OpenGL - Position camera with 6 DOF vector - opengl

I work with an Augmented Reality framework on Android, and it gives me the camera position as a 6 degrees of freedom vector that includes the estimated camera optical and camera orientation.
Since I'm a complete newbie in OpenGL, I don't quite understand what that means and my question is - how to use this 4x4 matrix to position my camera in OpenGL.
Below is a sample from Android SDK which renders a simple textured triangle (I didn't know which details are important so I included the whole two classes - the renderer and the triangle object).
My guess is that it positions the camera with gluLookAt in onDrawFrame(). I want to adjust this,
I receive these matrices from the framework (these are just samples) -
When the camera should look directly at the triangle, I need to use a matrix of this type to somehow position my camera:
0.9930384 0.045179322 0.10878302 0.0
-0.018241059 0.9713616 -0.23690554 0.0
-0.11637083 0.23327199 0.9654233 0.0
21.803288 -14.920643 -150.6514 1.0
When I move the camera a bit far away:
0.9763242 0.041258257 0.21234424 0.0
0.014808476 0.96659267 -0.2558918 0.0
-0.21580763 0.25297752 0.94309634 0.0
17.665 -18.520836 -243.28784 1.0
When I tilt my camera a bit to the right:
0.8340566 0.0874321 0.5447095 0.0
0.054606464 0.96943074 -0.23921578 0.0
-0.5489726 0.22926341 0.8037848 0.0
-8.809776 -7.5869675 -244.01971 1.0
Any thoughts? My guess is that the only thing that matters is actually the last row, everything else is close to zero.
I'd be happy to get any advice on how to adjust this code to use those matrices, including any settings such as setting perspective matrices or whatsoever (again, a newbie).
public class TriangleRenderer implements GLSurfaceView.Renderer{
public TriangleRenderer(Context context) {
mContext = context;
mTriangle = new Triangle();
}
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
/*
* By default, OpenGL enables features that improve quality
* but reduce performance. One might want to tweak that
* especially on software renderer.
*/
gl.glDisable(GL10.GL_DITHER);
/*
* Some one-time OpenGL initialization can be made here
* probably based on features of this particular context
*/
gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
GL10.GL_FASTEST);
gl.glClearColor(0,0,0,0);
gl.glShadeModel(GL10.GL_SMOOTH);
gl.glEnable(GL10.GL_DEPTH_TEST);
gl.glEnable(GL10.GL_TEXTURE_2D);
/*
* Create our texture. This has to be done each time the
* surface is created.
*/
int[] textures = new int[1];
gl.glGenTextures(1, textures, 0);
mTextureID = textures[0];
gl.glBindTexture(GL10.GL_TEXTURE_2D, mTextureID);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST);
gl.glTexParameterf(GL10.GL_TEXTURE_2D,
GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_CLAMP_TO_EDGE);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_CLAMP_TO_EDGE);
gl.glTexEnvf(GL10.GL_TEXTURE_ENV, GL10.GL_TEXTURE_ENV_MODE,
GL10.GL_REPLACE);
InputStream is = mContext.getResources()
.openRawResource(R.raw.robot);
Bitmap bitmap;
try {
bitmap = BitmapFactory.decodeStream(is);
} finally {
try {
is.close();
} catch(IOException e) {
// Ignore.
}
}
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);
bitmap.recycle();
}
public void onDrawFrame(GL10 gl) {
/*
* By default, OpenGL enables features that improve quality
* but reduce performance. One might want to tweak that
* especially on software renderer.
*/
gl.glDisable(GL10.GL_DITHER);
gl.glTexEnvx(GL10.GL_TEXTURE_ENV, GL10.GL_TEXTURE_ENV_MODE,
GL10.GL_MODULATE);
/*
* Usually, the first thing one might want to do is to clear
* the screen. The most efficient way of doing this is to use
* glClear().
*/
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
/*
* Now we're ready to draw some 3D objects
*/
gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
GLU.gluLookAt(gl, 0, 0, -5, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
gl.glActiveTexture(GL10.GL_TEXTURE0);
gl.glBindTexture(GL10.GL_TEXTURE_2D, mTextureID);
gl.glTexParameterx(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S,
GL10.GL_REPEAT);
gl.glTexParameterx(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T,
GL10.GL_REPEAT);
long time = SystemClock.uptimeMillis() % 4000L;
float angle = 0.090f * ((int) time);
gl.glRotatef(angle, 0, 0, 1.0f);
mTriangle.draw(gl);
}
public void onSurfaceChanged(GL10 gl, int w, int h) {
gl.glViewport(0, 0, w, h);
/*
* Set our projection matrix. This doesn't have to be done
* each time we draw, but usually a new projection needs to
* be set when the viewport is resized.
