Why is including a header file such an evil thing? - c++

I have seen many explanations on when to use forward declarations over including header files, but few of them go into why it is important to do so. Some of the reasons I have seen include the following:
compilation speed
reducing complexity of header file management
removing cyclic dependencies
Coming from a .net background I find header management frustrating. I have this feeling I need to master forward declarations, but I have been scrapping by on includes so far.
Why cannot the compiler work for me and figure out my dependencies using one mechanism (includes)?
How do forward declarations speed up compilations since at some point the object referenced will need to be compiled?
I can buy the argument for reduced complexity, but what would a practical example of this be?

"to master forward declarations" is not a requirement, it's a useful guideline where possible.
When a header is included, and it pulls in more headers, and yet more, the compiler has to do a lot of work processing a single translation module.
You can see how much, for example, with gcc -E:
A single #include <iostream> gives my g++ 4.5.2 additional 18,560 lines of code to process.
A #include <boost/asio.hpp> adds another 74,906 lines.
A #include <boost/spirit/include/qi.hpp> adds 154,024 lines, that's over 5 MB of code.
This adds up, especially if carelessly included in some file that's included in every file of your project.
Sometimes going over old code and pruning unnecessary includes improves the compilation dramatically just because of that. Replacing includes with forward declarations in the translation modules where only references or pointers to some class are used, improves this even further.

Why cannot the compiler work for me and figure out my dependencies using one mechanism (includes)?
It cannot because, unlike some other languages, C++ has an ambiguous grammar:
int f(X);
Is it a function declaration or a variable definition? To answer this question the compiler must know what does X mean, so X must be declared before that line.

Because when you're doing something like this :
bar.h :
class Bar {
int foo(Foo &);
}
Then the compiler does not need to know how the Foo struct / class is defined ; so importing the header that defines Foo is useless. Moreover, importing the header that defines Foo might also need importing the header that defines some other class that Foo uses ; and this might mean importing the header that defines some other class, etc.... turtles all the way.
In the end, the file that the compiler is working against is almost like the result of copy pasting all the headers ; so it will get big for no good reason, and when someone makes a typo in a header file that you don't need (or import , or something like that), then compiling your class starts to take waaay too much time (or fail for no obvious reason).
So it's a good thing to give as little info as needed to the compiler.

How do forward declarations speed up compilations since at some point the object referenced will need to be compiled?
1) reduced disk i/o (fewer files to open, fewer times)
2) reduced memory/cpu usage
most translations need only a name. if you use/allocate the object, you'll need its declaration.
this is probably where it will click for you: each file you compile compiles what is visible in its translation.
a poorly maintained system will end up including a ton of stuff it does not need - then this gets compiled for every file it sees. by using forwards where possible, you can bypass that, and significantly reduce the number of times a public interface (and all of its included dependencies) must be compiled.
that is to say: the content of the header won't be compiled once. it will be compiled over and over. everything in this translation must be parsed, checked that it's a valid program, checked for warnings, optimized, etc. many, many times.
including lazily only adds significant disk/cpu/memory increase, which turns into intolerable build times for you, while introducing significant dependencies (in non-trivial projects).
I can buy the argument for reduced complexity, but what would a practical example of this be?
unnecessary includes introduce dependencies as side effects. when you edit an include (necessary or not), then every file which includes it must be recompiled (not trivial when hundreds of thousands of files must be unnecessarily opened and compiled).
Lakos wrote a good book which covers this in detail:
http://www.amazon.com/Large-Scale-Software-Design-John-Lakos/dp/0201633620/ref=sr_1_1?ie=UTF8&s=books&qid=1304529571&sr=8-1

Header file inclusion rules specified in this article will help reduce the effort in managing header files.

I used forward declarations simply to reduce the amount of navigation between source files done. e.g. if module X calls some glue or interface function F in module Y, then using a forward declaration means the writing the function and the call can be done by only visiting 2 places, X.c and Y.c not so much of an issue when a good IDE helps you navigate, but I tend to prefer coding bottom-up creating working code then figuring out how to wrap it rather than through top down interface specification.. as the interfaces themselves evolve it's handy to not have to write them out in full.
In C (or c++ minus classes) it's possible to truly keep structure details Private by only defining them in the source files that use them, and only exposing forward declarations to the outside world - a level of black boxing that requires performance-destroying virtuals in the c++/classes way of doing things. It's also possible to avoid needing to prototype things (visiting the header) by listing 'bottom-up' within the source files (good old static keyword).
The pain of managing headers can sometimes expose how modular your program is or isn't - if its' truly modular, the number of headers you have to visit and the amount of code & datastructures declared within them should be minimized.
Working on a big project with 'everything included everywhere' through precompiled headers won't encourage this real modularity.
module dependancies can correlate with data-flow relating to performance issues, i.e. both i-cache & d-cache issues. If a program involves many modules that call each other & modify data at many random places, it's likely to have poor cache-coherency - the process of optimizing such a program will often involve breaking up passes and adding intermediate data.. often playing havoc with many'class diagrams'/'frameworks' (or at least requiring the creation of many intermediates datastructures). Heavy template use often means complex pointer-chasing cache-destroying data structures. In its optimized state, dependancies & pointer chasing will be reduced.

