I have a very rudimentary camera which generates 3 vectors for use with gluLookAt(...) the problem is I'm not sure if this is correct, I adapted code from something my lecturer showed us (I think he got it from somewhere).
This actually works until you spin the mouse round in circles than camera starts to rotate around the z-axis. Which shouldn't happen as the mouse coords are only attached to the pitch and yaw not the roll.
Camera
// Camera.hpp
#ifndef MOOT_CAMERA_INCLUDE_HPP
#define MOOT_CAMERA_INCLUDE_HPP
#include <GL/gl.h>
#include <GL/glu.h>
#include <boost/utility.hpp>
#include <Moot/Platform.hpp>
#include <Moot/Vector3D.hpp>
namespace Moot
{
class Camera : public boost::noncopyable
{
protected:
Vec3f m_position, m_up, m_right, m_forward, m_viewPoint;
uint16_t m_height, m_width;
public:
Camera()
{
m_forward = Vec3f(0.0f, 0.0f, -1.0f);
m_right = Vec3f(1.0f, 0.0f, 0.0f);
m_up = Vec3f(0.0f, 1.0f, 0.0f);
}
void setup(uint16_t setHeight, uint16_t setWidth)
{
m_height = setHeight;
m_width = setWidth;
}
void move(float distance)
{
m_position += (m_forward * distance);
}
void addPitch(float setPitch)
{
m_forward = (m_forward * cos(setPitch) + (m_up * sin(setPitch)));
m_forward.setNormal();
// Cross Product
m_up = (m_forward / m_right) * -1;
}
void addYaw(float setYaw)
{
m_forward = ((m_forward * cos(setYaw)) - (m_right * sin(setYaw)));
m_forward.setNormal();
// Cross Product
m_right = m_forward / m_up;
}
void addRoll(float setRoll)
{
m_right = (m_right * cos(setRoll) + (m_up * sin(setRoll)));
m_right.setNormal();
// Cross Product
m_up = (m_forward / m_right) * -1;
}
virtual void apply() = 0;
}; // Camera
} // Moot
#endif
Snippet from update cycle
// Mouse movement
m_camera.addPitch((float)input().mouseDeltaY() * 0.001);
m_camera.addYaw((float)input().mouseDeltaX() * 0.001);
apply() in the camera class is defined in an inherited class, which is called from the draw function of the game loop.
void apply()
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(40.0,(GLdouble)m_width/(GLdouble)m_height,0.5,20.0);
m_viewPoint = m_position + m_forward;
gluLookAt( m_position.getX(), m_position.getY(), m_position.getZ(),
m_viewPoint.getX(), m_viewPoint.getY(), m_viewPoint.getZ(),
m_up.getX(), m_up.getY(), m_up.getZ());
}
Don't accumulate the transforms in your vectors, store the angles and generate the vectors on-the-fly.
EDIT: Floating-point stability. Compare the output of a and b:
#include <iostream>
using namespace std;
int main()
{
const float small = 0.00001;
const unsigned int times = 100000;
float a = 0.0f;
for( unsigned int i = 0; i < times; ++i )
{
a += small;
}
cout << a << endl;
float b = 0.0f;
b = small * times;
cout << b << endl;
return 0;
}
Output:
1.00099
1
I am not sure where to start, as you are posting only small snippets, not enough to fully reproduce the problem.
In your methods you update all parameters, and your parameters are depending on previous values. I am not sure what exactly you call, because you posted that you call only these two :
m_camera.addPitch((float)input().mouseDeltaY() * 0.001);
m_camera.addYaw((float)input().mouseDeltaX() * 0.001);
You should somehow break that circle by adding new parameters, and the output should depend on the input (for example, m_position shouldn't depend on m_forward).
You should also initialize all variables in the constructor, and I see you are initializing only m_forward, m_right and m_up (by the way, use initialization list).
You might want to reconsider your approach in favor of using quaternion rotations as described in this paper. This has the advantage of representing all of your accumulated rotations as a single rotation about a single vector (only need to keep track of a single quaternion) which you can apply to the canonical orientation vectors (up, norm and right) describing the camera orientation. Furthermore, since you're using C++, you can use the Boost quaternion class to manage the math of most of it.
Related
I am trying to create a uvn quaternion based camera in opengl, having used a variety of tutorials listed below, and having read up on quaternions and axis angle rotation. I am left with a peculiar bug which I cannot seem to fix.
Basically the camera seems to work fine up until the camera is rotated approx 45 degrees from +z at this point tilting the camera up or down seems to tilt the camera around its target axis, turning the up vector.
By the time the camera faces along -z tilting up or down gives the illusion of the opposite, up tilts down and down tilts up.
