Using References in const Methods - c++

Let's say I have a class like this:
class LinkedList
{
struct Node
{
int StoredValue;
// ...
};
Node& GetNodeReference(std::size_t Index)
{
// ...
return NodeReference;
}
public:
int Get(std::size_t Index) const
{
return GetNodeReference(Index).StoredValue;
}
};
This won't compile because the const method Get uses GetNodeReference, which cannot be const because it returns a reference.
How can I work around this?

I'm not sure what you're trying to achieve, but you could provide two overloads of GetNodeReference:
Node& GetNodeReference(std::size_t Index)
{
// ...
return NodeReference;
}
const Node& GetNodeReference(std::size_t Index) const
{
// ...
return NodeReference;
}
Note that the second overload has two const modifers, one at the beginning of the line for the return type and one at the end of the line for the implicitly passed *this object.
To avoid code repetition, you can implement the non-const overload based on the const overload:
const Node& GetNodeReference(std::size_t Index) const
{
// ...
return NodeReference;
}
Node& GetNodeReference(std::size_t Index)
{
return const_cast<Node&>(static_cast<const LinkedList&>(*this).getNodeReference(Index));
}
This technique is discussed in Item 3 of Effective C++ by Scott Meyers.

Don't implement an indexed Get function for lists at all. It will be WAY too easy for a new developer to come in and use it in a loop, turning a linear interation into a polynomial iteration.
If you need such a capability, make a free-function that uses the builtin iterators of the list in conjunction with say std::advance to get the node you want.
If you absolutely need the member function, then the normal approach is the one suggested by #FredOverflow and use overloads (quote his code):
const Node& GetNodeReference(std::size_t Index) const
{
// ...
return NodeReference;
}
Node& GetNodeReference(std::size_t Index)
{
return const_cast<Node&>(static_cast<const LinkedList&>(*this).getNodeReference(Index));
}

How about this?
class LinkedList {
private:
struct Node
{
int StoredValue;
// ...
};
Node NodeReference;
const Node* const GetNodeReference(std::size_t Index) const
{
return &NodeReference;
}
public:
int Get(std::size_t Index) const
{
const Node *const node = GetNodeReference(Index);
return node->StoredValue;
}
};
Edit:
As you can read in the comments
const Node* const GetNodeReference(std::size_t Index) const () ...
should be changed to:
const Node* GetNodeReference(std::size_t Index) const () ...

I suggest:
class LinkedList {
private:
struct Node
{
int StoredValue;
// ...
};
Node NodeReference;
const Node& GetNodeReference(std::size_t Index) const
{
return NodeReference;
}
public:
int Get(std::size_t Index) const
{
const Node node = GetNodeReference(Index);
return node.StoredValue;
}
};

Related

Extract non-const pointer from iterator in a const member function

I was doing some programs on Object Oreinted Programming in C++.
Here is a brief skeleton of the situation
class coll;
class ele {
private:
int val;
coll* p;
public:
ele(int v, coll* p);
int value() const;
friend bool operator==(const ele& El1, const ele& El2);
friend bool operator<(const ele& El1, const ele& El2);
};
class coll {
private:
set<ele> data;
public:
ele* min() const {
if(size()) {
set<ele>::iterator minIt = min_element(data.begin(), data.end());
ele* ptr = &(*minIt);
return ptr;
}
return nullptr;
}
};
In the min() function, the return type has to be non-const and the function has to be const compulsorily.
I don't know why, but min_element's iterator when de-referenced is giving a const reference. Like, &(*minIt) is a const pointer. But I need a non-const pointer to return.
What can be the reason for this behavior. Thanks in advance.

How can I implement random access iterators for my container?

