare to 0, but this would not work with a 1's complement representation (which is allowed) seeing as all bits 0 and all bits 1 both represent the value 0.
Otherwise: you can read the value of each byte via an unsigned char *, and compare the result to 0:
Values stored in unsigned bit-fields and objects of type unsigned char
shall be represented using a pure binary notation
If you want to check a specific value bit, you could construct a suitable bitmask using (1u << n), but this will not necessarily let you inspect the sign bit.
Is there a guaranteed way to check if any bit is set?
The answer is essentially the same as to the previous question.
Is there a guaranteed way to set the left-most and/or right-most bits?
Do you mean left-most value bit? You could count the bits in INT_MAX or UINT_MAX or equivalent depending on the type, and use that to construct a value (via 1 << n) with which to OR the original value.
If the answer to #1 is "no" how could one iterate over the bits in an integer type and check if each one was a 1 or a 0?
You can do so using a bitmask which you left shift repeatedly, but you can check only the value bits this way and not the sign bit.
For the bitmanipulations you could make a struct with 8 one unsigned bit fields and let the pointer of that struct point to your char. In that way you can easily access each bit. But the compiler will probably do masking under the hood, so it is only a cleaner way for the programmer I think. You must check that your compiler doesn't change the order of the fields when doing this.
yourstruct* pChar=(yourstruct*)(&c)
pChar.Bit7=1;
Let me caveat this by saying I'm addressing C and C++ in general (e.g. C90 and lower, MS Visual C++, etc): the "greatest common denominator" (vs. the latest/greatest cx11 "standard").
Q: If all the bits in an integer type are zero, does the integer as whole represent zero?
A: Yes
Q: If any bit in an integer type is one, does the integer as a whole represent non-zero? (if this is a "yes" then some representations like sign-and-magnitude would be additionally restricted)
A: Yes. This includes the sign bit, for a signed int.
I'm frankly not familiar with "magnitude"
Q: Is there a guaranteed way to check if any bit is not set?
A: "And'ing" a bitmask is always guaranteed.
Q: Is there a guaranteed way to check if any bit is set?
A: Again, "and'ing" a bitmask is always guaranteed.
Q: Is there a guaranteed way to set the left-most and/or right-most bits?
A: I believe you should always have a "MAX_INT" available for all implementations/all architectures to determine the leftmost bit.
I'm prepared to be flamed ... but I believe the above is accurate. And I hope it helps.
IMHO...

What is wrong with this bit-manipulation code from an interview question?

I was having a look over this page: http://www.devbistro.com/tech-interview-questions/Cplusplus.jsp, and didn't understand this question:
What’s potentially wrong with the following code?
long value;
//some stuff
value &= 0xFFFF;
Note: Hint to the candidate about the base platform they’re developing for. If the person still doesn’t find anything wrong with the code, they are not experienced with C++.
Can someone elaborate on it?
Thanks!
Several answers here state that if an int has a width of 16 bits, 0xFFFF is negative. This is not true. 0xFFFF is never negative.
A hexadecimal literal is represented by the first of the following types that is large enough to contain it: int, unsigned int, long, and unsigned long.
If int has a width of 16 bits, then 0xFFFF is larger than the maximum value representable by an int. Thus, 0xFFFF is of type unsigned int, which is guaranteed to be large enough to represent 0xFFFF.
When the usual arithmetic conversions are performed for evaluation of the &, the unsigned int is converted to a long. The conversion of a 16-bit unsigned int to long is well-defined because every value representable by a 16-bit unsigned int is also representable by a 32-bit long.
There's no sign extension needed because the initial type is not signed, and the result of using 0xFFFF is the same as the result of using 0xFFFFL.
Alternatively, if int is wider than 16 bits, then 0xFFFF is of type int. It is a signed, but positive, number. In this case both operands are signed, and long has the greater conversion rank, so the int is again promoted to long by the usual arithmetic conversions.
As others have said, you should avoid performing bitwise operations on signed operands because the numeric result is dependent upon how signedness is represented.
Aside from that, there's nothing particularly wrong with this code. I would argue that it's a style concern that value is not initialized when it is declared, but that's probably a nit-pick level comment and depends upon the contents of the //some stuff section that was omitted.
It's probably also preferable to use a fixed-width integer type (like uint32_t) instead of long for greater portability, but really that too depends on the code you are writing and what your basic assumptions are.
I think depending on the size of a long the 0xffff literal (-1) could be promoted to a larger size and being a signed value it will be sign extended, potentially becoming 0xffffffff (still -1).
I'll assume it's because there's no predefined size for a long, other than it must be at least as big as the preceding size (int). Thus, depending on the size, you might either truncate value to a subset of bits (if long is more than 32 bits) or overflow (if it's less than 32 bits).
Yeah, longs (per the spec, and thanks for the reminder in the comments) must be able to hold at least -2147483647 to 2147483647 (LONG_MIN and LONG_MAX).
For one value isn't initialized before doing the and so I think the behaviour is undefined, value could be anything.
long type size is platform/compiler specific.
What you can here say is:
It is signed.
We can't know the result of value &= 0xFFFF; since it could be for example value &= 0x0000FFFF; and will not do what expected.
While one could argue that since it's not a buffer-overflow or some other error that's likely to be exploitable, it's a style thing and not a bug, I'm 99% confident that the answer that the question-writer is looking for is that value is operated on before it's assigned to. The value is going to be arbitrary garbage, and that's unlikely to be what was meant, so it's "potentially wrong".
Using MSVC I think that the statement would perform what was most likely intended - that is: clear all but the least significant 16 bits of value, but I have encountered other platforms which would interpret the literal 0xffff as equivalent to (short)-1, then sign extend to convert to long, in which case the statement "value &= 0xFFFF" would have no effect.
"value &= 0x0FFFF" is more explicit and robust.