Giving a uint8_t buffer of x length, I am trying to come up with a function or a macro that can remove nth bit (or n to n+i), then left-shift the remaining bits.
example #1:
for input 0b76543210 0b76543210 ... then output should be 0b76543217 0b654321 ...
example #2: if the input is:
uint8_t input[8] = {
0b00110011,
0b00110011,
...
};
the output without the first bit, should be
uint8_t output[8] = {
0b00110010,
0b01100100,
...
};
I have tried the following to remove the first bit, but it did not work for the second group of bits.
/* A macro to extract (a-b) range of bits without shifting */
#define BIT_RANGE(N,x,y) ((N) & ((0xff >> (7 - (y) + (x))) << ((x))))
void removeBit0(uint8_t *n) {
for (int i=0; i < 7; i++) {
n[i] = (BIT_RANGE(n[i], i + 1, 7)) << (i + 1) |
(BIT_RANGE(n[i + 1], 1, i + 1)) << (7 - i); /* This does not extract the next element bits */
}
n[7] = 0;
}
Update #1
In my case, the input will be uint64_t number, then I will use memmov to shift it one place to the left.
Update #2
The solution can be in C/C++, assembly(x86-64) or inline assembly.
This is really 2 subproblems: remove bits from each byte and pack the results. This is the flow of the code below. I wouldn't use a macro for this. Too much going on. Just inline the function if you're worried about performance at that level.
#include <stdio.h>
#include <stdint.h>
// Remove bits n to n+k-1 from x.
unsigned scrunch_1(unsigned x, int n, int k) {
unsigned hi_bits = ~0u << n;
return (x & ~hi_bits) | ((x >> k) & hi_bits);
}
// Remove bits n to n+k-1 from each byte in the buffer,
// then pack left. Return number of packed bytes.
size_t scrunch(uint8_t *buf, size_t size, int n, int k) {
size_t i_src = 0, i_dst = 0;
unsigned src_bits = 0; // Scrunched source bit buffer.
int n_src_bits = 0; // Initially it's empty.
for (;;) {
// Get scrunched bits until the buffer has at least 8.
while (n_src_bits < 8) {
if (i_src >= size) { // Done when source bytes exhausted.
// If there are left-over bits, add one more byte to output.
if (n_src_bits > 0) buf[i_dst++] = src_bits << (8 - n_src_bits);
return i_dst;
}
// Pack 'em in.
src_bits = (src_bits << (8 - k)) | scrunch_1(buf[i_src++], n, k);
n_src_bits += 8 - k;
}
// Write the highest 8 bits of the buffer to the destination byte.
n_src_bits -= 8;
buf[i_dst++] = src_bits >> n_src_bits;
}
}
int main(void) {
uint8_t x[] = { 0xaa, 0xaa, 0xaa, 0xaa };
size_t n = scrunch(x, 4, 2, 3);
for (size_t i = 0; i < n; i++) {
printf("%x ", x[i]);
}
printf("\n");
return 0;
}
This writes b5 ad 60, which by my reckoning is correct. A few other test cases work as well.
Oops I coded it the first time shifting the wrong way, but include that here in case it's useful to someone.
#include <stdio.h>
#include <stdint.h>
// Remove bits n to n+k-1 from x.
unsigned scrunch_1(unsigned x, int n, int k) {
unsigned hi_bits = 0xffu << n;
return (x & ~hi_bits) | ((x >> k) & hi_bits);
}
// Remove bits n to n+k-1 from each byte in the buffer,
// then pack right. Return number of packed bytes.
size_t scrunch(uint8_t *buf, size_t size, int n, int k) {
size_t i_src = 0, i_dst = 0;
unsigned src_bits = 0; // Scrunched source bit buffer.
int n_src_bits = 0; // Initially it's empty.
for (;;) {
// Get scrunched bits until the buffer has at least 8.
while (n_src_bits < 8) {
if (i_src >= size) { // Done when source bytes exhausted.