*/
float ratio = (float) w / h;
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);
}
private Context mContext;
private Triangle mTriangle;
private int mTextureID;} class Triangle {
public Triangle() {
// Buffers to be passed to gl*Pointer() functions
// must be direct, i.e., they must be placed on the
// native heap where the garbage collector cannot
// move them.
//
// Buffers with multi-byte datatypes (e.g., short, int, float)
// must have their byte order set to native order
ByteBuffer vbb = ByteBuffer.allocateDirect(VERTS * 3 * 4);
vbb.order(ByteOrder.nativeOrder());
mFVertexBuffer = vbb.asFloatBuffer();
ByteBuffer tbb = ByteBuffer.allocateDirect(VERTS * 2 * 4);
tbb.order(ByteOrder.nativeOrder());
mTexBuffer = tbb.asFloatBuffer();
ByteBuffer ibb = ByteBuffer.allocateDirect(VERTS * 2);
ibb.order(ByteOrder.nativeOrder());
mIndexBuffer = ibb.asShortBuffer();
// A unit-sided equalateral triangle centered on the origin.
float[] coords = {
// X, Y, Z
-0.5f, -0.25f, 0,
0.5f, -0.25f, 0,
0.0f, 0.559016994f, 0
};
for (int i = 0; i < VERTS; i++) {
for(int j = 0; j < 3; j++) {
mFVertexBuffer.put(coords[i*3+j] * 2.0f);
}
}
for (int i = 0; i < VERTS; i++) {
for(int j = 0; j < 2; j++) {
mTexBuffer.put(coords[i*3+j] * 2.0f + 0.5f);
}
}
for(int i = 0; i < VERTS; i++) {
mIndexBuffer.put((short) i);
}
mFVertexBuffer.position(0);
mTexBuffer.position(0);
mIndexBuffer.position(0);
}
public void draw(GL10 gl) {
gl.glFrontFace(GL10.GL_CCW);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mFVertexBuffer);
gl.glEnable(GL10.GL_TEXTURE_2D);
gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, mTexBuffer);
gl.glDrawElements(GL10.GL_TRIANGLE_STRIP, VERTS,
GL10.GL_UNSIGNED_SHORT, mIndexBuffer);
}
private final static int VERTS = 3;
private FloatBuffer mFVertexBuffer;
private FloatBuffer mTexBuffer;
private ShortBuffer mIndexBuffer;

The "trick" is to understand, that OpenGL does not have a camera. What is does is transforming the whole world by a movement that's the exact opposite of what a camera would have to be moved from position (0,0,0).
Such transformations (=movements) are described in form of so called homogenous transformation matrices. Fixed Function OpenGL uses a combination of two matrices:
Modelview M, which describes placement of the world and view (and objects within the world to some degree).
Projection P, which could be seen as kind of "lens" of the virtual camera (remember, there is no camera in OpenGL).
Any vertex position v is transformed by c = P * M * v (c is the transformed vertex coordinate in clip space, that is screen space not in pixels but with the screen edges at -1, 1 – the viewport then maps from clip space to screen pixel space).
What Android gives you is such a transformation matrix. I'm not sure, but looking at the values it might be, that you're given P * M. As long as there is no lighting involved you can load that directly into the modelview matrix using glLoadMatrix, and projection being set to identity. You pass matrices to OpenGL as a array of 16 floats; the indexing order of OpenGL sometimes confuses people, but the way you dumped the android matrices I think you already got them right (you printed them "wrong", transposed that is, which is the same pitfall people fall into with OpenGL glLoadMatrix, but two times transposing is identity, it's probably right. If it doesn't work at first, flip column and rows, i.e. "mirror" the matrix on its diagonal running from up-left do bottom-right).

Related

Clipping a sphere

Had asked a question here:
Drawing a portion of a hemisphere airspace
Probably it was more into GIS so have moved to more basic and specific implementation in OpenGL to get the desired output.