I believe forward declarations speed up compilation because the header file is ONLY included where it is actually used. This reduces the need to open and close the file once. You are correct that at some point the object referenced will need to be compiled, but if I am only using a pointer to that object in my other .h file, why actually include it? If I tell the compiler I am using a pointer to a class, that's all it needs (as long as I am not calling any methods on that class.)
This is not the end of it. Those .h files include other .h files... So, for a large project, opening, reading, and closing, all the .h files which are included repetitively can become a significant overhead. Even with #IF checks, you still have to open and close them a lot.
We practice this at my source of employment. My boss explained this in a similar way, but I'm sure his explanation was more clear.

How do forward declarations speed up compilations since at some point the object referenced will need to be compiled?
Because include is a preprocessor thing, which means it is done via brute force when parsing the file. Your object will be compiled once (compiler) then linked (linker) as appropriate later.
In C/C++, when you compile, you've got to remember there is a whole chain of tools involved (preprocessor, compiler, linker plus build management tools like make or Visual Studio, etc...)

Good and evil. The battle continues, but now on the battle field of header files. Header files are a necessity and a feature of the language, but they can create a lot of unnecessary overhead if used in a non optimal way, e.g. not using forward declarations etc.
How do forward declarations speed up
compilations since at some point the
object referenced will need to be
compiled?
I can buy the argument for reduced
complexity, but what would a practical
example of this be?
Forward declarations are bad ass. My experience is that a lot of c++ programmers are not aware of the fact that you don't have to include any header file, unless you actually want to use some type, e.g. you need to have the type defined so the compiler understands what you want to do. It's important to try and refrain from including header files in other header files.
Just passing around a pointer from one function to another, only requires a forward declaration:
// someFile.h
class CSomeClass;
void SomeFunctionUsingSomeClass(CSomeClass* foo);
Including someFile.h does not require you to include the header file of CSomeClass, since you are merely passing a pointer to it, not using the class. This means that the compiler only needs to parse one line (class CSomeClass;) instead of an entire header file (that might be chained to other header files etc etc).
This reduces both compile time and link time, and we are talking big optimizations here if you have many headers and many classes.