// If there are left-over bits, add one more byte to output.
if (n_src_bits > 0) buf[i_dst++] = src_bits;
return i_dst;
}
// Pack 'em in.
src_bits |= scrunch_1(buf[i_src++], n, k) << n_src_bits;
n_src_bits += 8 - k;
}
// Write the lower 8 bits of the buffer to the destination byte.
buf[i_dst++] = src_bits;
src_bits >>= 8;
n_src_bits -= 8;
}
}
int main(void) {
uint8_t x[] = { 0xaa, 0xaa, 0xaa, 0xaa };
size_t n = scrunch(x, 4, 2, 3);
for (size_t i = 0; i < n; i++) {
printf("%x ", x[i]);
}
printf("\n");
return 0;
}
This writes d6 5a b. A few other test cases work as well.
Something similar to this should work:
template<typename S> void removeBit(S* buffer, size_t length, size_t index)
{
const size_t BITS_PER_UNIT = sizeof(S)*8;
// first we find which data unit contains the desired bit
const size_t unit = index / BITS_PER_UNIT;
// and which index has the bit inside the specified unit, starting counting from most significant bit
const size_t relativeIndex = (BITS_PER_UNIT - 1) - index % BITS_PER_UNIT;
// then we unset that bit
buffer[unit] &= ~(1 << relativeIndex);
// now we have to shift what's on the right by 1 position
// we create a mask such that if 0b00100000 is the bit removed we use 0b00011111 as mask to shift the rest
const S partialShiftMask = (1 << relativeIndex) - 1;
// now we keep all bits left to the removed one and we shift left all the others
buffer[unit] = (buffer[unit] & ~partialShiftMask) | ((buffer[unit] & partialShiftMask) << 1);
for (int i = unit+1; i < length; ++i)
{
//we set rightmost bit of previous unit according to last bit of current unit
buffer[i-1] |= buffer[i] >> (BITS_PER_UNIT-1);
// then we shift current unit by one
buffer[i] <<= 1;
}
}
I just tested it on some basic cases so maybe something is not exactly correct but this should move you onto the right track.
I'm looking for the most efficient way to calculate the minimum number of bytes needed to store an integer without losing precision.
e.g.
int: 10 = 1 byte
int: 257 = 2 bytes;
int: 18446744073709551615 (UINT64_MAX) = 8 bytes;
Thanks
P.S. This is for a hash functions which will be called many millions of times
Also the byte sizes don't have to be a power of two
The fastest solution seems to one based on tronics answer:
int bytes;
if (hash <= UINT32_MAX)
{
if (hash < 16777216U)
{
if (hash <= UINT16_MAX)
{
if (hash <= UINT8_MAX) bytes = 1;
else bytes = 2;
}
else bytes = 3;
}
else bytes = 4;
}
else if (hash <= UINT64_MAX)
{
if (hash < 72057594000000000ULL)
{
if (hash < 281474976710656ULL)
{
if (hash < 1099511627776ULL) bytes = 5;
else bytes = 6;
}
else bytes = 7;
}
else bytes = 8;
}
The speed difference using mostly 56 bit vals was minimal (but measurable) compared to Thomas Pornin answer. Also i didn't test the solution using __builtin_clzl which could be comparable.
Use this:
int n = 0;
while (x != 0) {
x >>= 8;
n ++;
}
This assumes that x contains your (positive) value.
Note that zero will be declared encodable as no byte at all. Also, most variable-size encodings need some length field or terminator to know where encoding stops in a file or stream (usually, when you encode an integer and mind about size, then there is more than one integer in your encoded object).
You need just two simple ifs if you are interested on the common sizes only. Consider this (assuming that you actually have unsigned values):
if (val < 0x10000) {
if (val < 0x100) // 8 bit
else // 16 bit
} else {
if (val < 0x100000000L) // 32 bit
else // 64 bit
}
Should you need to test for other sizes, choosing a middle point and then doing nested tests will keep the number of tests very low in any case. However, in that case making the testing a recursive function might be a better option, to keep the code simple. A decent compiler will optimize away the recursive calls so that the resulting code is still just as fast.