I have simply overridden/copied functions that are drawing the hemisphere and altering the GL part to basically INSERT clipping. I am able to draw the hemisphere centred at a location (latitude,longitude) and radius may be 2000. But when i cut it using a plane nothing happens. Please check the equation of the plane(its a plane parallel to the surface of the globe at height may be 1000, so (0,0,+1,1000))
The base class has drawUnitSphere so that might be causing some problems so trying to use GL's gluSphere(). But can't even see the sphere on globe. Used translate to shift it to my location(lat/lon) but still can't see it. Might be some issues with lat/lon and cartesian coordinates, or placing of my clipping code. Please check.
Here is the code:
#Override
public void drawSphere(DrawContext dc)
{
double[] altitudes = this.getAltitudes(dc.getVerticalExaggeration());
boolean[] terrainConformant = this.isTerrainConforming();
int subdivisions = this.getSubdivisions();
if (this.isEnableLevelOfDetail())
{
DetailLevel level = this.computeDetailLevel(dc);
Object o = level.getValue(SUBDIVISIONS);
if (o != null && o instanceof Integer)
subdivisions = (Integer) o;
}
Vec4 centerPoint = this.computePointFromPosition(dc,
this.location.getLatitude(), this.location.getLongitude(), altitudes[0], terrainConformant[0]);
Matrix modelview = dc.getView().getModelviewMatrix();
modelview = modelview.multiply(Matrix.fromTranslation(centerPoint));
modelview = modelview.multiply(Matrix.fromScale(this.getRadius()));
double[] matrixArray = new double[16];
modelview.toArray(matrixArray, 0, false);
this.setExpiryTime(-1L); // Sphere geometry never expires.
GL gl = dc.getGL(); // GL initialization checks for GL2 compatibility.
gl.glPushAttrib(GL.GL_POLYGON_BIT | GL.GL_TRANSFORM_BIT);
try
{
gl.glEnable(GL.GL_CULL_FACE);
gl.glFrontFace(GL.GL_CCW);
// Were applying a scale transform on the modelview matrix, so the normal vectors must be re-normalized
// before lighting is computed. In this case we're scaling by a constant factor, so GL_RESCALE_NORMAL
// is sufficient and potentially less expensive than GL_NORMALIZE (or computing unique normal vectors
// for each value of radius). GL_RESCALE_NORMAL was introduced in OpenGL version 1.2.
gl.glEnable(GL.GL_RESCALE_NORMAL);
gl.glMatrixMode(GL.GL_MODELVIEW);
gl.glPushMatrix();
//clipping
DoubleBuffer eqn1 = BufferUtils.createDoubleBuffer(8).put(new double[] {0, 0, 1, 100});
eqn1.flip();
gl.glClipPlane(GL.GL_CLIP_PLANE0, eqn1);
gl.glEnable(GL.GL_CLIP_PLANE0);
try
{
gl.glLoadMatrixd(matrixArray, 0);
//this.drawUnitSphere(dc, subdivisions);
gl.glLoadIdentity();
gl.glTranslatef(75.2f, 32.5f, 0.0f);
gl.glColor3f(1.0f, 0.0f, 0.0f);
GLU glu = dc.getGLU();
GLUquadric qd=glu.gluNewQuadric();
glu.gluSphere(qd,3.0f,20,20);
}
finally
{
gl.glPopMatrix();
}
}
finally
{
gl.glPopAttrib();
}
}
#Override
public void drawUnitSphere(DrawContext dc, int subdivisions)
{
Object cacheKey = new Geometry.CacheKey(this.getClass(), "Sphere", subdivisions);
Geometry geom = (Geometry) this.getGeometryCache().getObject(cacheKey);
if (geom == null || this.isExpired(dc, geom))
{
if (geom == null)
geom = new Geometry();
this.makeSphere(1.0, subdivisions, geom);
this.updateExpiryCriteria(dc, geom);
this.getGeometryCache().add(cacheKey, geom);
}
this.getRenderer().drawGeometry(dc, geom);
}
#Override
public void makeSphere(double radius, int subdivisions, Geometry dest)
{
GeometryBuilder gb = this.getGeometryBuilder();
gb.setOrientation(GeometryBuilder.OUTSIDE);
GeometryBuilder.IndexedTriangleArray ita = gb.tessellateSphere((float) radius, subdivisions);
float[] normalArray = new float[3 * ita.getVertexCount()];
gb.makeIndexedTriangleArrayNormals(ita, normalArray);
dest.setElementData(GL.GL_TRIANGLES, ita.getIndexCount(), ita.getIndices());
dest.setVertexData(ita.getVertexCount(), ita.getVertices());
dest.setNormalData(ita.getVertexCount(), normalArray);
}

3D Camera Rotation in OpenGL: How to prevent camera jitter?