Related

Managing forward declarations

It's well known that using forward declarations is preferable to using #includes in header files, but what's the best way to manage forward declarations?
For a while, I was manually adding to each header file the forward declarations that were needed by that header file. However, I ended up with a bunch of header files repeating the same half-dozen or so forward declarations, which seems redundant, and maintaining these repeated lists got to be a bit tedious.
Forward declarations of typedefs (e.g., struct SensorRecordId; typedef std::vector<SensorRecordId> SensorRecordIdList;) is also a bit much to duplicate across multiple header files.
So then I made a ProjectForwards.h file that contains all of my forward declarations and included that wherever it was needed. At first, this seemed like a good idea - much less redundancy, and much easier maintenance of typedefs. But now, as a result of using ProjectForwards.h so heavily, whenever I add a new class to it, I have to rebuild the world, which slows development.
So what's the best way to manage forward declarations? Should I bite the bullet and repeat individual forward declarations across multiple subsystems? Continue with the ProjectForwards.h approach? Try to split ProjectForwards.h into several SubsystemForwards.h files? Some other solution I'm overlooking?
It sounds like these classes are fairly common to much of your project. You might try some of these:
Do your best to break apart ProjectForwards.h into several files as you suggested. Make sure each subsystem only gets the declarations it truly needs. If nothing else, that process will force you to think about the coupling between your subsystems and you might find ways to reduce it. These are all good steps toward avoiding over-compilation.
Mimic <iosfwd>. Have each common class or module provide its own forward-include header that just provides the class names and any convenience typedefs. Then you can #include that everywhere. Yes, you'll repeat the list a lot, but think about it this way: nobody complains about #including <vector>, <string>, and <map> in six different places in their code.
Use Pimpl more often. This will have a similar effect to my previous suggestion but will require more work on your part. If your interfaces are stable, then you can safely provide the typedefs in those headers and #include them directly.
In general:
Have a forwards file for users of your module. This will only declare those classes that appear as part of the API.
If you have commonly used forwards in your implementation you can have an implementation-only based forwards file.
You probably don't need a forward declaration for every class you use.
I've never seen a "header of forward declares" that was actually useful (noone uses it), didn't quickly become stale (full of stuff that noone uses), and wasn't an iteration bottleneck (touched the forward declare header? recompile everything!). Generally they develop all three problems.
The core of your problem is system design. These subsystems you've mentioned should probably be including the header files that define the types they need to take as input or output. By breaking types that are being used by multiple subsystems into their own header file you'll strike a nice balance between isolation and efficient interop between subsystems.
Having done a lot of brown field maintenance I've never been fond of includes that do nothing but include other files or have forward declarations. I prefer to just have them in the header file. You can reduce the typing with the use of templates if your tools support them.
You could write a template that expands into your desired text. I would probably include something to make it stand out like
///Begin Forwarding
...
///End Forwarding
That would make it easy to grab and replace if you change the template. If you're more comfortable with tools like grep you could automate the updating from a command line. It would probably be simple to write a script that would update all files, or only the files passed in on the command line. Just a thought.
I don't think there is a single "best" solution, each has its own advantages and drawbacks. Even though it's more work, I personally favor the "each header file has its own forward declarations" approach, for the following reasons:
It's as lean as it can get: No additional files that need to be found and parsed.
No obfuscation: Just by looking at the header file you see exactly which types it needs.
No unnecessary namespace pollution. If you collect forward declarations in a ProjectForwards.h file, that file will contain the sum of all declarations needed by all of its consumers. So if only a single consumer needs a certain declaration, all the others will inherit it, too.
If these arguments are not convincing, maybe because they are too puristic :-), then I would suggest following the middle way of splitting ProjectForwards.h.
Here's what I generally do:
It's well known that using forward declarations is preferable to using #includes in header files, but what's the best way to manage forward declarations?
Library: Provide a dedicated client forward: (e.g. #include "MONThread/include.fwd.hpp"). Keep Libraries focused (small-ish), and make implementations private where possible.
Executable: Forward declare on demand, unless it comes from a library -- always use the library's forward include. Recognize what should be a library (logical or physical) -- many forwards suggest this, as patterns will emerge. Also try to isolate what can be hidden in the process. With libraries and executables, there should be some use of package private types -- these types do not belong in the client's forward headers.
So then I made a ProjectForwards.h file that contains all of my forward declarations and included that wherever it was needed. At first, this seemed like a good idea - much less redundancy, and much easier maintenance of typedefs. But now, as a result of using ProjectForwards.h so heavily, whenever I add a new class to it, I have to rebuild the world, which slows development.
Usually, that means too many large libraries are visible in high levels of the include graph. An ideal include graph (of a large system) is much wider than it is tall -- including what it needs with minimal excess. If every TU needs a few 100,000 lines, you're beyond a problem -- start removing large libraries from high levels.
If that really sounds unsatisfactory, analyze your program's dependencies.
Many people make the mistake (in larger projects) of including a ton of large libraries for convenience (e.g. in the pch), which results in recompiling the world (and the pch).
Evaluate your dependencies from time to time -- set some soft sensible limits for line count of preprocessor output.
The forward headers replace local forward declarations. They do not (generally) belong in the pch.
I personally only include in the global ProjectForwards.h the declarations that are truly global to all, or mostly all, the program. It could also include other files that are almost always needed, for example:
#include <string>
#include <vector>
#include <boost/shared_ptr.hpp>
std::string get_installation_dir();
//...
That way this file rarely changes and there is not need to often rebuilds.
Also, if this file includes a bunch of standard headers, it would be a perfect candidate to be a pre-compiled header!
I was manually adding to each header file the forward declarations that were needed by that header file.
This is the only good way.
Also, if you have a typedef somewhere, it is better to somehow mask it. For example, instead of using a typedef like this :
typedef std::vector< MyClass > MyClassArray;
do this instead :
struct MyClassArray
{
std::vector< MyClass > t;
};
The bad thing is that you will not be able to use operators, so this will not always work. For example, if you have
typedef std::string MyString;
then it is better to go with typedef.
So then I made a ProjectForwards.h file that contains all of my forward declarations and included that wherever it was needed.
As you discovered, this is a very bad idea. Whenever you modify this header, you'll trigger the recompilation of all files that include it (directly or indirectly).
There is no escaping forward declaration where they are needed.
In your model, If each of your objects from one type communicate with other objects of another type using interfaces only then you will minimize the amount of forward declaration to interfaces only.
If you use templates then you can put your typedefs of them in the precompiled header file.

Are functions in C/C++ headers a no-go?