This is the header file for the container including a try to implement random access iterators :
using namespace std;
template <class Element, class Compare = std::equal_to<Element>>
class UniqueArray {
public:
Element** data;
unsigned int curr_size;
unsigned int max_size;
int* availability_array;
explicit UniqueArray(unsigned int size);
UniqueArray(const UniqueArray& other);
~UniqueArray();
// UniqueArray& operator=(const UniqueArray&) = delete;
unsigned int insert(const Element& element);
bool getIndex(const Element& element, unsigned int& index) const;
const Element* operator[] (const Element& element) const;
bool remove(const Element& element);
unsigned int getCount() const;
unsigned int getSize() const;
class Filter {
public:
virtual bool operator() (const Element&) const = 0;
};
UniqueArray filter(const Filter& f) const;
class UniqueArrayIsFullException{};
typedef Element ua_iterator;
typedef const Element ua_const_iterator;
ua_iterator begin(){
return **data;
}
ua_const_iterator begin() const {
return **data;
}
ua_iterator end(){
return *(*data + max_size);
}
ua_const_iterator end() const {
return *(*data + max_size);
}
};
A summary of the errors I get :
error: no match for ‘operator++’
error: no match for ‘operator*’
error: no type named ‘value_type’ in ‘struct std::iterator_traits<MtmParkingLot::Vehicle>
error: no match for ‘operator!=’
error: no match for ‘operator-’
On my implementation Element gets Vehicle and all these missing operators refer to Vehicle
I'm not quite sure on how to work on these errors because for example substracting Vehicles makes no sense..
If you want an iterator to return a reference to an object when it is dereferenced, you have to define a special Iterator class to do it. With boost::indirect_iterator this is pretty simple:
#include <boost/iterator/indirect_iterator.hpp>
template <class Element, class Compare = std::equal_to<Element>>
class UniqueArray {
// ...
auto begin() {
return boost::indirect_iterator<Element**, Element>(data_);
}
auto end() {
return boost::indirect_iterator<Element**, Element>(data_ + curr_size);
}
};
Simple demo
If you want to code it yourself, the idea is:
template<class Element>
class UniqueArray {
public:
//...
class Iterator {
public:
using iterator_category = std::random_access_iterator_tag;
using value_type = Element;
using reference = Element&;
// ...
Iterator(Element** d) : data(d) { }
reference operator*() {
return **data;
}
Iterator& operator++() {
++data;
return *this;
}
friend bool operator!=(Iterator it1, Iterator it2) {
return it1.data != it2.data;
}
// ...
private:
Element** data;
};
Iterator begin() {
return Iterator(data);
}
Iterator end() {
return Iterator(data + curr_size);
}
};
Note, the full random access iterator requires implementation of many other member and non-member functions. You might want to make it a forward iterator to simplify things a little bit.
Simple demo
If you write that without the type aliases, you get definitions like
Element begin(){
return **data;
}
and use like
UniqueArray<Vehicle>::ua_iterator it = something.begin();
it++;
becomes
Vehicle it = something.begin();
it++;
which makes the cause of the errors more obvious - you're trying to apply iterator operations to your element type.
If you're fine with iteration producing Element*, the simple solution is
typedef Element** ua_iterator;
ua_iterator begin(){
return data;
}
ua_iterator end(){
return data + curr_size;
}
and similar for the const versions.
Then you could write
UniqueArray<Vehicle>::ua_iterator it = something.begin();
Vehicle* v = *it;
If you want iteration to produce Element&, you need to write an iterator class with the appropriate overloads and traits.
It's not very difficult, but it gets tedious.

Sort custom container (implemented as one integer)

I have a class which holds small numbers inside bigger integer variable. It works fine and fast and looks like this:
template
class Container<IntegerT>
static int bitsPerElement;
IntegerT data; // [0000] [0000] [0000] [0000] up to 128bits(or maybe more)
int size;
iterator as value_type return "reference" to container element:
Container::iterator
DataRef operator*()
DataRef
Container* parent;
int position;
But i got a problem of unavailability of std::sort, because it have no clue how to actually swap elements of this container (direct swapping of DataRefs is obviously pointless).
Is there any magic way to make std::sort work with it (actually to force it use custom swap function)?
Or is there decent alternative to std::sort which can handle this situation? (storing DataRefs in array is not considered as a solution)
Which is the fastest way to sort this data structure?
#ifndef INTSTORAGE_H
#define INTSTORAGE_H
#include <algorithm>
template<class T> class IntStorage;
template<class T>
class DataRef
{
public:
DataRef(IntStorage<T>* parent, int position) : m_parent(parent), m_position(position) {}
DataRef(DataRef&& o) = default;
DataRef(const DataRef& o) = default;
int value() const {return m_parent->value(m_position);}
void setValue(int value) {m_parent->setValue(m_position, value);}
DataRef& operator=(const DataRef& c)
{ setValue(c.value()); return *this; }
DataRef& operator=(const DataRef&& c)
{ setValue(c.value()); return *this; }
bool operator<(const DataRef& o) const
{ return value() < o.value(); }
IntStorage<T>* m_parent;
int m_position;
};
template<class T>
class IntStorage
{
template<typename> friend class IntStorage;
template<typename> friend class DataRef;
public:
void append(int value)
{
data |= (static_cast<T>(value) << (s_bitsPerItem * size));
++size;
}
void setValue(int index, T value)
{
data = ((~(s_mask << (s_bitsPerItem * index))) & data)
| (static_cast<T>(value) << (s_bitsPerItem * index));
}
T value(int i) const { return (data & s_mask << (i * s_bitsPerItem)) >> (i * s_bitsPerItem); }
class iterator
{
public:
using iterator_category = std::random_access_iterator_tag;
using difference_type = int;
using value_type = DataRef<T>;
using pointer = DataRef<T>*;
using reference = DataRef<T>&;
iterator(IntStorage<T>* parent, int pos = 0) : ref(parent, pos) {}
inline bool operator==(const iterator& o) const { return ref.m_parent == o.ref.m_parent && ref.m_position == o.ref.m_position;}
inline bool operator!=(const iterator& o) const { return !operator==(o);}
inline const DataRef<T>& operator*() const { return ref;}
inline DataRef<T>& operator*() { return ref; }
inline iterator& operator++() { ++ref.m_position; return *this; }
inline iterator& operator--() { --ref.m_position; return *this; }
inline int operator-(const iterator& o) const { return ref.m_position - o.ref.m_position; }
inline iterator operator+(int diff) const { return iterator(ref.m_parent, ref.m_position + diff); }
inline iterator operator-(int diff) const { return iterator(ref.m_parent, ref.m_position - diff); }
inline bool operator<(const iterator& o) const { return ref.m_position < o.ref.m_position; }
DataRef<T> ref;
};
friend class iterator;
iterator begin() {return iterator(this, 0);}
iterator end() {return iterator(this, size);}
iterator cbegin() {return iterator(this, 0);}
iterator cend() {return iterator(this, size);}
static constexpr T s_mask = 0b111111;
static constexpr int s_bitsPerItem = 6;
int size = 0;
T data = 0;
};
#endif // INTSTORAGE_H