I'm fairly new to OpenGL and 3D programming but I've begun to implement camera rotation using quaternions based on the tutorial from http://www.cprogramming.com/tutorial/3d/quaternions.html . This is all written in Java using JOGL.
I realise these kind of questions get asked quite a lot but I've been searching around and can't find a solution that works so I figured it might be a problem with my code specifically.
So the problem is that there is jittering and odd rotation if I do two different successive rotations on one or more axis. The first rotation along the an axis, either negatively or positively, works fine. However, if I rotate positively along the an axis and then rotate negatively on that axis then the rotation will jitter back and forth as if it was alternating between doing a positive and negative rotation.
If I automate the rotation, (e.g. rotate left 500 times then rotate right 500 times) then it appears to work properly which led me to think this might be related to the keypresses. However, the rotation is also incorrect (for lack of a better word) if I rotate around the x axis and then rotate around the y axis afterwards.
Anyway, I have a renderer class with the following display loop for drawing `scene nodes':
private void render(GLAutoDrawable drawable) {
GL2 gl = drawable.getGL().getGL2();
gl.glClear(GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT);
gl.glMatrixMode(GL2.GL_PROJECTION);
gl.glLoadIdentity();
glu.gluPerspective(70, Constants.viewWidth / Constants.viewHeight, 0.1, 30000);
gl.glScalef(1.0f, -1.0f, 1.0f); //flip the y axis
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();
camera.rotateCamera();
glu.gluLookAt(camera.getCamX(), camera.getCamY(), camera.getCamZ(), camera.getViewX(), camera.getViewY(), camera.getViewZ(), 0, 1, 0);
drawSceneNodes(gl);
}
private void drawSceneNodes(GL2 gl) {
if (currentEvent != null) {
ArrayList<SceneNode> sceneNodes = currentEvent.getSceneNodes();
for (SceneNode sceneNode : sceneNodes) {
sceneNode.update(gl);
}
}
if (renderQueue.size() > 0) {
currentEvent = renderQueue.remove(0);
}
}
Rotation is performed in the camera class as follows:
public class Camera {
private double width;
private double height;
private double rotation = 0;
private Vector3D cam = new Vector3D(0, 0, 0);
private Vector3D view = new Vector3D(0, 0, 0);
private Vector3D axis = new Vector3D(0, 0, 0);
private Rotation total = new Rotation(0, 0, 0, 1, true);
public Camera(GL2 gl, Vector3D cam, Vector3D view, int width, int height) {
this.cam = cam;
this.view = view;
this.width = width;
this.height = height;
}
public void rotateCamera() {
if (rotation != 0) {
//generate local quaternion from new axis and new rotation
Rotation local = new Rotation(Math.cos(rotation/2), Math.sin(rotation/2 * axis.getX()), Math.sin(rotation/2 * axis.getY()), Math.sin(rotation/2 * axis.getZ()), true);
//multiply local quaternion and total quaternion
total = total.applyTo(local);
//rotate the position of the camera with the new total quaternion
cam = rotatePoint(cam);
//set next rotation to 0
rotation = 0;
}
}
public Vector3D rotatePoint(Vector3D point) {
//set world centre to origin, i.e. (width/2, height/2, 0) to (0, 0, 0)
point = new Vector3D(point.getX() - width/2, point.getY() - height/2, point.getZ());
//rotate point
point = total.applyTo(point);
//set point in world coordinates, i.e. (0, 0, 0) to (width/2, height/2, 0)
return new Vector3D(point.getX() + width/2, point.getY() + height/2, point.getZ());
}
public void setAxis(Vector3D axis) {
this.axis = axis;
}
public void setRotation(double rotation) {
this.rotation = rotation;
}
}
The method rotateCamera generates the new permenant quaternions from the new rotation and previous rotations while the method rotatePoint merely multiplies a point by the rotation matrix generated from the permenant quaternion.