I have seen other implementations suggesting the use of a non uvn system where quaternions are accumulated into one which describes the current orientation as a delta from some arbitrary start angle. This sounds great however I can't seem to work out exactly how I would implement this, specifically the conversion from this to a view matrix.
Elsewhere on SO I read about splitting the rotation into two quaternions that represent the yaw and pitch separately but I'm not convinced that this is the cause of the problem since in this context, correct me if I am wrong but my understanding is that the order in which you apply the two rotations does not matter.
Relevant Source Code Snippets:
Quarternion Operations
Quaternion<TValue> conjugate() const{
return Quaternion({ { -m_values[X], -m_values[Y], -m_values[Z], m_values[W] } });
};
Quaternion<TValue>& operator*=(const Quaternion<TValue>& rhs) {
TValue x, y, z, w;
w = rhs[W] * m_values[W] - rhs[X] * m_values[X] - rhs[Y] * m_values[Y] - rhs[Z] * m_values[Z];
x = rhs[W] * m_values[X] + rhs[X] * m_values[W] - rhs[Y] * m_values[Z] + rhs[Z] * m_values[Y];
y = rhs[W] * m_values[Y] + rhs[X] * m_values[Z] + rhs[Y] * m_values[W] - rhs[Z] * m_values[X];
z = rhs[W] * m_values[Z] - rhs[X] * m_values[Y] + rhs[Y] * m_values[X] + rhs[Z] * m_values[W];
m_values[X] = x;
m_values[Y] = y;
m_values[Z] = z;
m_values[W] = w;
return *this;
};
static Quaternion<TValue> rotation(Vector<3, TValue> axis, TValue angle){
float x, y, z, w;
TValue halfTheta = angle / 2.0f;
TValue sinHalfTheta = sin(halfTheta);
return Quaternion<TValue>({ { axis[X] * sinHalfTheta, axis[Y] * sinHalfTheta, axis[Z] * sinHalfTheta, cos(halfTheta) } });
};
Vector Rotation Operation
Vector<dimensions, TValue> rotate(const Vector<3, TValue> axis, float angle){
Quaternion<TValue> R = Quaternion<TValue>::rotation(axis, angle);
Quaternion<TValue> V = (*this);
Vector<dimensions, TValue> result = R * V * R.conjugate();
return result;
}
Camera Methods
Camera::Camera(Vector<2, int> windowSize, float fov, float near, float far):
m_uvn(Matrix<4, float>::identity()),
m_translation(Matrix<4, float>::identity()),
m_ar(windowSize[Dimensions::X] / (float)windowSize[Dimensions::Y]),
m_fov(fov),
m_near(near),
m_far(far),
m_position(),
m_forward({ { 0, 0, 1 } }),
m_up({ { 0, 1, 0 } })
{
setViewMatrix(Matrix<4, float>::identity());
setProjectionMatrix(Matrix<4, float>::perspective(m_ar, m_near, m_far, m_fov));
};
Matrix<4, float> Camera::getVPMatrix() const{
return m_vp;
};
const Vector<3, float> Camera::globalY = Vector<3, float>({ { 0, 1, 0 } });
void Camera::setProjectionMatrix(const Matrix<4, float> p){
m_projection = p;
m_vp = m_projection * m_view;
};
void Camera::setViewMatrix(const Matrix<4, float> v){
m_view = v;
m_vp = m_projection * m_view;
};
void Camera::setTranslationMatrix(const Matrix<4, float> t){
m_translation = t;
setViewMatrix(m_uvn * m_translation);
}
void Camera::setPosition(Vector<3, float> position){
if (position != m_position){
m_position = position;
setTranslationMatrix(Matrix<4, float>::translation(-position));
}
};
void Camera::moveForward(float ammount){
setPosition(m_position + (m_forward * ammount));
}
void Camera::moveRight(float ammount){
setPosition(m_position + (getRight() * ammount));
}
void Camera::moveUp(float ammount){
setPosition(m_position + (m_up * ammount));
}
void Camera::setLookAt(Vector<3, float> target, Vector<3, float> up){
Vector<3, float> newUp = up.normalize();
Vector<3, float> newForward = target.normalize();
if (newUp != m_up || newForward != m_forward){
m_up = newUp;
m_forward = newForward;
Vector<3, float> newLeft = getLeft();
m_up = newLeft * m_forward;
m_uvn = generateUVN();
setViewMatrix(m_uvn * m_translation);
}
};
void Camera::rotateX(float angle){
Vector<3, float> hAxis = (globalY * m_forward).normalize();
m_forward = m_forward.rotate(hAxis, angle).normalize();
m_up = (m_forward * hAxis).normalize();
m_uvn = generateUVN();
setViewMatrix(m_translation * m_uvn);
}
void Camera::rotateY(float angle){
Vector<3, float> hAxis = (globalY * m_forward).normalize();
m_forward = m_forward.rotate(globalY, angle).normalize();
m_up = (m_forward * hAxis).normalize();
m_uvn = generateUVN();
setViewMatrix(m_translation * m_uvn);
}
Vector<3, float> Camera::getRight(){
return (m_forward * m_up).normalize();
}
Vector <3, float> Camera::getLeft(){
return (m_up * m_forward).normalize();
}
};
I am guessing that the problem is in either my implementation of a quaternion or the way I am using it, but due to the complex nature of the system I cannot seem to pin down the problem any further than that. Due to the weird bugs being experienced I am unsure if there is just something wrong with the way I am trying to implement the camera?