I'm working on a very tiny piece of C/C++ source code. The program reads input values from stdin, processes them with an algorithm and writes the results to stdout.
I would just implement all that in a single file, but I also want test cases for the algorithm (not the input/output reading), so I have the following files in my project:
main.cpp
sort.hpp
sort_test.cpp
I implement the algorithm in sort.hpp right away, no sort.cpp. It's rather short and doesn't have any dependencies.
Would you say that, in some cases, functions defined in headers are okay, even if they are sophisticated algorithms and not just simple accessors/mutators? Or is there a reason I should avoid this? When should I move code from header to source file?
There is nothing wrong with having functions in header files, as long as you understand the tradeoff. Putting them in a header file means they'll have to be compiled (and recompiled) in any translation unit that includes the header. (and they have to be declared inline, or you will get linker errors.)
In projects with many translation units, that may add up to a noticeable slowdown in compile times, if you do it a lot.
On the other hand, it ensures that the function definition is visible everywhere the function is called -- and that means that it can be trivially inlined, so the resulting program may run faster.
And finally, with function templates, you typically have no realistic alternative. The definition must be visible at the call site, and the only practical way to achieve that is to put it in a header.
A final consideration is that header-only libraries are easier to deploy and use. You don't need to link against anything, you don't have to worry about ABI's or anything else. You just add the headers to your project, include them and off you go.
Quite a few popular libraries use a header-only strategy.
When you put functions in headers you have to make sure to declare them inline. This is required to avoid a duplicate definition warning when more than one .cpp file include that header file. Generally you should only put small functions inside header files because it will be compiled for each cpp file that includes the header which will slow down compilation time and also results in code bloat; a larger executable file.
It's OK to put any function in the header as long as it's inline. Things such as functions defined inside class { } and templates are implicitly inline.
If the resulting application becomes too large, then optimize the code size. Optimizing before there is a problem is an anti-pattern, especially when there is a benefit to doing it "your way," and the fix is as simple as moving from one file to another and erasing inline.
Of course, if you want to distribute the code as a library, then deciding between a header, static library, or dynamic library binary is an important decision affecting the users.
The vast majority of the boost libraries are header-only, so I'd say: Yes, this is an established and accepted practice. Just don't forget to inline.
That really is a stile choice. But putting it in the header does mean that it will be inline code rather than a function. If you wanted that same functionality, you could use the inline keyword:
inline int max(int a, int b)
{
return (a > b) ? a : b;
}
http://en.wikipedia.org/wiki/Inline_function
The reason you should avoid this in general (for non inline functions) is because multiple source files will be including your header, creating linker errors.
It doesn't matter if you have a pramga once or similar trick - the duplication will show up if you have more than one compilation unit (e.g. cpp files) including the same header.
If you wish to inline the function, it MUST be in the header else it can't get inlined.
If you publish a header with your libraries and the header has some sort of implementation in it, you can be sure that after a few years if you change the implementation and it doesn't work exactly the same way as it did before, some peoples code will break since thay will have come to rely on the implementation they saw in the header. Yeah i know one should not do it but many people do look in header for the implementation and other behaviour they can exploit/use in a not intended way to overcome some problem they are having.
If you are planning to use templates then you have no choice but to put it all in header. (this might not be necessary if you compiler supports export templates but there is only 1 i know of).
Its ok to have the implementation in the header. It depends on what you need. If you separate the definition to a different file then the compiler will create symbols with external linkage if you dont want that you can define the functions inside the header itself. But you would be wasting some amount of memory for the code segment. If you include this header file in two different files then both files codes segment will have this function definition.
If other header file is going to have a function with similar name then its going to be a problem. Then you have to use inline.

What are the advantages and disadvantages of separating declaration and definition as in C++?

