Stencil buffer VS primitive tesselation - opengl

I am learning opengl es and am planning to make a program which will have a shape which can be cut into a smaller shape by removing a part of the shape dynamicly. The constraint is I must be able to tell if an object is inside or outside the cut shape.
The option I thought of are:
1) use a stencil buffer made up of just a black and white mask. This way I can also use the same map for collision detection.
2) the other option is to dynamicly change my mind renderd primitive an then tesselating it. This sounds more complex and is currently my least favorite option. It would also make the collision detection more difficult.
PS
I would like the part of the shape removed to be fall of in animation, I am not sure how choosing any of these methods will affect the ease of doing so. Please express your opinion.
What are your thoughts on this?
Keep in mind that I am new to opengl an might be making mistakes without realizing it.
Thanks, Jason

It is generally considered a good idea to issue only write-commands to the graphics card. Basically that is "dont use glGet* commands at all", because the latency of those commands might be somewhat high.
That said option 1) is great if you just want to mask out stuff. As you are trying to make the cut part fall off this is really not an option, as you have to retrieve/reconstruct the vertices of that part.
I don't quite get the "tesselation" part of your second option, but if your primitive is a polygon and your cuts are straight lines, it is easy to calculate the 2 polygons after the cut. In fact the viewport clipping routine in OpenGL does that all the time and there is a lot of literatur, for example http://en.wikipedia.org/wiki/Sutherland-Hodgman
In the long term it is often way better to first build a (non-visual) model of what is going on in the application before visualizing.

Related

Vector text rendering system in Direct3d

Does anyone know of an implementation of vector fonts in directx?
If not does anyone have a good starting place for this?
Or even any examples of a reader written in Directx with basic zoom support.
Direct vector fonts don't work to well in D3D, as it requires an intermediary texture to hold rasterized data(verts or pixels) and need to do a lot more extra work, thus you need a approach them a little differently to get them working easily and efficiently(if you are performance constrained/care about performance). You should use signed distances fields for this (they up-scale VERY well, but are horrid for down-scaling if your fonts are complex. Hard edges also don't store too well, but this can be fixed by using two channels to store data. Distance fields also allow easy smoothing, bolding, outlining, glowing and drop shadows), al la valve's improved alpha tested advanced vector texture rendering (which incidently references a paper on vector fonts, if you do want to go that way). It is heavily shader reliant (though it can be done in FFP via alpha testing, but using smoothstep in the pixel shader provides a far better result with minimal overhead), but one doesn't need anything beyond ps v1. see http://www.valvesoftware.com/publications.html for the paper, see the shaders in valves source sdk for a complete implementation reference. (I incidently just built a Dx11 based text renderer using this, works wonderfully, though I use a tool to brute force my sdf's so I don't need to create them at runtime).

OpenGL Picking from a large set

I'm trying to, in JOGL, pick from a large set of rendered quads (several thousands). Does anyone have any recommendations?
To give you more detail, I'm plotting a large set of data as billboards with procedurally created textures.
I've seen this post OpenGL GL_SELECT or manual collision detection? and have found it helpful. However it can take my program up to several minutes to complete a rendering of the full set, so I don't think drawing 2x (for color picking) is an option.
I'm currently drawing with calls to glBegin/glVertex.../glEnd. Given that I made the switch to batch rendering on the GPU with vao's and vbo's, do you think I would receive a speedup large enough to facilitate color picking?
If not, given all of the recommendations against using GL_SELECT, do you think it would be worth me using it?
I've investigated multithreaded CPU approaches to picking these quads that completely sidestep OpenGL all together. Do you think a OpenGL-less CPU solution is the way to go?
Sorry for all the questions. My main question remains to be, whats a good way that one can pick from a large set of quads using OpenGL (JOGL)?
The best way to pick from a large number of quad cannot be easily defined. I don't like color picking or similar techniques very much, because they seem to be to impractical for most situations. I never understood why there are so many tutorials that focus on people that are new to OpenGl or even programming focus on picking that is just useless for nearly everything. For exmaple: Try to get a pixel you clicked on in a heightmap: Not possible. Try to locate the exact mesh in a model you clicked on: Impractical.
If you have a large number of quads you will probably need a good spatial partitioning or at least (better also) a scene graph. Ok, you don't need this, but it helps A LOT. Look at some tutorials for scene graphs for further information's, it's a good thing to know if you start with 3D programming, because you get to know a lot of concepts and not only OpenGl code.
So what to do now to start with some picking? Take the inverse of your modelview matrix (iirc with glUnproject(...)) on the position where your mouse cursor is. With the orientation of your camera you can now cast a ray into your spatial structure (or your scene graph that holds a spatial structure). Now check for collisions with your quads. I currently have no link, but if you search for inverse modelview matrix you should find some pages that explain this better and in more detail than it would be practical to do here.
With this raycasting based technique you will be able to find your quad in O(log n), where n is the number of quads you have. With some heuristics based on the exact layout of your application (your question is too generic to be more specific) you can improve this a lot for most cases.
An easy spatial structure for this is for example a quadtree. However you should start with they raycasting first to fully understand this technique.
Never faced such problem, but in my opinion, I think the CPU based picking is the best way to try.
If you have a large set of quads, maybe you can group quads by space to avoid testing all quads. For example, you can group the quads in two boxes and firtly test which box you
I just implemented color picking but glReadPixels is slow here (I've read somehere that it might be bad for asynchron behaviour between GL and CPU).
Another possibility seems to me using transform feedback and a geometry shader that does the scissor test. The GS can then discard all faces that do not contain the mouse position. The transform feedback buffer contains then exactly the information about hovered meshes.
You probably want to write the depth to the transform feedback buffer too, so that you can find the topmost hovered mesh.
This approach works also nice with instancing (additionally write the instance id to the buffer)
I haven't tried it yet but I guess it will be a lot faster then using glReadPixels.
I only found this reference for this approach.
I'm using the solution that I've borrowed from DirectX SDK, there's a nice example how to detect the selected polygon in a vertext buffer object.
The same algorithm works nice with OpenGL.