Tutorials
https://www.youtube.com/watch?v=1Aw1PDu33PI
http://www.gamedev.net/page/resources/_/technical/math-and-physics/a-simple-quaternion-based-camera-r1997
Quarternion/Vector Math
http://mathworld.wolfram.com/Quaternion.html
https://en.wikipedia.org/wiki/Cross_product
http://ogldev.atspace.co.uk/www/tutorial13/tutorial13.html
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm
Old question but still a relevant topic so I'll give some pointers. The thing to remember is a quaternion is a 3D map. Unit, and to a lesser degree Pure, quaternions provide a consistent way to say this rotation is this value. The benefits of this over the Euler angles are they attempt to reconstruct orientation from rotation about some axis where as the quaternion directly correlates to the orientation and can avoid gimbal lock
Specifically for a quaternion camera let Q{1,0,0,0} where w=1, the corresponding matrix to this quaternion is the identity matrix. There for any valid unit quaternion when decomposed into a 3x3 matrix gives you the (usually) world space rotation of the camera. However you don't even need that because you can define your camera space so that say X{1,0,0} Y{0,1,0} Z{0,0,-1} then multiply these unit axes by your cameras orientation quaternion and the resulting vector is the transformed unit vector. These then create your right up and front vectors which can be used to build the 3x3 rotation of the view transform.
Moving the camera should be relatively straight forward at that point. The linear movement vectors can be easily reconstructed and applied to the camera position and the angular movement can be achieved by multiplying the the camera quaternion with the direction which is the normal of the corresponding plane in which the rotation happens. For example, turning left and right is a rotation that happens in there XZ plane there for the Y vector{as a unit quaternion not a pure quaternion} would be multiplied with the camera quaternion producing the desired rotational effect
For a school project, my group is using OpenCV to capture video. From these (top-down) images, positions of objects are extracted and turned into a list of Points. Those Points then get triangulated using http://code.google.com/p/poly2tri/ (to overcome the problem of possible non-convex objects). Then, using the coordinates of the triangulated ground pane, we draw the objects in 3D using freeglut. (Side and Top panes are calculated using the ground pane coordinates). The problem we have is that when we delete our old list of Points, the application randomly crashes. Sometimes after 1 second, sometimes after 30 seconds, sometimes after a few minutes. The error we get is "Access violation writing location 0xCCCCCCCC"
Our code:
void WorldLayoutBuilder::update()
{
pointList.clear();
// Capture image
<code to capture image and get countours>
for(size_t i = 0; i < contours.size(); i++)
{
if(contours[i].size() > 50)
{
approxPolyDP(contours[i], approxShape, cv::arcLength(cv::Mat(contours[i]), true)*0.04, true);
drawContours(drawing, contours, i, cv::Scalar(255, 0, 0), 0);
std::vector<Point> newObject;
for(size_t j = 0; j < contours[i].size(); j++)
{
cv::Point newPoint = contours[i][j];
newObject.push_back(Point((float) newPoint.x / 100, 0.0f,(float) newPoint.y / 100));
}
pointList.push_back(newObject);
}
}
ObjectCreator3D::createObjects(&pointList);
contours.clear();
<code to release images, etc>
}
This captures an image, retrieves coordinates of objects, and then calls ObjectCreator3D::createObjects():
void ObjectCreator3D::createObjects(std::list<std::vector<Point>>* inputList)
{
std::list<WorldObject>* tempObjects = new std::list<WorldObject>;
for(std::vector<Point>&pointObject : *inputList)
{
WorldObject worldObject(&pointObject);
tempObjects->push_back(worldObject);
}
DataStorage::getInstance()->setObjects(tempObjects);
}
All objects are turned into WorldObjects:
#include <list>
#include <iostream>
#include <GL/glut.h>
#include <GL/freeglut.h>
#include <time.h>
#include "WorldObject.h"
#include "Point.h"
//Constant height - adjustable/randomized solution is partially implemented in the constructor.
const float WorldObject::HEIGHT = 5.0f;
template <class C> void FreeClear(C & cntr)
{
for(typename C::iterator it = cntr.begin(); it != cntr.end(); ++it)
{
delete * it;
}
cntr.clear();
}
WorldObject::WorldObject(std::vector<Point>* pointList)
{
//TODO, when we have time. Seems difficult because height will change each update...