In C++, declaration and definition of functions, variables and constants can be separated like so:
function someFunc();
function someFunc()
{
//Implementation.
}
In fact, in the definition of classes, this is often the case. A class is usually declared with it's members in a .h file, and these are then defined in a corresponding .C file.
What are the advantages & disadvantages of this approach?
Historically this was to help the compiler. You had to give it the list of names before it used them - whether this was the actual usage, or a forward declaration (C's default funcion prototype aside).
Modern compilers for modern languages show that this is no longer a necessity, so C & C++'s (as well as Objective-C, and probably others) syntax here is histotical baggage. In fact one this is one of the big problems with C++ that even the addition of a proper module system will not solve.
Disadvantages are: lots of heavily nested include files (I've traced include trees before, they are surprisingly huge) and redundancy between declaration and definition - all leading to longer coding times and longer compile times (ever compared the compile times between comparable C++ and C# projects? This is one of the reasons for the difference). Header files must be provided for users of any components you provide. Chances of ODR violations. Reliance on the pre-processor (many modern languages do not need a pre-processor step), which makes your code more fragile and harder for tools to parse.
Advantages: no much. You could argue that you get a list of function names grouped together in one place for documentation purposes - but most IDEs have some sort of code folding ability these days, and projects of any size should be using doc generators (such as doxygen) anyway. With a cleaner, pre-processor-less, module based syntax it is easier for tools to follow your code and provide this and more, so I think this "advantage" is just about moot.
It's an artefact of how C/C++ compilers work.
As a source file gets compiled, the preprocessor substitutes each #include-statement with the contents of the included file. Only afterwards does the compiler try to interpret the result of this concatenation.
The compiler then goes over that result from beginning to end, trying to validate each statement. If a line of code invokes a function that hasn't been defined previously, it'll give up.
There's a problem with that, though, when it comes to mutually recursive function calls:
void foo()
{
bar();
}
void bar()
{
foo();
}
Here, foo won't compile as bar is unknown. If you switch the two functions around, bar won't compile as foo is unknown.
If you separate declaration and definition, though, you can order the functions as you wish:
void foo();
void bar();
void foo()
{
bar();
}
void bar()
{
foo();
}
Here, when the compiler processes foo it already knows the signature of a function called bar, and is happy.
Of course compilers could work in a different way, but that's how they work in C, C++ and to some degree Objective-C.
Disadvantages:
None directly. If you're using C/C++ anyway, it's the best way to do things. If you've got a choice of language/compiler, then maybe you can pick one where this is not an issue. The only thing to consider with splitting declarations into header files is to avoid mutually recursive #include-statements - but that's what include guards are for.
Advantages:
Compilation speed: As all included files are concatenated and then parsed, reducing the amount and complexity of code in included files will improve compilation time.
Avoid code duplication/inlining: If you fully define a function in a header file, each object file that includes this header and references this function will contain it's own version of that function. As a side-note, if you want inlining, you need to put the full definition into the header file (on most compilers).
Encapsulation/clarity: A well defined class/set of functions plus some documentation should be enough for other developers to use your code. There is (ideally) no need for them to understand how the code works - so why require them to sift through it? (The counter-argument that it's may be useful for them to access the implementation when required still stands, of course).
And of course, if you're not interested in exposing a function at all, you can usually still choose to define it fully in the implementation file rather than the header.
The standard requires that when using a function, a declaration must be in scope. This means, that the compiler should be able to verify against a prototype (the declaration in a header file) what you are passing to it. Except of course, for functions that are variadic - such functions do not validate arguments.
Think of C, when this was not required. At that time, compilers treated no return type specification to be defaulted to int. Now, assume you had a function foo() which returned a pointer to void. However, since you did not have a declaration, the compiler will think that it has to return an integer. On some Motorola systems for example, integeres and pointers would be be returned in different registers. Now, the compiler will no longer use the correct register and instead return your pointer cast to an integer in the other register. The moment you try to work with this pointer -- all hell breaks loose.
Declaring functions within the header is fine. But remember if you declare and define in the header make sure they are inline. One way to achieve this is to put the definition inside the class definition. Otherwise prepend the inline keyword. You will run into ODR violation otherwise when the header is included in multiple implementation files.
There are two main advantages to separating declaration and definition into C++ header and source files. The first is that you avoid problems with the One Definition Rule when your class/functions/whatever are #included in more than one place. Secondly, by doing things this way, you separate interface and implementation. Users of your class or library need only to see your header file in order to write code that uses it. You can also take this one step farther with the Pimpl Idiom and make it so that user code doesn't have to recompile every time the library implementation changes.
You've already mentioned the disadvantage of code repetition between the .h and .cpp files. Maybe I've written C++ code for too long, but I don't think it's that bad. You have to change all user code every time you change a function signature anyway, so what's one more file? It's only annoying when you're first writing a class and you have to copy-and-paste from the header to the new source file.
The other disadvantage in practice is that in order to write (and debug!) good code that uses a third-party library, you usually have to see inside it. That means access to the source code even if you can't change it. If all you have is a header file and a compiled object file, it can be very difficult to decide if the bug is your fault or theirs. Also, looking at the source gives you insight into how to properly use and extend a library that the documentation might not cover. Not everyone ships an MSDN with their library. And great software engineers have a nasty habit of doing things with your code that you never dreamed possible. ;-)
Advantage
Classes can be referenced from other files by just including the declaration. Definitions can then be linked later on in the compilation process.
You basically have 2 views on the class/function/whatever:
The declaration, where you declare the name, the parameters and the members (in the case of a struct/class), and the definition where you define what the functions does.
Amongst the disadvantages are repetition, yet one big advantage is that you can declare your function as int foo(float f) and leave the details in the implementation(=definition), so anyone who wants to use your function foo just includes your header file and links to your library/objectfile, so library users as well as compilers just have to care for the defined interface, which helps understanding the interfaces and speeds up compile times.
One advantage that I haven't seen yet: API
Any library or 3rd party code that is NOT open source (i.e. proprietary) will not have their implementation along with the distribution. Most companies are just plain not comfortable with giving away source code. The easy solution, just distribute the class declarations and function signatures that allow use of the DLL.
Disclaimer: I'm not saying whether it's right, wrong, or justified, I'm just saying I've seen it a lot.
One big advantage of forward declarations is that when used carefully you can cut down the compile time dependencies between modules.
If ClassA.h needs to refer to a data element in ClassB.h, you can often use just a forward references in ClassA.h and include ClassB.h in ClassA.cc rather than in ClassA.h, thus cutting down a compile time dependency.
For big systems this can be a huge time saver on a build.
Disadvantage
This leads to a lot of repetition. Most of the function signature needs to be put in two or more (as Paulious noted) places.
Separation gives clean, uncluttered view of program elements.
Possibility to create and link to binary modules/libraries without disclosing sources.
Link binaries without recompiling sources.
When done correctly, this separation reduces compile times when only the implementation has changed.

Is it a good practice to place C++ definitions in header files?