Assuming a byte is 8 bits, to represent an integer x you need [log2(x) / 8] + 1 bytes where [x] = floor(x).
Ok, I see now that the byte sizes aren't necessarily a power of two. Consider the byte sizes b. The formula is still [log2(x) / b] + 1.
Now, to calculate the log, either use lookup tables (best way speed-wise) or use binary search, which is also very fast for integers.
The function to find the position of the first '1' bit from the most significant side (clz or bsr) is usually a simple CPU instruction (no need to mess with log2), so you could divide that by 8 to get the number of bytes needed. In gcc, there's __builtin_clz for this task:
#include <limits.h>
int bytes_needed(unsigned long long x) {
int bits_needed = sizeof(x)*CHAR_BIT - __builtin_clzll(x);
if (bits_needed == 0)
return 1;
else
return (bits_needed + 7) / 8;
}
(On MSVC you would use the _BitScanReverse intrinsic.)
You may first get the highest bit set, which is the same as log2(N), and then get the bytes needed by ceil(log2(N) / 8).
Here are some bit hacks for getting the position of the highest bit set, which are copied from http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious, and you can click the URL for details of how these algorithms work.
Find the integer log base 2 of an integer with an 64-bit IEEE float
int v; // 32-bit integer to find the log base 2 of
int r; // result of log_2(v) goes here
union { unsigned int u[2]; double d; } t; // temp
t.u[__FLOAT_WORD_ORDER==LITTLE_ENDIAN] = 0x43300000;
t.u[__FLOAT_WORD_ORDER!=LITTLE_ENDIAN] = v;
t.d -= 4503599627370496.0;
r = (t.u[__FLOAT_WORD_ORDER==LITTLE_ENDIAN] >> 20) - 0x3FF;
Find the log base 2 of an integer with a lookup table
static const char LogTable256[256] =
{
#define LT(n) n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n
-1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
LT(4), LT(5), LT(5), LT(6), LT(6), LT(6), LT(6),
LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7)
};
unsigned int v; // 32-bit word to find the log of
unsigned r; // r will be lg(v)
register unsigned int t, tt; // temporaries
if (tt = v >> 16)
{
r = (t = tt >> 8) ? 24 + LogTable256[t] : 16 + LogTable256[tt];
}
else
{
r = (t = v >> 8) ? 8 + LogTable256[t] : LogTable256[v];
}
Find the log base 2 of an N-bit integer in O(lg(N)) operations
unsigned int v; // 32-bit value to find the log2 of
const unsigned int b[] = {0x2, 0xC, 0xF0, 0xFF00, 0xFFFF0000};
const unsigned int S[] = {1, 2, 4, 8, 16};
int i;
register unsigned int r = 0; // result of log2(v) will go here
for (i = 4; i >= 0; i--) // unroll for speed...
{
if (v & b[i])
{
v >>= S[i];
r |= S[i];
}
}
// OR (IF YOUR CPU BRANCHES SLOWLY):
unsigned int v; // 32-bit value to find the log2 of
register unsigned int r; // result of log2(v) will go here
register unsigned int shift;
r = (v > 0xFFFF) << 4; v >>= r;
shift = (v > 0xFF ) << 3; v >>= shift; r |= shift;
shift = (v > 0xF ) << 2; v >>= shift; r |= shift;
shift = (v > 0x3 ) << 1; v >>= shift; r |= shift;
r |= (v >> 1);
// OR (IF YOU KNOW v IS A POWER OF 2):
unsigned int v; // 32-bit value to find the log2 of
static const unsigned int b[] = {0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0,
0xFF00FF00, 0xFFFF0000};
register unsigned int r = (v & b[0]) != 0;
for (i = 4; i > 0; i--) // unroll for speed...