/*srand (time(NULL));
float fGeneratedY = (rand() % 20 + 2) / 2.0f;*/
cdt = nullptr;
for (Point &point : *pointList)
//point.setY(fGeneratedY);
point.setY(HEIGHT);
this->pointList = pointList;
}
WorldObject::~WorldObject()
{
//Cleanup
delete cdt;
FreeClear(polyPoints);
}
/*
Author Tim Cocu & Bas Rops
Function for drawing the WorldObject
*/
void WorldObject::draw()
{
glPushMatrix();
glColor3f(0.8f, 0.8f, 0.8f);
//Calculate our bottom pane
calculateTriangles();
//BOTTOM PANE
for (unsigned int i = 0; i < calculatedTriangles.size(); i++)
{
p2t::Triangle& t = *calculatedTriangles[i];
p2t::Point& a = *t.GetPoint(0);
p2t::Point& b = *t.GetPoint(1);
p2t::Point& c = *t.GetPoint(2);
glBegin(GL_TRIANGLES);
glNormal3f(0, -1, 0);
glVertex3f((GLfloat)a.x, (GLfloat)0.0f, (GLfloat)a.y);
glVertex3f((GLfloat)b.x, (GLfloat)0.0f, (GLfloat)b.y);
glVertex3f((GLfloat)c.x, (GLfloat)0.0f, (GLfloat)c.y);
glEnd();
}
//TOP PANE
for (unsigned int i = 0; i < calculatedTriangles.size(); i++)
{
p2t::Triangle& t = *calculatedTriangles[i];
p2t::Point& a = *t.GetPoint(0);
p2t::Point& b = *t.GetPoint(1);
p2t::Point& c = *t.GetPoint(2);
glBegin(GL_TRIANGLES);
glNormal3f(0, 1, 0);
glVertex3f((GLfloat)a.x, (GLfloat)HEIGHT, (GLfloat)a.y);
glVertex3f((GLfloat)b.x, (GLfloat)HEIGHT, (GLfloat)b.y);
glVertex3f((GLfloat)c.x, (GLfloat)HEIGHT, (GLfloat)c.y);
glEnd();
}
glColor3f(1.0f, 1.0f, 1.0f);
//SIDE PANES
for(std::size_t iPaneCounter = 0; iPaneCounter < pointList->size(); iPaneCounter++)
{
Point firstPoint = (*pointList)[iPaneCounter];
Point secondPoint (0.0f, 0.0f, 0.0f);
if(iPaneCounter + 1 < pointList->size())
secondPoint.set((*pointList)[iPaneCounter + 1].getX(), (*pointList)[iPaneCounter + 1].getY(), (*pointList)[iPaneCounter + 1].getZ() );
else
secondPoint.set((*pointList)[0].getX(), (*pointList)[0].getY(), (*pointList)[0].getZ());
glBegin(GL_POLYGON);
float fNormalX = (firstPoint.getY() * secondPoint.getZ()) - (firstPoint.getZ() * secondPoint.getY());
float fNormalY = -((secondPoint.getZ() * firstPoint.getX()) - (secondPoint.getX() * firstPoint.getZ()));
float fNormalZ = (firstPoint.getX() * secondPoint.getY()) - (firstPoint.getY() * secondPoint.getX());
glNormal3f(fNormalX, fNormalY, fNormalZ);
glVertex3f(firstPoint.getX(), 0.0f, firstPoint.getZ());
glVertex3f(secondPoint.getX(), 0.0f, secondPoint.getZ());
glVertex3f(secondPoint.getX(), secondPoint.getY(), secondPoint.getZ());
glVertex3f(firstPoint.getX(), firstPoint.getY(), firstPoint.getZ());
glEnd();
}
}
/*
Calculates triangles that make a ground or top pane. Used for calculating possible non-convex objects
*/
void WorldObject::calculateTriangles()
{
//Empty the polyPoints list
if(polyPoints.size() > 0)
FreeClear(polyPoints);
//Convert our Points to p2t::Points
for(std::size_t iBottomIndex = 0; iBottomIndex < pointList->size(); iBottomIndex++)
polyPoints.push_back(new p2t::Point((*pointList)[iBottomIndex].getX(), (*pointList)[iBottomIndex].getZ()));
if(cdt == nullptr)
//Create CDT (Constrained Delaunay Triangulation) and add primary polyPoints
//NOTE: polyPoints must be a simple polygon. The polyPoints' points constitute constrained edges. No repeating points are allowed!