My personal style with C++ has always to put class declarations in an include file, and definitions in a .cpp file, very much like stipulated in Loki's answer to C++ Header Files, Code Separation. Admittedly, part of the reason I like this style probably has to do with all the years I spent coding Modula-2 and Ada, both of which have a similar scheme with specification files and body files.
I have a coworker, much more knowledgeable in C++ than I, who is insisting that all C++ declarations should, where possible, include the definitions right there in the header file. He's not saying this is a valid alternate style, or even a slightly better style, but rather this is the new universally-accepted style that everyone is now using for C++.
I'm not as limber as I used to be, so I'm not really anxious to scrabble up onto this bandwagon of his until I see a few more people up there with him. So how common is this idiom really?
Just to give some structure to the answers: Is it now The Way™, very common, somewhat common, uncommon, or bug-out crazy?
Your coworker is wrong, the common way is and always has been to put code in .cpp files (or whatever extension you like) and declarations in headers.
There is occasionally some merit to putting code in the header, this can allow more clever inlining by the compiler. But at the same time, it can destroy your compile times since all code has to be processed every time it is included by the compiler.
Finally, it is often annoying to have circular object relationships (sometimes desired) when all the code is the headers.
Bottom line, you were right, he is wrong.
EDIT: I have been thinking about your question. There is one case where what he says is true. templates. Many newer "modern" libraries such as boost make heavy use of templates and often are "header only." However, this should only be done when dealing with templates as it is the only way to do it when dealing with them.
EDIT: Some people would like a little more clarification, here's some thoughts on the downsides to writing "header only" code:
If you search around, you will see quite a lot of people trying to find a way to reduce compile times when dealing with boost. For example: How to reduce compilation times with Boost Asio, which is seeing a 14s compile of a single 1K file with boost included. 14s may not seem to be "exploding", but it is certainly a lot longer than typical and can add up quite quickly when dealing with a large project. Header only libraries do affect compile times in a quite measurable way. We just tolerate it because boost is so useful.
Additionally, there are many things which cannot be done in headers only (even boost has libraries you need to link to for certain parts such as threads, filesystem, etc). A Primary example is that you cannot have simple global objects in header only libs (unless you resort to the abomination that is a singleton) as you will run into multiple definition errors. NOTE: C++17's inline variables will make this particular example doable in the future.
As a final point, when using boost as an example of header only code, a huge detail often gets missed.
Boost is library, not user level code. so it doesn't change that often. In user code, if you put everything in headers, every little change will cause you to have to recompile the entire project. That's a monumental waste of time (and is not the case for libraries that don't change from compile to compile). When you split things between header/source and better yet, use forward declarations to reduce includes, you can save hours of recompiling when added up across a day.
The day C++ coders agree on The Way, lambs will lie down with lions, Palestinians will embrace Israelis, and cats and dogs will be allowed to marry.
The separation between .h and .cpp files is mostly arbitrary at this point, a vestige of compiler optimizations long past. To my eye, declarations belong in the header and definitions belong in the implementation file. But, that's just habit, not religion.
Code in headers is generally a bad idea since it forces recompilation of all files that includes the header when you change the actual code rather than the declarations. It will also slow down compilation since you'll need to parse the code in every file that includes the header.
A reason to have code in header files is that it's generally needed for the keyword inline to work properly and when using templates that's being instanced in other cpp files.
What might be informing you coworker is a notion that most C++ code should be templated to allow for maximum usability. And if it's templated, then everything will need to be in a header file, so that client code can see it and instantiate it. If it's good enough for Boost and the STL, it's good enough for us.
I don't agree with this point of view, but it may be where it's coming from.
I think your co-worker is smart and you are also correct.
The useful things I found that putting everything into the headers is that:
No need for writing & sync headers and sources.
The structure is plain and no circular dependencies force the coder to make a "better" structure.
Portable, easy to embedded to a new project.
I do agree with the compiling time problem, but I think we should notice that:
The change of source file are very likely to change the header files which leads to the whole project be recompiled again.
Compiling speed is much faster than before. And if you have a project to be built with a long time and high frequency, it may indicates that your project design has flaws. Seperate the tasks into different projects and module can avoid this problem.
Lastly I just wanna support your co-worker, just in my personal view.
Often I'll put trivial member functions into the header file, to allow them to be inlined. But to put the entire body of code there, just to be consistent with templates? That's plain nuts.
Remember: A foolish consistency is the hobgoblin of little minds.
As Tuomas said, your header should be minimal. To be complete I will expand a bit.
I personally use 4 types of files in my C++ projects:
Public:
Forwarding header: in case of templates etc, this file get the forwarding declarations that will appear in the header.
Header: this file includes the forwarding header, if any, and declare everything that I wish to be public (and defines the classes...)
Private:
Private header: this file is a header reserved for implementation, it includes the header and declares the helper functions / structures (for Pimpl for example or predicates). Skip if unnecessary.
Source file: it includes the private header (or header if no private header) and defines everything (non-template...)
Furthermore, I couple this with another rule: Do not define what you can forward declare. Though of course I am reasonable there (using Pimpl everywhere is quite a hassle).
It means that I prefer a forward declaration over an #include directive in my headers whenever I can get away with them.
Finally, I also use a visibility rule: I limit the scopes of my symbols as much as possible so that they do not pollute the outer scopes.
Putting it altogether:
// example_fwd.hpp
// Here necessary to forward declare the template class,
// you don't want people to declare them in case you wish to add
// another template symbol (with a default) later on
class MyClass;
template <class T> class MyClassT;
// example.hpp
#include "project/example_fwd.hpp"
// Those can't really be skipped
#include <string>
#include <vector>
#include "project/pimpl.hpp"
// Those can be forward declared easily
#include "project/foo_fwd.hpp"
namespace project { class Bar; }
namespace project
{
class MyClass
{
public:
struct Color // Limiting scope of enum
{
enum type { Red, Orange, Green };
};
typedef Color::type Color_t;
public:
MyClass(); // because of pimpl, I need to define the constructor
private:
struct Impl;
pimpl<Impl> mImpl; // I won't describe pimpl here :p
};
template <class T> class MyClassT: public MyClass {};
} // namespace project
// example_impl.hpp (not visible to clients)
#include "project/example.hpp"
#include "project/bar.hpp"
template <class T> void check(MyClass<T> const& c) { }
// example.cpp
#include "example_impl.hpp"
// MyClass definition
The lifesaver here is that most of the times the forward header is useless: only necessary in case of typedef or template and so is the implementation header ;)
To add more fun you can add .ipp files which contain the template implementation (that is being included in .hpp), while .hpp contains the interface.
As apart from templatized code (depending on the project this can be majority or minority of files) there is normal code and here it is better to separate the declarations and definitions. Provide also forward-declarations where needed - this may have effect on the compilation time.
Generally, when writing a new class, I will put all the code in the class, so I don't have to look in another file for it.. After everything is working, I break the body of the methods out into the cpp file, leaving the prototypes in the hpp file.
I personally do this in my header files:
// class-declaration
// inline-method-declarations
I don't like mixing the code for the methods in with the class as I find it a pain to look things up quickly.
I would not put ALL of the methods in the header file. The compiler will (normally) not be able to inline virtual methods and will (likely) only inline small methods without loops (totally depends on the compiler).
Doing the methods in the class is valid... but from a readablilty point of view I don't like it. Putting the methods in the header does mean that, when possible, they will get inlined.
I think that it's absolutely absurd to put ALL of your function definitions into the header file. Why? Because the header file is used as the PUBLIC interface to your class. It's the outside of the "black box".
When you need to look at a class to reference how to use it, you should look at the header file. The header file should give a list of what it can do (commented to describe the details of how to use each function), and it should include a list of the member variables. It SHOULD NOT include HOW each individual function is implemented, because that's a boat load of unnecessary information and only clutters the header file.
If this new way is really The Way, we might have been running into different direction in our projects.
Because we try to avoid all unnecessary things in headers. That includes avoiding header cascade. Code in headers will propably need some other header to be included, which will need another header and so on. If we are forced to use templates, we try avoid littering headers with template stuff too much.
Also we use "opaque pointer"-pattern when applicable.
With these practices we can do faster builds than most of our peers. And yes... changing code or class members will not cause huge rebuilds.
I put all the implementation out of the class definition. I want to have the doxygen comments out of the class definition.
IMHO, He has merit ONLY if he's doing templates and/or metaprogramming. There's plenty of reasons already mentioned that you limit header files to just declarations. They're just that... headers. If you want to include code, you compile it as a library and link it up.
Doesn't that really depends on the complexity of the system, and the in-house conventions?
At the moment I am working on a neural network simulator that is incredibly complex, and the accepted style that I am expected to use is:
Class definitions in classname.h
Class code in classnameCode.h
executable code in classname.cpp
This splits up the user-built simulations from the developer-built base classes, and works best in the situation.
However, I'd be surprised to see people do this in, say, a graphics application, or any other application that's purpose is not to provide users with a code base.
Template code should be in headers only. Apart from that all definitions except inlines should be in .cpp. The best argument for this would be the std library implementations which follow the same rule. You would not disagree the std lib developers would be right regarding this.
I think your co-worker is right as long as he does not enter in the process to write executable code in the header.
The right balance, I think, is to follow the path indicated by GNAT Ada where the .ads file gives a perfectly adequate interface definition of the package for its users and for its childs.
By the way Ted, have you had a look on this forum to the recent question on the Ada binding to the CLIPS library you wrote several years ago and which is no more available (relevant Web pages are now closed). Even if made to an old Clips version, this binding could be a good start example for somebody willing to use the CLIPS inference engine within an Ada 2012 program.