Playing with OpenGL

Just learning the basics of OpenGL for a class and was looking for something challenging and interesting to try and draw. Any suggestions?
Aiming to photorealism (just plain models, lights, materials, textures, etc.) is one thing, but what is even more interesting in my opinion is demoscene and all kinds of non-photorealistic effects. The idea of a demo is to program some nice animated graphics that automatically change from one effect to another or tell some sort of a story, and have a background music. Here you can find some videos. Just take a look at what some others have done and use your imagination. That's the funniest part of 3D programming in my opinion. Of course what you'll first program would be something extremely simple when compared to those videos on youtube, but everyone has to start from somewhere. Simple also doesn't need to be ugly. Some random suggestions:
mathematical shapes with sin(), cos(), etc.
alpha blending, especially addition blending (glBlendFunc(GL_ONE, GL_ONE);)
terrain rendering
read 3d model data from a file. (Wavefront .OBJ is a relatively simple one)
feedback effects with glCopyTexImage2D, which copies pixels from screen to a texture (in real life you shouldn't use this because it's too slow, but when learning the basics it's ok)
etc...
You might consider building an OBJ viewer. You will get the experience you're looking for, and it's a pretty good project for a beginning 3D graphics programmer, in terms of difficulty.
I believe opengl has built in shapes such as a teapot that you can call and have it draw. For starters, I'd stick with easy shapes like squares, circles, and cones. Try drawing a wireframe model first since that's the easiest, by using either quadstrips ,triangles or just poly lines. After you've gotten that down, learn to set up lighting and materials so you can draw a solid model.
At school we had a very interesting assignement to get started with OpenGL that I will share. The long term goal was to modelize a living room so you basically have to draw:
A table.
Two chairs.
A carpet.
A sofa
Some stuff that you might find interesting to add on the table for
instance a TV!
When you have all the things done, try to polish the scene a little bit by adding some lighting effects!
Hint: for all the objects you simply need to start with a basic rectangle. Then you can construct your scene step by step using translations/rotations.

OpenGL equivalent of GDI's HatchBrush or PatternBrush?