The axis of rotation and the angle of rotation are set by simple key presses as follows:
#Override
public void keyPressed(KeyEvent e) {
if (e.getKeyCode() == KeyEvent.VK_W) {
camera.setAxis(new float[] {1, 0, 0});
camera.setRotation(0.1f);
}
if (e.getKeyCode() == KeyEvent.VK_A) {
camera.setAxis(new float[] {0, 1, 0});
camera.setRotation(0.1f);
}
if (e.getKeyCode() == KeyEvent.VK_S) {
camera.setAxis(new float[] {1, 0, 0});
camera.setRotation(-0.1f);
}
if (e.getKeyCode() == KeyEvent.VK_D) {
camera.setAxis(new float[] {0, 1, 0});
camera.setRotation(-0.1f);
}
}
I hope I've provided enough detail. Any help would be very much appreciated.
About the jittering: I don't see any render loop in your code. How is the render method triggered? By a timer or by an event?
Your messed up rotations when rotating about two axes are probably related to the fact that you need to rotate the axis of the second rotation along with the total rotation of the first axis. You cannot just apply the rotation about the X or Y axis of the global coordinate system. You must apply the rotation about the up and right axes of the camera.
I suggest that you create a camera class that stores the up, right and view direction vectors of the camera and apply your rotations directly to those axes. If this is an FPS like camera, then you'll want to rotate the camera horizontally (looking left / right) about the absolute Y axis and not the up vector. This will also result in a new right axis of the camera. Then, you rotate the camera vertically (looking up / down) about the new right axis. However, you must be careful when the camera looks directly up or down, as in this case you can't use the cross product of the view direction and up vectors to obtain the right vector.

OpenGL particles, help controlling direction

I am trying to modify this Digiben sample in order to get the effect of particles that generate from a spot (impact point) and float upwards kind of like the sparks of a fire. The sample has the particles rotating in a circle... I have tried removing the cosine/sine functions and replace them with a normal glTranslate with increasing Y value but I just can't get any real results... could anyone please point out roughly where I should add/modify the translation in this code to obtain that result?
void ParticleMgr::init(){
tex.Load("part.bmp");
GLfloat angle = 0; // A particle's angle
GLfloat speed = 0; // A particle's speed
// Create all the particles
for(int i = 0; i < P_MAX; i++)
{
speed = float(rand()%50 + 450); // Make a random speed
// Init the particle with a random speed
InitParticle(particle[i],speed,angle);
angle += 360 / (float)P_MAX; // Increment the angle so when all the particles are
// initialized they will be equally positioned in a
// circular fashion
}
}
void ParticleMgr::InitParticle(PARTICLE &particle, GLfloat sss, GLfloat aaa)
{
particle.speed = sss; // Set the particle's speed
particle.angle = aaa; // Set the particle's current angle of rotation
// Randomly set the particles color
particle.red = rand()%255;
particle.green = rand()%255;
particle.blue = rand()%255;
}
void ParticleMgr::DrawParticle(const PARTICLE &particle)
{
tex.Use();
// Calculate the current x any y positions of the particle based on the particle's
// current angle -- This will make the particles move in a "circular pattern"
GLfloat xPos = sinf(particle.angle);
GLfloat yPos = cosf(particle.angle);
// Translate to the x and y position and the #defined PDEPTH (particle depth)
glTranslatef(xPos,yPos,PDEPTH);
// Draw the first quad
glBegin(GL_QUADS);
glTexCoord2f(0,0);
glVertex3f(-5, 5, 0);
glTexCoord2f(1,0);
glVertex3f(5, 5, 0);
glTexCoord2f(1,1);
glVertex3f(5, -5, 0);
glTexCoord2f(0,1);
glVertex3f(-5, -5, 0);
glEnd(); // Done drawing quad
// Draw the SECOND part of our particle
tex.Use();
glRotatef(particle.angle,0,0,1); // Rotate around the z-axis (depth axis)
//glTranslatef(0, particle.angle, 0);
// Draw the second quad
glBegin(GL_QUADS);
glTexCoord2f(0,0);
glVertex3f(-4, 4, 0);
glTexCoord2f(1,0);
glVertex3f(4, 4, 0);
glTexCoord2f(1,1);
glVertex3f(4, -4, 0);
glTexCoord2f(0,1);
glVertex3f(-4, -4, 0);
glEnd(); // Done drawing quad
// Translate back to where we began
glTranslatef(-xPos,-yPos,-PDEPTH);
}
void ParticleMgr::run(){
for(int i = 0; i < P_MAX; i++)
{
DrawParticle(particle[i]);
// Increment the particle's angle
particle[i].angle += ANGLE_INC;
}
}
For now I am adding a glPushMatrix(), glTranslate(x, y, z) in the run() function above, right before the loop, with x,y,z as the position of the enemy for placing them on top of the enemy....is that the best place for that?