How do I update this old C++ doubly linked list code to C++11?

I have the following code written in what would now be called C++98
It implements a doubly linked list, and I was considering updating it to C++11, but I had the following concerns:
it would seem that using std::unique_ptr makes sense, but there
still needs to be other pointers "sharing" the unique_ptr. I.e if
nxt is a unique_ptr, what do I do with prv and iterator::it?
it would seem that it should take an allocator as a template
paraemter, but it will be an allocator of type T, not LLNode?
are there any traits, that need to be "registered"?
if move semantics are used, what methods should be defined e.g.
operator=() && etc.?
what undefined behavior (if any) needs to be corrected?
what am i not concerned about that I should be?
An accepted answer would briefly discuss the concerns, and then reimplement in C++11 (admittedly, it's a lot of code, but most will be just cut and paste)
A good answer will briefly discuss the concerns, and then reimplement in C++11 the minimal amount to illustrate how to apply those concepts
using standard algorythms would make sense, using a standard container defeats the purpose
appropriate use of C++11 features is encouraged where it makes sense e.g. foreach as opposed to just using lambdas because it will work
This is not homework
The code:
template <class T>
class LinkedList
{
class LLNode
{
public:
LLNode() // For Sentinel (requires that T has a default constructor)
{} // set prv/nxt directly
explicit LLNode(const T& x) : data(x) // For normal nodes
{} // set prv/nxt directly
T& get_data() const
{
return const_cast<T&>(data);
}
LLNode * prv;
LLNode * nxt;
private:
T data;
};
public:
class iterator
{
public:
iterator(const LinkedList * p, LLNode * i)
: parent(const_cast<LinkedList *>(p)), it(i)
{}
iterator& operator ++() // pre
{
it = it->nxt;
return *this;
}
iterator operator ++(int) // post
{
iterator ret=*this;
it = it->nxt;
return ret;
}
iterator& operator --() // pre
{
it = it->prv;
return *this;
}
iterator operator --(int) //post
{
iterator ret=*this;
it = it->prv;
return ret;
}
T& operator *() const
{
return it->get_data();
}
T * operator ->() const
{
return &(it->get_data());
}
bool operator ==(const iterator& rhs) const
{
return it == rhs.it;
}
bool operator !=(const iterator& rhs) const
{
return it != rhs.it;
}
void erase()
{
parent->remove(it);
}
void insert_after(const T& x)
{
LLNode * add= new LLNode(x);
parent->insert(it, add);
}
void insert_before(const T& x)
{
LLNode * add= new LLNode(x);
parent->insert(it->prv, add);
}
private:
LinkedList * parent;
LLNode * it;
};
// Linked List class definition
LinkedList()
{
init();
}
LinkedList(const LinkedList& rhs)
{
init();
cp(rhs);
}
~LinkedList()
{
rm();
}
LinkedList operator =(const LinkedList& rhs)
{
if (this != &rhs)
{
rm();
cp(rhs);
}
return *this;
}
iterator begin() const
{
return iterator(this, sentinel.nxt);
}
iterator rbegin() const
{
return iterator(this, sentinel.prv);
}
iterator end() const
{
return iterator(this, const_cast<LLNode *>(&sentinel));
}
T& get_first() const // illegal if is_empty() is true
{
return sentinel.nxt->get_data();
}
T& get_last() const // illegal if is_empty() is true
{
return sentinel.prv->get_data();
}
size_t size() const
{
return count;
}
bool is_empty() const