cdt = new p2t::CDT(polyPoints);
//Turn our polyPoints into p2t::Triangles
cdt->Triangulate();
//Set the triangles to use for drawing
calculatedTriangles = cdt->GetTriangles();
}
/*
Retrieve a pointer to a list of Points
*/
std::vector<Point>* WorldObject::getPoints()
{
return pointList;
}
/*
Retrieve a pointer to a list of p2t::Triangles
*/
std::vector<p2t::Triangle*> WorldObject::getCalculatedTriangles()
{
return calculatedTriangles;
}
When all WorldObjects are created, they are stored in DataStorage, DataStorage::getInstance()->setObjects() is called:
void DataStorage::setObjects(std::list<WorldObject>* objectList)
{
delete this->objectList;
this->objectList = objectList;
}
The application seems to crash on delete this->objectList; in setObjects(), so we think the application is trying to delete things he can't delete.
Any help would be greatly appreciated, we've been on this for a few days already
Here, you pass a pointer to an object owned by the list to the constructor of WorldObject:
for(std::vector<Point>&pointObject : *inputList)
{
WorldObject worldObject(&pointObject);
tempObjects->push_back(worldObject);
}
In WorldObject you store the pointer:
//Default Constructor
WorldObject::WorldObject(std::vector<Point>* pointList)
{
float fGeneratedY = (rand() % 20 + 2) / 2.0f;*/
cdt = nullptr;
for (Point &point : *pointList)
point.setY(HEIGHT);
this->pointList = pointList;
}
Which means WorldObject::pointList is only valid so long as the std::list which you constructed your WorldObjects from is still around. (After that, the result is undefined -- it could work, it could crash, it could format your hard drive and leak your identity to Texas).
If you insist on working with raw pointers, you as programmer are responsible for checking and keeping track of the lifetime of every single pointer. This is error prone and will cause random crashes that you will find difficult to track down.
Stop using raw pointers. Instead, if an object owns a resource, store it in a std::unique_ptr<>. If you want the same resource to be shared by multiple objects, use std::shared_ptr and std::weak_ptr, unless the lifetime of all but one of these objects is much, much shorter than the others in a guaranteed way.
This is how I position my torus (satellite) upon a sphere, and then rotate it around the sphere:
int satellite_1_1_step = 0;
int &r_satellite_1_1_step = satellite_1_1_step;
float satellite_1_1_divider = 300;
float satellite_1_1_theta = 6.5;
float satellite_1_1_phi = 1;
float satellite_1_1_theta_increment = 20/satellite_1_1_divider;
float satellite_1_1_phi_increment = 20/satellite_1_1_divider;
void satellite_1_1 ()
{
float satellite_1_1_theta_math = (satellite_1_1_theta-(satellite_1_1_theta_increment * r_satellite_1_1_step))/10.0*M_PI;
float satellite_1_1_phi_math = (satellite_1_1_phi-(satellite_1_1_phi_increment * r_satellite_1_1_step))/10.0*2*M_PI;
r_satellite_1_1_x = radius_exodus_pos * sin(satellite_1_1_theta_math) * cos(satellite_1_1_phi_math);
r_satellite_1_1_y = radius_exodus_pos * sin(satellite_1_1_theta_math) * sin(satellite_1_1_phi_math);
r_satellite_1_1_z = radius_exodus_pos * cos(satellite_1_1_theta_math);
glPushMatrix();
glTranslatef(r_satellite_1_1_x,r_satellite_1_1_y,r_satellite_1_1_z);
glColor3f(1,0,0);
glutSolidTorus(0.04, 0.2, 10, 100);
glEnd();
glPopMatrix();
}
This is how I update and increment its position:
void satellite_1_1_increment()
{
if (r_satellite_1_1_step < satellite_1_1_divider)
{
++(r_satellite_1_1_step);
}
if (r_satellite_1_1_step >= satellite_1_1_divider)
{
r_satellite_1_1_step = 1;
}
}
So, my torus (satellite) moves around the sphere, ending back up in its starting position, and continues over again - which is great. However, the path it takes wobbles around the poles (I think) along the way - rather than simply circumnavigating the sphere.
Is there an improvement that can be made to my math which will cause the satellite to circumnavigate the sphere in a more circular path?
The first issue I see is this:
void satellite_1_1_increment()
{
if (r_satellite_1_1_step < satellite_1_1_divider)
{
++(r_satellite_1_1_step);
}
if (r_satellite_1_1_step >= satellite_1_1_divider)
{
r_satellite_1_1_step = 1;
}
}
What happens at the edge case when the step is incremented by the first test such that it satisfies the second test? It is immediately reset, thus missing the value. I think you want it written like this to avoid that problem:
void satellite_1_1_increment()
{
if (r_satellite_1_1_step >= satellite_1_1_divider)
r_satellite_1_1_step = 1;
else ++r_satellite_1_1_step;
}
Is 1 the correct reset value? Maybe it should be 0?