Should I put many functions into one file? Or, more or less, one function per file?

I love to organize my code, so ideally I want one class per file or, when I have non-member functions, one function per file.
The reasons are:
When I read the code I will always
know in what file I should find a
certain function or class.
If it's one class or one non-member
function per header file, then I won't
include a whole mess when I
include a header file.
If I make a small change in a function then only that function will have to be recompiled.
However, splitting everything up into many header and many implementation files can considerately slow down compilation. In my project, most functions access a certain number of templated other library functions. So that code will be compiled over and over, once for each implementation file. Compiling my whole project currently takes 45 minutes or so on one machine. There are about 50 object files, and each one uses the same expensive-to-compile headers.
Maybe, is it acceptable to have one class (or non-member function) per header file, but putting the implementations of many or all of these functions into one implementation file, like in the following example?
// foo.h
void foo(int n);
// bar.h
void bar(double d);
// foobar.cpp
#include <vector>
void foo(int n) { std::vector<int> v; ... }
void bar(double d) { std::vector<int> w; ... }
Again, the advantage would be that I can include just the foo function or just the bar function, and compilation of the whole project will be faster because foobar.cpp is one file, so the std::vector<int> (which is just an example here for some other expensive-to-compile templated construction) has to be compiled in only once, as opposed to twice if I compiled a foo.cpp and bar.cpp separately. Of course, my reason (3) above is not valid for this scenario: After just changing foo(){...} I have to recompile the whole, potentially big, file foobar.cpp.
I'm curious what your opinions are!
IMHO, you should combine items into logical groupings and create your files based on that.
When I'm writing functions, there are often a half a dozen or so that are tightly related to each other. I tend to put them together in a single header and implementation file.
When I write classes, I usually limit myself to one heavyweight class per header and implementation file. I might add in some convenience functions or tiny helper classes.
If I find that an implementation file is thousands of lines long, that's usually a sign that there's too much there and I need to break it up.
One function per file could get messy in my opinion. Imagine if POSIX and ANSI C headers were made the same way.
#include <strlen.h>
#include <strcpy.h>
#include <strncpy.h>
#include <strchr.h>
#include <strstr.h>
#include <malloc.h>
#include <calloc.h>
#include <free.h>
#include <printf.h>
#include <fprintf.h>
#include <vpritnf.h>
#include <snprintf.h>
One class per file is a good idea though.
We use the principle of one external function per file. However, within this file there may be several other "helper" functions in unnamed namespaces that are used to implement that function.
In our experience, contrary to some other comments, this has had two main benefits. The first is build times are faster as modules only need to be rebuilt when their specific APIs are modified. The second advantage is that by using a common naming scheme, it is never necessary to spend time searching for the header that contains the function you wish to call:
// getShapeColor.h
Color getShapeColor(Shape);
// getTextColor.h
Color getTextColor(Text);
I disagree that the standard library is a good example for not using one (external) function per file. Standard libraries never change and have well defined interfaces and so neither of the points above apply to them.
That being said, even in the case of the standard library there are some potential benefits in splitting out the individual functions. The first is that compilers could generate a helpful warning when unsafe versions of functions are used, e.g. strcpy vs. strncpy, in a similar way to how g++ used to warn for inclusion of <iostream.h> vs. <iostream>.
Another advantage is that I would no longer be caught out by including memory when I want to use memmove!
One function per file has a technical advantage if you're making a static library (which I guess it's one of the reasons why projects like the Musl-libc project follow this pattern).
Static libraries are linked with object-file granularity and so if you have a static library libfoobar.a composed of*:
foo.o
foo1
foo2
bar.o
bar
then if you link the lib for the bar function, the bar.o archive member will get linked but not the foo.o member. If you link for foo1, then the foo.o member will get linked, bringing in the possibly unnecessary foo2 function.
There are possibly other ways of preventing unneeded functions from being linked in (-ffunction-sections -fdata-sections and --gc-sections) but one function per file is probably most reliable.
There's also the middle ground of putting small number of related functions/data-objects in a file. That way the compiler can better optimize intersymbol references compared to -ffunction-sections/-fdata-sections and you still get at least some granularity for static libs.
I'm ignoring C++ name mangling here for the sake of simplicity
I can see some advantages to your approach, but there are several disadvantages:
Including a package is nightmare. You can end up with 10-20 includes to get the functions you need. For example, imagine if STDIO or StdLib was implemented this way.
Browsing the code will be a bit of pain, since in general it is easier to scroll through a file than to switch files. Obviously too big of file is hard, but even there with modern IDEs it is pretty easy to collapse the file down to what you need and a lot of them have function short cut lists.
Make file maintenance is a pain.
I am a huge fan of small functions and refactoring. When you add overhead (making a new file, adding it to source control,...) it encourages people to write longer functions where instead of breaking one function into three parts, you just make one big one.
You can redeclare some of your functions as being static methods of one or more classes: this gives you an opportunity (and a good excuse) to group several of them into a single source file.
One good reason for having or not having several functions in one source files, if that source file are one-to-one with object files, and the linker links entire object files: if an executable might want one function but not another, then put them in separate source files (so that the linker can link one without the other).
An old programming professor of mine suggested breaking up modules every several hundred lines of code for maintainability. I don't develop in C++ anymore, but in C# I restrict myself to one class per file, and size of the file doesn't matter as long as there's nothing unrelated to my object. You can make use of #pragma regions to gracefully reduce editor space, not sure if the C++ compiler has them, but if it does then definitely make use of them.
If I were still programming in C++ I would group functions by usage using multiple functions per file. So I may have a file called 'Service.cpp' with a few functions that define that "service". Having one function per file will in turn cause regret to find its way back into your project somehow, someway.
Having several thousand lines of code per file isn't necessary some of the time though. Functions themselves should never be much more than a few hundred lines of code at most. Always remember that a function should only do one thing and be kept minimal. If a function does more than one thing, it should be refactored into helper methods.
It never hurts to have multiple source files that define a single entity either. Ie: 'ServiceConnection.cpp' 'ServiceSettings.cpp', and so on so forth.
Sometimes if I make a single object, and it owns other objects I will combine multiple classes into a single file. For example a button control that contains 'ButtonLink' objects, I might combine that into the Button class. Sometimes I don't, but that's a "preference of the moment" decision.
Do what works best for you. Experiment a little with different styles on smaller projects can help. Hope this helps you out a bit.
I also tried to split files in a function per file, but it had some drawbacks. Sometimes functions tend to get larger than they need to (you don't want to add a new .c file every time) unless you are diligent about refactoring your code (I am not).
Currently I put one to three functions in a .c file and group all the .c files for a functionality in a directory. For header files I have Funcionality.h and Subfunctionality.h so that I can include all the functions at once when needed or just a small utility function if the whole package is not needed.
For the header part, you should combine items into logical groupings and create your header files based on that. This seems and is very logical IMHO.
For the source part, you should put each function implementation in a separate source file (static functions are exceptions in this case). This may not seem logical at first, but remember, a compiler knows about the functions, but a linker knows only about the .o and .obj files and its exported symbols. This may change the size of the output file considerably, and this is a very important issue for embedded systems.
Checkout glibc or Visual C++ CRT source tree...