Thanks for any input!
Using glTranslate and glRotate that way will in fact decrease your program's performance. OpenGL is not a scene graph, so the matrix manipulation functions directly influence the drawing process, i.e. they don't set "object state". The issue you're running into is, that a 4×4 matrix-matrix multiplication involves 64 multiplications and 16 additions. So you're spending 96 times the computing power for moving a particle, than simply update the vertex position directly.
Now to your problem: Like I already told you, glTranslate operates on (a global) matrix state of one of 4 selectable matrices. And the effects accumulate, i.e. each glTranslate will start from the matrix the previous glTranslate left. OpenGL provides a matrix stack, where one can push a copy of the current matrix to work with, then pop to revert to the state before.
However: Matrix manipulation has been removed from OpenGL-3 core and later entirely. OpenGL matrix manipulation never was accelerated (except on one particular graphics workstation made by SGI around 1996). Today it is a anachronism, as every respectable program working with 3D geometry used much more sophisticated matrix manipulation by either own implementation or 3rd party library. OpenGL's matrix stack was just redundant. So I strongly suggest you forget about OpenGL's matrix manipulation functionality and roll your own.

Why my cylinder model cannot be rotated in the Z-axis?

I attempted to write the following code to draw a cylinder. The cylinder was drawn in C++ with OpenGL. And I'm given a little tool by the school that I could compile with my own model's cpp file and then able to rotate the model with the mouse. The tool doesn't affect the rotation of my model because it works for the other demo models. However, for some reason which I do not understand, I cannot rotate the cylinder in the Z-axis to see it in its horizontal view. So, the cylinder can only be rotated and seen in these directions:
Why I cannot rotate the cylinder to see it in this direction? The following image was rotated manually in Photoshop to illustrate the direction of view that the model couldn't rotate to:
I don't understand what is the reason for not being to rotate in that direction because the demo shown for other models(written by others) could be rotated freely in all directions.
This is the code that I have written to try in mymodel.cpp:
void drawCylinderObject() {
float topRadius = 5;
float bottomRadius = 5;
float height = 10;
int numOfPolygons = 50;
float basisvec1[3] = {1, 0, 0};
float basisvec2[3] = {0, 0, -1};
float topPosition[3] = {0, height/2.0, 0};
float bottomPosition[3] = {0, -height/2.0, 0};
for(int i=0; i<numOfPolygons; i++) {
float angle1 = (float)i/(float)numOfPolygons*2.0*M_PI;
float angle2 = ((float)i+1.0)/(float)numOfPolygons*2.0*M_PI;
vector<float> point1(3), point2(3), point3(3), point4(3);
for(int j=0; j<3; j++) {
point1[j] = topPosition[j] + topRadius * cos(angle1) * basisvec1[j] + topRadius * sin(angle1) * basisvec2[j];
}
for(int j=0; j<3; j++) {
point2[j] = bottomPosition[j] + bottomRadius * cos(angle1) * basisvec1[j] + bottomRadius * sin(angle1) * basisvec2[j];
}
for(int j=0; j<3; j++) {
point3[j] = bottomPosition[j] + bottomRadius * cos(angle2) * basisvec1[j] + bottomRadius * sin(angle2) * basisvec2[j];
}
for(int j=0; j<3; j++) {
point4[j] = topPosition[j] + topRadius * cos(angle2) * basisvec1[j] + topRadius * sin(angle2) * basisvec2[j];
}
float crossvec1[3] = {point4[0]-point1[0], point4[1]-point1[1], point4[2]-point1[2]};
float crossvec2[3] = {point2[0]-point1[0], point2[1]-point1[1], point2[2]-point1[2]};
float normalVector1[3];
crossProduct(crossvec2, crossvec1, normalVector1);
glBegin(GL_POLYGON);
glNormal3fv(normalVector1);
glVertex3f(point1[0], point1[1], point1[2]);
glVertex3f(point2[0], point2[1], point2[2]);
glVertex3f(point3[0], point3[1], point3[2]);
glVertex3f(point4[0], point4[1], point4[2]);
glEnd();
}
}
And the overwritten function I have is like this, also in mymodel.cpp:
void CRenderView::drawScene()
{
//calls the above function
drawCylinderObject();
}
What I have done basically is just to define 2 perpendicular basis unit vectors and then extend them outwards with a magnitude value. And I loop through this 360 degrees to draw the polygons to form the cylinder. But what is wrong that this way of drawing doesn't allow me to rotate the model freely?