Changed the first two lines of:
void satellite_1_1 ()
float satellite_1_1_theta_math = (satellite_1_1_theta+(satellite_1_1_theta_increment* r_satellite_1_1_step))*M_PI;
float satellite_1_1_phi_math = (satellite_1_1_phi-(satellite_1_1_phi_increment* r_satellite_1_1_step))*M_PI/360;
Now the satellite orbits 360 degrees along the equator. Adding a glRotatef after my glPushMatrix lets me fine tune its axis.
Thanks again wallyk. - kropcke
My Code works for my purely glut implementation, but I am trying to get it to work in qt.
I have a vector of masspoints for a wire mesh system
std::vector<masspoint> m_particles;
The problem is in my qt version none of what I write really sticks and I am left with an array of zeros. Basically I am confused why the glut version has correct values but the qt one does not given that it is basically identical code. What is wrong with the qt code?
Yes I only see zeros when using qDebug. When I am calling my drawing function in the qt version all vertex points turn out to be 0 in all components so nothing is seen.
int myboog = 1;
int county = 0;
// Constructors
Cloth::Cloth(float width, float height, int particles_in_width, int particles_in_height):
m_width(particles_in_width),
m_height(particles_in_height),
m_dimensionWidth(width),
m_dimensionHeight(height),
m_distanceX(width/(float)particles_in_width),
m_distanceY(height/(float)particles_in_height)
{
//Set the particle array to the given size
//Height by width
//mparticles is the name of our vector
m_particles.resize(m_width*m_height);
qDebug() << m_particles.size();
// Create the point masses to simulate the cloth
for (int x = 0; x < m_width; ++x)
{
for (int y=0; y < m_height; ++y)
{
// Place the pointmass of the cloth, lift the edges to give the wind more effect as the cloth falls
Vector3f position = Vector3f(m_dimensionWidth * (x / (float)m_width),
((x==0)||(x==m_width-1)||(y==0)||(y==m_height-1)) ? m_distanceY/2.0f:0,
m_dimensionHeight * (y / (float)m_height));
// The gravity effect is applied to new pmasspoints
m_particles[y * m_width + x] = masspoint(position,Vector3f(0,-0.06,0));
}
}
int num = (int)m_particles.size();
for (int i=0; i<num; ++i)
{
masspoint* p = &m_particles[i];
if(myboog)
{
qDebug() << "test " << *p->getPosition().getXLocation() << county;
county++;
}
}
myboog = 0;
// Calculate the normals for the first time so the initial draw is correctly lit
calculateClothNormals();
}
Code for masspoint involved in constructor for CLoth
#ifndef MASSPOINT_H
#define MASSPOINT_H
#include <QGLWidget>
#include "vector3f.h"
class masspoint
{
private:
Vector3f m_position; // Current Location of the pointmass
Vector3f m_velocity; // Direction and speed the pointmass is traveling in
Vector3f m_acceleration; // Speed at which the pointmass is accelerating (used for gravity)
Vector3f m_forceAccumulated; // Force that has been accumulated since the last update
Vector3f m_normal; // Normal of this pointmass, used to light the cloth when drawing
float m_damping; // Amount of velocity lost per update
bool m_stationary; // Whether this pointmass is currently capible of movement
public:
masspoint& operator= (const masspoint& particle);
//Some constructors
masspoint();
masspoint(const masspoint& particle);
masspoint(Vector3f position, Vector3f acceleration);
//Like eulur integration
void integrate(float duration);
// Accessor functions
//Get the position of the point mass
inline Vector3f getPosition() const {return m_position;}
Vector stuff involved in the constructor for CLoth
#ifndef VECTOR3F_H
#define VECTOR3F_H
#include <math.h>
// Vector library to be used
class Vector3f
{
private:
float m_x, m_y, m_z;
public:
const float* getXLocation() const { return &m_x; }
I have a camera object that I have put together from reading on the net that handles moving forward and backward, strafe left and right and even look around with the mouse. But when I move in any direction plus try to look around it jumps all over the place, but when I don't move and look around its fine.