{
r |= ((v & b[i]) != 0) << i;
}
Find the number of bits by taking the log2 of the number, then divide that by 8 to get the number of bytes.
You can find logn of x by the formula:
logn(x) = log(x) / log(n)
Update:
Since you need to do this really quickly, Bit Twiddling Hacks has several methods for quickly calculating log2(x). The look-up table approach seems like it would suit your needs.
This will get you the number of bytes. It's not strictly the most efficient, but unless you're programming a nanobot powered by the energy contained in a red blood cell, it won't matter.
int count = 0;
while (numbertotest > 0)
{
numbertotest >>= 8;
count++;
}
You could write a little template meta-programming code to figure it out at compile time if you need it for array sizes:
template<unsigned long long N> struct NBytes
{ static const size_t value = NBytes<N/256>::value+1; };
template<> struct NBytes<0>
{ static const size_t value = 0; };
int main()
{
std::cout << "short = " << NBytes<SHRT_MAX>::value << " bytes\n";
std::cout << "int = " << NBytes<INT_MAX>::value << " bytes\n";
std::cout << "long long = " << NBytes<ULLONG_MAX>::value << " bytes\n";
std::cout << "10 = " << NBytes<10>::value << " bytes\n";
std::cout << "257 = " << NBytes<257>::value << " bytes\n";
return 0;
}
output:
short = 2 bytes
int = 4 bytes
long long = 8 bytes
10 = 1 bytes
257 = 2 bytes
Note: I know this isn't answering the original question, but it answers a related question that people will be searching for when they land on this page.
Floor((log2(N) / 8) + 1) bytes
You need exactly the log function
nb_bytes = floor(log(x)/log(256))+1
if you use log2, log2(256) == 8 so
floor(log2(x)/8)+1
You need to raise 256 to successive powers until the result is larger than your value.
For example: (Tested in C#)
long long limit = 1;
int byteCount;
for (byteCount = 1; byteCount < 8; byteCount++) {
limit *= 256;
if (limit > value)
break;
}
If you only want byte sizes to be powers of two (If you don't want 65,537 to return 3), replace byteCount++ with byteCount *= 2.
I think this is a portable implementation of the straightforward formula:
#include <limits.h>
#include <math.h>
#include <stdio.h>
int main(void) {
int i;
unsigned int values[] = {10, 257, 67898, 140000, INT_MAX, INT_MIN};
for ( i = 0; i < sizeof(values)/sizeof(values[0]); ++i) {
printf("%d needs %.0f bytes\n",
values[i],
1.0 + floor(log(values[i]) / (M_LN2 * CHAR_BIT))
);
}
return 0;
}
Output:
10 needs 1 bytes
257 needs 2 bytes
67898 needs 3 bytes
140000 needs 3 bytes
2147483647 needs 4 bytes
-2147483648 needs 4 bytes
Whether and how much the lack of speed and the need to link floating point libraries depends on your needs.
I know this question didn't ask for this type of answer but for those looking for a solution using the smallest number of characters, this does the assignment to a length variable in 17 characters, or 25 including the declaration of the length variable.
//Assuming v is the value that is being counted...
int l=0;
for(;v>>l*8;l++);
This is based on SoapBox's idea of creating a solution that contains no jumps, branches etc... Unfortunately his solution was not quite correct. I have adopted the spirit and here's a 32bit version, the 64bit checks can be applied easily if desired.
The function returns number of bytes required to store the given integer.
unsigned short getBytesNeeded(unsigned int value)
{
unsigned short c = 0; // 0 => size 1
c |= !!(value & 0xFF00); // 1 => size 2
c |= (!!(value & 0xFF0000)) << 1; // 2 => size 3
c |= (!!(value & 0xFF000000)) << 2; // 4 => size 4
static const int size_table[] = { 1, 2, 3, 3, 4, 4, 4, 4 };
return size_table[c];
}
For each of eight times, shift the int eight bits to the right and see if there are still 1-bits left. The number of times you shift before you stop is the number of bytes you need.