Edit:
The following is part of the code of how the tool draws the scene. Somehow, the tool has a huge chunk of classes. Most of its classes merely sets up the GUI of the tool and then the only part that draws it is the one below in CRenderView.cpp:
void CRenderView::OnPaint()
{
// Device context for painting
CPaintDC dc(this);
// Model is stored in Document
CToolDoc *pDoc = (CToolDoc *)GetDocument();
ASSERT_VALID(pDoc);
// Useful in multidoc templates
HWND hWnd = GetSafeHwnd();
HDC hDC = ::GetDC(hWnd);
wglMakeCurrent(hDC,m_hGLContext);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(m_ClearColorRed,m_ClearColorGreen,m_ClearColorBlue,1.0f);
glPushMatrix();
// Position / translation / scale
glTranslated(m_xTranslation,m_yTranslation,m_zTranslation);
glRotatef(m_xRotation, 1.0, 0.0, 0.0);
glRotatef(m_yRotation, 0.0, 1.0, 0.0);
glScalef(m_xScaling,m_yScaling,m_zScaling);
// Start rendering...
drawScene();
glPopMatrix();
// Double buffer
SwapBuffers(dc.m_ps.hdc);
}
protected:
void drawScene();
void CRenderView::OnMouseMove(UINT nFlags,
CPoint point)
{
if(m_LeftButtonDown)
{
m_yRotation -= (float)(m_LeftDownPos.x - point.x)/3.0f;
m_xRotation -= (float)(m_LeftDownPos.y - point.y)/3.0f;
m_LeftDownPos = point;
InvalidateRect(NULL,FALSE);
}
CView::OnMouseMove(nFlags, point);
}
May I ask, why you rotate the cylinder by recalculating its vertices? Just generate a cylinder model once, then perform any following transformations on the modelview matrix. Also I think you'll want to rotate about Z, not Y.
Update
That "tool" seems to be a slightly extended version of the "MFC OpenGL CView" tutorial. *yuck*
The biggest problem I see, that the CRenderView::OnPaint function has been written by someone, who doesn't know how to properly use OpenGL.
void CRenderView::OnPaint()
{
// Device context for painting
CPaintDC dc(this);
// Model is stored in Document
CToolDoc *pDoc = (CToolDoc *)GetDocument();
ASSERT_VALID(pDoc);
// Useful in multidoc templates
HWND hWnd = GetSafeHwnd();
HDC hDC = ::GetDC(hWnd);
wglMakeCurrent(hDC,m_hGLContext);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(m_ClearColorRed,m_ClearColorGreen,m_ClearColorBlue,1.0f);
glClearColor must be called before glClear, as it sets the value that will be applied upon the glClear call. This way round it will work on the glClear call of the next frame or not at all.
glPushMatrix();
Which matrix is pushed here? This lacks a call to glMatrixMode.
Starting from some arbitrary matrix. And BTW where is the projection set (let me guess, in the OnSize handler, right?).
// Position / translation / scale
glTranslated(m_xTranslation,m_yTranslation,m_zTranslation);
glRotatef(m_xRotation, 1.0, 0.0, 0.0);
glRotatef(m_yRotation, 0.0, 1.0, 0.0);
You confirmed you want to rotate about the Z axis. So why won't you do it here? There only rotation about X and Y here. Problem is: You're using euler angles here, which have some nasty properties and are frowned upon by 3D graphics people. Better use Quaternions for representing rotations (just a suggestion).
glScalef(m_xScaling,m_yScaling,m_zScaling);
// Start rendering...
drawScene();
glPopMatrix();
// Double buffer
SwapBuffers(dc.m_ps.hdc);
}

how to draw a spiral using opengl

I want to know how to draw a spiral.