I have a VB6 application (please don't laugh) which does a lot of drawing via BitBlt and the standard VB6 drawing functions. I am running up against performance issues (yes, I do the regular tricks like drawing to memory). So, I decided to investigate other ways of drawing, and have come upon OpenGL.
I've been doing some experimenting, and it seems straightforward to do most of what I want; the application mostly only uses very simple drawing -- relatively large 2D rectangles of solid colors and such -- but I haven't been able to find an equivalent to something like a HatchBrush or PatternBrush.
More specifically, I want to be able to specify a small monochrome pixel pattern, choose a color, and whenever I draw a polygon (or whatever), instead of it being solid, have it automatically tiled with that pattern, not translated or rotated or skewed or stretched, with the "on" bits of the pattern showing up in the specified color, and the "off" bits of the pattern left displaying whatever had been drawn under the area that I am now drawing on.
Obviously I could do all the calculations myself. That is, instead of drawing as a polygon which will somehow automatically be tiled for me, I could calculate all of the lines or pixels or whatever that actually need to be drawn, then draw them as lines or pixels or whatever. But is there an easier way? Like in GDI, where you just say "draw this polygon using this brush"?
I am guessing that "textures" might be able to accomplish what I want, but it's not clear to me (I'm totally new to this and the documentation I've found is not entirely obvious); it seems like textures might skew or translate or stretch the pattern, based upon the vertices of the polygon? Whereas I want the pattern tiled.
Is there a way to do this, or something like it, other than brute force calculation of exactly the pixels/lines/whatever that need to be drawn?
Thanks in advance for any help.
If I understood correctly, you're looking for glPolygonStipple() or glLineStipple().
PolygonStipple is very limited as it allows only 32x32 pattern but it should work like PatternBrush. I have no idea how to implement it in VB though.
First of all, are you sure it's the drawing operation itself that is the bottleneck here? Visual Basic is known for being very slow (Especially if your program is compiled to intermediary VM code - which is the default AFAIRC. Be sure you check the option to compile to native code!), and if it is your code that is the bottleneck, then OpenGL won't help you much - you'll need to rewrite your code in some other language - probably C or C++, but any .NET lang should also do.
OpenGL contains functions that allow you to draw stippled lines and polygons, but you shouldn't use them. They're deprecated for a long time, and got removed from OpenGL in version 3.1 of the spec. And that's for a reason - these functions don't map well to the modern rendering paradigm and are not supported by modern graphics hardware - meaning you will most likely get a slow software fallback if you use them.
The way to go is to use a small texture as a mask, and tile it over the drawn polygons. The texture will get stretched or compressed to match the texture coordinates you specify with the vertices. You have to set the wrapping mode to GL_REPEAT for both texture coordinates, and calculate the right coordinates for each vertex so that the texture appears at its original size, repeated the right amount of times.
You could also use the stencil buffer as you described, but... how would you fill that buffer with the pattern, and do it fast? You would need a texture anyway. Remember that you need to clear the stencil buffer every frame, before you start drawing. Not doing so could cost you a massive performance hit (the exact value of "massive" depending on the graphics hardware and driver version).
It's also possible to achieve the desired effect using a fragment shader, but learning shaders for that would be an overkill for an OpenGL beginner like yourself :-).
Ah, I think I've found it! I can make a stencil across the entire viewport in the shape of the pattern I want (or its mask, I guess), and then enable that stencil when I want to draw with that pattern.
You could just use a texture. Put the pattern in as in image and turn on texture repeating and you are good to go.
Figured this out a a year or two ago.

How can you draw primitives in OpenGL interactively?

I'm having a rough time trying to set up this behavior in my program.
Basically, I want it that when a the user presses the "a" key a new sphere is displayed on the screen.
How can you do that?
I would probably do it by simply having some kind of data structure (array, linked list, whatever) holding the current "scene". Initially this is empty. Then when the event occurs, you create some kind of representation of the new desired geometry, and add that to the list.
On each frame, you clear the screen, and go through the data structure, mapping each representation into a suitble set of OpenGL commands. This is really standard.
The data structure is often referred to as a scene graph, it is often in the form of a tree or graph, where geometry can have child-geometries and so on.
If you're using the GLuT library (which is pretty standard), you can take advantage of its automatic primitive generation functions, like glutSolidSphere. You can find the API docs here. Take a look at section 11, 'Geometric Object Rendering'.
As unwind suggested, your program could keep some sort of list, but of the parameters for each primitive, rather than the actual geometry. In the case of the sphere, this would be position/radius/slices. You can then use the GLuT functions to easily draw the objects. Obviously this limits you to what GLuT can draw, but that's usually fine for simple cases.
Without some more details of what environment you are using it's difficult to be specific, but a few of pointers to things that can easily go wrong when setting up OpenGL
Make sure you have the camera set up to look at point you are drawing the sphere. This can be surprisingly hard, and the simplest approach is to implement glutLookAt from the OpenGL Utility Toolkit. Make sure you front and back planes are set to sensible values.
Turn off backface culling, at least to start with. Sure with production code backface culling gives you a quick performance gain, but it's remarkably easy to set up normals incorrectly on an object and not see it because you're looking at the invisible face
Remember to call glFlush to make sure that all commands are executed. Drawing to the back buffer then failing to call glSwapBuffers is also a common mistake.
Occasionally you can run into issues with buffer formats - although if you copy from sample code that works on your system this is less likely to be a problem.
Graphics coding tends to be quite straightforward to debug once you have the basic environment correct because the output is visual, but setting up the rendering environment on a new system can always be a bit tricky until you have that first cube or sphere rendered. I would recommend obtaining a sample or template and modifying that to start with rather than trying to set up the rendering window from scratch. Using GLUT to check out first drafts of OpenGL calls is good technique too.