More succinctly, the minimum number of bytes you need is ceil(min_bits/8), where min_bits is the index (i+1) of the highest set bit.
There are a multitude of ways to do this.
Option #1.
int numBytes = 0;
do {
numBytes++;
} while (i >>= 8);
return (numBytes);
In the above example, is the number you are testing, and generally works for any processor, any size of integer.
However, it might not be the fastest. Alternatively, you can try a series of if statements ...
For a 32 bit integers
if ((upper = (value >> 16)) == 0) {
/* Bit in lower 16 bits may be set. */
if ((high = (value >> 8)) == 0) {
return (1);
}
return (2);
}
/* Bit in upper 16 bits is set */
if ((high = (upper >> 8)) == 0) {
return (3);
}
return (4);
For 64 bit integers, Another level of if statements would be required.
If the speed of this routine is as critical as you say, it might be worthwhile to do this in assembler if you want it as a function call. That could allow you to avoid creating and destroying the stack frame, saving a few extra clock cycles if it is that critical.
A bit basic, but since there will be a limited number of outputs, can you not pre-compute the breakpoints and use a case statement? No need for calculations at run-time, only a limited number of comparisons.
Why not just use a 32-bit hash?
That will work at near-top-speed everywhere.
I'm rather confused as to why a large hash would even be wanted. If a 4-byte hash works, why not just use it always? Excepting cryptographic uses, who has hash tables with more then 232 buckets anyway?
there are lots of great recipes for stuff like this over at Sean Anderson's "Bit Twiddling Hacks" page.
This code has 0 branches, which could be faster on some systems. Also on some systems (GPGPU) its important for threads in the same warp to execute the same instructions. This code is always the same number of instructions no matter what the input value.
inline int get_num_bytes(unsigned long long value) // where unsigned long long is the largest integer value on this platform
{
int size = 1; // starts at 1 sot that 0 will return 1 byte
size += !!(value & 0xFF00);
size += !!(value & 0xFFFF0000);
if (sizeof(unsigned long long) > 4) // every sane compiler will optimize this out
{
size += !!(value & 0xFFFFFFFF00000000ull);
if (sizeof(unsigned long long) > 8)
{
size += !!(value & 0xFFFFFFFFFFFFFFFF0000000000000000ull);
}
}
static const int size_table[] = { 1, 2, 4, 8, 16 };
return size_table[size];
}
g++ -O3 produces the following (verifying that the ifs are optimized out):
xor %edx,%edx
test $0xff00,%edi
setne %dl
xor %eax,%eax
test $0xffff0000,%edi
setne %al
lea 0x1(%rdx,%rax,1),%eax
movabs $0xffffffff00000000,%rdx
test %rdx,%rdi
setne %dl
lea (%rdx,%rax,1),%rax
and $0xf,%eax
mov _ZZ13get_num_bytesyE10size_table(,%rax,4),%eax
retq
Why so complicated? Here's what I came up with:
bytesNeeded = (numBits/8)+((numBits%8) != 0);
Basically numBits divided by eight + 1 if there is a remainder.
There are already a lot of answers here, but if you know the number ahead of time, in c++ you can use a template to make use of the preprocessor.
template <unsigned long long N>
struct RequiredBytes {
enum : int { value = 1 + (N > 255 ? RequiredBits<(N >> 8)>::value : 0) };
};
template <>
struct RequiredBytes<0> {
enum : int { value = 1 };
};
const int REQUIRED_BYTES_18446744073709551615 = RequiredBytes<18446744073709551615>::value; // 8
or for a bits version:
template <unsigned long long N>
struct RequiredBits {
enum : int { value = 1 + RequiredBits<(N >> 1)>::value };
};
template <>
struct RequiredBits<1> {
enum : int { value = 1 };
};
template <>
struct RequiredBits<0> {
enum : int { value = 1 };
};
const int REQUIRED_BITS_42 = RequiredBits<42>::value; // 6