I wrote this code:
void RenderScene(void)
{
glClear(GL_COLOR_BUFFER_BIT);
GLfloat x,y,z = -50,angle;
glBegin(GL_POINTS);
for(angle = 0; angle < 360; angle += 1)
{
x = 50 * cos(angle);
y = 50 * sin(angle);
glVertex3f(x,y,z);
z+=1;
}
glEnd();
glutSwapBuffers();
}
If I don't include the z terms I get a perfect circle but when I include z, then I get 3 dots that's it. What might have happened?
I set the viewport using glviewport(0,0,w,h)
To include z should i do anything to set viewport in z direction?
You see points because you are drawing points with glBegin(GL_POINTS).
Try replacing it by glBegin(GL_LINE_STRIP).
NOTE: when you saw the circle you also drew only points, but drawn close enough to appear as a connected circle.
Also, you may have not setup the depth buffer to accept values in the range z = [-50, 310] that you use. These arguments should be provided as zNear and zFar clipping planes in your gluPerspective, glOrtho() or glFrustum() call.
NOTE: this would explain why with z value you only see a few points: the other points are clipped because they are outside the z-buffer range.
UPDATE AFTER YOU HAVE SHOWN YOUR CODE:
glOrtho(-100*aspectratio,100*aspectratio,-100,100,1,-1); would only allow z-values in the [-1, 1] range, which is why only the three points with z = -1, z = 0 and z = 1 will be drawn (thus 3 points).
Finally, you're probably viewing the spiral from the top, looking directly in the direction of the rotation axis. If you are not using a perspective projection (but an isometric one), the spiral will still show up as a circle. You might want to change your view with gluLookAt().
EXAMPLE OF SETTING UP PERSPECTIVE
The following code is taken from the excellent OpenGL tutorials by NeHe:
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
glLoadIdentity(); // Reset The Projection Matrix
// Calculate The Aspect Ratio Of The Window
gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,100.0f);
glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
glLoadIdentity(); // Reset The Modelview Matrix
Then, in your draw loop would look something like this:
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
glLoadIdentity();
glTranslatef(-1.5f,0.0f,-6.0f); // Move Left 1.5 Units And Into The Screen 6.0
glBegin(GL_TRIANGLES); // Drawing Using Triangles
glVertex3f( 0.0f, 1.0f, 0.0f); // Top
glVertex3f(-1.0f,-1.0f, 0.0f); // Bottom Left
glVertex3f( 1.0f,-1.0f, 0.0f); // Bottom Right
glEnd();
Of course, you should alter this example code your needs.
catchmeifyoutry provides a perfectly capable method, but will not draw a spatially accurate 3D spiral, as any render call using a GL_LINE primitive type will rasterize to fixed pixel width. This means that as you change your perspective / view, the lines will not change width. In order to accomplish this, use a geometry shader in combination with GL_LINE_STRIP_ADJACENCY to create 3D geometry that can be rasterized like any other 3D geometry. (This does require that you use the post fixed-function pipeline however)
I recommended you to try catchmeifyoutry's method first as it will be much simpler. If you are not satisfied, try the method I described. You can use the following post as guidance:
http://prideout.net/blog/?tag=opengl-tron
Here is my Spiral function in C. The points are saved into a list which can be easily drawn by OpenGL (e.g. connect adjacent points in list with GL_LINES).
cx,cy ... spiral centre x and y coordinates
r ... max spiral radius
num_segments ... number of segments the spiral will have
SOME_LIST* UniformSpiralPoints(float cx, float cy, float r, int num_segments)
{
SOME_LIST *sl = newSomeList();
int i;
for(i = 0; i < num_segments; i++)
{
float theta = 2.0f * 3.1415926f * i / num_segments; //the current angle
float x = (r/num_segments)*i * cosf(theta); //the x component
float y = (r/num_segments)*i * sinf(theta); //the y component
//add (x + cx, y + cy) to list sl
}
return sl;
}
An example image with r = 1, num_segments = 1024:
P.S. There is difference in using cos(double) and cosf(float).
You use a float variable for a double function cos.