I'm hoping someone can help me work out why I can move and look around at the same time?
main.h
#include "SDL/SDL.h"
#include "SDL/SDL_opengl.h"
#include <cmath>
#define CAMERASPEED 0.03f // The Camera Speed
struct tVector3 // Extended 3D Vector Struct
{
tVector3() {} // Struct Constructor
tVector3 (float new_x, float new_y, float new_z) // Init Constructor
{ x = new_x; y = new_y; z = new_z; }
// overload + operator
tVector3 operator+(tVector3 vVector) {return tVector3(vVector.x+x, vVector.y+y, vVector.z+z);}
// overload - operator
tVector3 operator-(tVector3 vVector) {return tVector3(x-vVector.x, y-vVector.y, z-vVector.z);}
// overload * operator
tVector3 operator*(float number) {return tVector3(x*number, y*number, z*number);}
// overload / operator
tVector3 operator/(float number) {return tVector3(x/number, y/number, z/number);}
float x, y, z; // 3D vector coordinates
};
class CCamera
{
public:
tVector3 mPos;
tVector3 mView;
tVector3 mUp;
void Strafe_Camera(float speed);
void Move_Camera(float speed);
void Rotate_View(float speed);
void Position_Camera(float pos_x, float pos_y,float pos_z,
float view_x, float view_y, float view_z,
float up_x, float up_y, float up_z);
};
void Draw_Grid();
camera.cpp
#include "main.h"
void CCamera::Position_Camera(float pos_x, float pos_y, float pos_z,
float view_x, float view_y, float view_z,
float up_x, float up_y, float up_z)
{
mPos = tVector3(pos_x, pos_y, pos_z);
mView = tVector3(view_x, view_y, view_z);
mUp = tVector3(up_x, up_y, up_z);
}
void CCamera::Move_Camera(float speed)
{
tVector3 vVector = mView - mPos;
mPos.x = mPos.x + vVector.x * speed;
mPos.z = mPos.z + vVector.z * speed;
mView.x = mView.x + vVector.x * speed;
mView.z = mView.z + vVector.z * speed;
}
void CCamera::Strafe_Camera(float speed)
{
tVector3 vVector = mView - mPos;
tVector3 vOrthoVector;
vOrthoVector.x = -vVector.z;
vOrthoVector.z = vVector.x;
mPos.x = mPos.x + vOrthoVector.x * speed;
mPos.z = mPos.z + vOrthoVector.z * speed;
mView.x = mView.x + vOrthoVector.x * speed;
mView.z = mView.z + vOrthoVector.z * speed;
}
void CCamera::Rotate_View(float speed)
{
tVector3 vVector = mView - mPos;
tVector3 vOrthoVector;
vOrthoVector.x = -vVector.z;
vOrthoVector.z = vVector.x;
mView.z = (float)(mPos.z + sin(speed)*vVector.x + cos(speed)*vVector.z);
mView.x = (float)(mPos.x + cos(speed)*vVector.x - sin(speed)*vVector.z);
}
and the mousemotion code
void processEvents()
{
int mid_x = screen_width >> 1;
int mid_y = screen_height >> 1;
int mpx = event.motion.x;
int mpy = event.motion.y;
float angle_y = 0.0f;
float angle_z = 0.0f;
while(SDL_PollEvent(&event))
{
switch(event.type)
{
case SDL_MOUSEMOTION:
if( (mpx == mid_x) && (mpy == mid_y) ) return;
// Get the direction from the mouse cursor, set a resonable maneuvering speed
angle_y = (float)( (mid_x - mpx) ) / 1000; //1000
angle_z = (float)( (mid_y - mpy) ) / 1000; //1000
// The higher the value is the faster the camera looks around.
objCamera.mView.y += angle_z * 2;
// limit the rotation around the x-axis
if((objCamera.mView.y - objCamera.mPos.y) > 8) objCamera.mView.y = objCamera.mPos.y + 8;
if((objCamera.mView.y - objCamera.mPos.y) <-8) objCamera.mView.y = objCamera.mPos.y - 8;
objCamera.Rotate_View(-angle_y);
SDL_WarpMouse(mid_x, mid_y);
break;
case SDL_KEYUP:
objKeyb.handleKeyboardEvent(event,true);
break;
case SDL_KEYDOWN:
objKeyb.handleKeyboardEvent(event,false);
break;
case SDL_QUIT:
quit = true;
break;
case SDL_VIDEORESIZE:
screen = SDL_SetVideoMode( event.resize.w, event.resize.h, screen_bpp, SDL_OPENGL | SDL_HWSURFACE | SDL_RESIZABLE | SDL_GL_DOUBLEBUFFER | SDL_HWPALETTE );
screen_width = event.resize.w;
screen_height = event.resize.h;
init_opengl();
std::cout << "Resized to width: " << event.resize.w << " height: " << event.resize.h << std::endl;
break;
default:
break;
}
}
}
I'm not entirely sure what you are doing above.
Personally I would just allow a simple 4x4 matrix. Any implementation will do. To rotate you, simply, need to rotate using the change of mouse x and y as euler inputs for rotation around the y and x axes. There is lots of code available all over the internet that will do this for you.
Some of those matrix libraries won't provide you with a "MoveForward()" function. If this is the case its ok, moving forward is pretty easy. The third column (or row if you are using row major matrices) is your forward vector. Extract it. Normalise it (It really should be normalised anyway so this step may not be needed). Multiply it by how much you wish to move forward and then add it to the position (the 4th column/row).
Now here is the odd part. A view matrix is a special type of matrix. The matrix above defines the view space. If you multiply your current model matrix by this matrix you will not get the answer you expect. Because you wish to transform it such that the camera is at the origin. As such you need to, effectively, undo the camera transformation to re-orient things to the view defined above. To do this you multiply your model matrix by the inverse of the view matrix.
You now have an object defined in the correct view space.
This is my very simple camera class. It does not handle the functionality you describe but hopefully will give you a few ideas on how to set up the class (Be warned, I use row major, ie DirectX style, matrices).
BaseCamera.h:
#ifndef BASE_CAMERA_H_
#define BASE_CAMERA_H_
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
#include "Maths/Vector4.h"
#include "Maths/Matrix4x4.h"
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
class BaseCamera
{
protected:
bool mDirty;
MathsLib::Matrix4x4 mCameraMat;
MathsLib::Matrix4x4 mViewMat;
public:
BaseCamera();
BaseCamera( const BaseCamera& camera );
BaseCamera( const MathsLib::Vector4& vPos, const MathsLib::Vector4& vLookAt );
BaseCamera( const MathsLib::Matrix4x4& matCamera );
bool IsDirty() const;
void SetDirty();
MathsLib::Matrix4x4& GetOrientationMatrix();
const MathsLib::Matrix4x4& GetOrientationMatrix() const;
MathsLib::Matrix4x4& GetViewMatrix();
};
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
inline MathsLib::Matrix4x4& BaseCamera::GetOrientationMatrix()
{
return mCameraMat;
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
inline const MathsLib::Matrix4x4& BaseCamera::GetOrientationMatrix() const
{
return mCameraMat;
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
inline bool BaseCamera::IsDirty() const
{
return mDirty;
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
inline void BaseCamera::SetDirty()
{
mDirty = true;
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
#endif
BaseCamera.cpp:
#include "Render/stdafx.h"
#include "BaseCamera.h"
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
BaseCamera::BaseCamera() :
mDirty( true )
{
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
BaseCamera::BaseCamera( const BaseCamera& camera ) :
mDirty( camera.mDirty ),
mCameraMat( camera.mCameraMat ),
mViewMat( camera.mViewMat )
{
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
BaseCamera::BaseCamera( const MathsLib::Vector4& vPos, const MathsLib::Vector4& vLookAt ) :
mDirty( true )
{
MathsLib::Vector4 vDir = (vLookAt - vPos).Normalise();
MathsLib::Vector4 vLat = MathsLib::CrossProduct( MathsLib::Vector4( 0.0f, 1.0f, 0.0f ), vDir ).Normalise();
MathsLib::Vector4 vUp = MathsLib::CrossProduct( vDir, vLat );//.Normalise();
mCameraMat.Set( vLat, vUp, vDir, vPos );
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
BaseCamera::BaseCamera( const MathsLib::Matrix4x4& matCamera ) :
mDirty( true ),
mCameraMat( matCamera )
{
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
MathsLib::Matrix4x4& BaseCamera::GetViewMatrix()
{
if ( IsDirty() )
{
mViewMat = mCameraMat.Inverse();
mDirty = false;
}
return mViewMat;
}
/*+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+*/
I agree with Goz. You need to use homegenous 4x4 matrices if you want to represent affine transformations such as rotate + translate
Assuming row major representation then if there is no scaling or shearing, your 4x4 matrix represents the following:
Rows 0 to 2 : The three basis vectors of your local co-ordinate system ( i.e x,y,z )
Row 3 : the current translation from the origin
So to move along your local x vector, as Goz says, because you can assume it's a unit vector
if there is no scale/shear you just multiply it by the move step ( +ve or -ve ) then add the resultant vector onto Row 4 in the matrix
So taking a simple example of starting at the origin with your local frame set to world frame then your matrix would look something like this
1 0 0 0 <--- x unit vector
0 1 0 0 <--- y unit vector
0 0 1 0 <--- z unit vector
0 0 0 1 <--- translation vector
In terms of a way most game cameras work then the axes map like this:
x axis <=> Camera Pan Left/Right
y axis <=> Camera Pan Up/Down
z axis <=> Camera Zoom In/Out
So if I rotate my entire frame of reference to say look at a new point LookAt then as Goz puts in his BaseCamera overloaded constructor code, you then construct a new local co-ordinate system and set this into your matrix ( all mCameraMat.Set( vLat, vUp, vDir, vPos ) does typically is set those four rows of the matrix i.e VLat would be row 0, vUp row 1, vDir row 2 and vPos row 3 )
Then to zoom in/out would just become row 3 = row 2 * stepval
Again as Goz, rightly points out, you then need to transform this back into world-space and this is done by multiplying by the inverse of the view matrix