{
return count==0;
}
void insert_first(const T& x)
{
LLNode * add= new LLNode(x);
insert(&sentinel, add);
}
void insert_last(const T& x)
{
LLNode * add= new LLNode(x);
insert(sentinel.prv, add);
}
void erase_first() // illegal if is_empty() is true
{
remove(sentinel.nxt);
}
void erase_last() // illegal if is_empty() is true
{
remove(sentinel.prv);
}
private:
void insert(LLNode * before, LLNode * added)
{
LLNode * after=before->nxt;
added->prv=before;
added->nxt=after;
before->nxt=added;
after->prv=added;
++count;
}
void remove(LLNode * node) // illegal if is_empty() is true
{
node->prv->nxt=node->nxt;
node->nxt->prv=node->prv;
delete node;
--count;
}
void cp(const LinkedList& rhs)
{
for (iterator i=rhs.begin(); i != rhs.end(); ++i)
{
insert_last(*i);
}
}
void rm()
{
LLNode * run=sentinel.nxt;
while (run != &sentinel)
{
LLNode * dead=run;
run=run->nxt;
delete dead;
}
}
void init()
{
count=0;
sentinel.nxt = sentinel.prv = &sentinel; // setup circular ref
}
LLNode sentinel;
size_t count;
};
EDIT - C++11 attempt based on Mooing Duck's answer :
template <class T, class ALLOC=std::allocator<T> >
class LinkedList
{
struct LLNode
{
LLNode * prv;
LLNode * nxt;
T& get_data() { return data; }
T data;
};
public:
class iterator
{
public:
using difference_type = ptrdiff_t;
using value_type = T;
using reference = T&;
using pointer = T*;
using iterator_category = std::bidirectional_iterator_tag;
iterator(LinkedList * p, LLNode * i) : parent(p), it(i)
{}
iterator& operator ++() // pre
{
it = it->nxt;
return *this;
}
iterator operator ++(int) // post
{
iterator ret=*this;
it = it->nxt;
return ret;
}
iterator& operator --() // pre
{
it = it->prv;
return *this;
}
iterator operator --(int) //post
{
iterator ret=*this;
it = it->prv;
return ret;
}
const T& operator *() const
{
return it->get_data();
}
T& operator *()
{
return it->get_data();
}
const T * operator ->() const
{
return &(it->get_data());
}
T * operator ->()
{
return &(it->get_data());
}
bool operator ==(const iterator& rhs) const
{
return it == rhs.it;
}
bool operator !=(const iterator& rhs) const
{
return it != rhs.it;
}
void erase()
{
parent->remove(it);
}
void insert_after(T& x)
{
auto add=parent->alloc_node(x);
parent->insert(it->nxt, add);
}
void insert_before(T& x)
{
auto add=parent->alloc_node(x);
parent->insert(it, add);
}
private:
LinkedList * parent;
LLNode * it;
};
class const_iterator
{
public:
using difference_type = ptrdiff_t;
using value_type = const T;
using reference = const T&;
using pointer = const T*;
using iterator_category = std::bidirectional_iterator_tag;
const_iterator(const LinkedList * p, const LLNode * i) : parent(p),
it(const_cast<LLNode *>(i))
{}
const_iterator(iterator& cvt) : parent(cvt.parent), it(cvt.it)
{}
const_iterator& operator ++() // pre
{
it = it->nxt;
return *this;
}
const_iterator operator ++(int) // post
{
const_iterator ret=*this;
it = it->nxt;
return ret;
}
const_iterator& operator --() // pre
{
it = it->prv;
return *this;
}
const_iterator operator --(int) //post
{
const_iterator ret=*this;
it = it->prv;
return ret;
}
const T& operator *() const
{
return it->get_data();
}
const T * operator ->() const
{
return &(it->get_data());
}
bool operator ==(const const_iterator& rhs) const
{
return it == rhs.it;
}
bool operator !=(const const_iterator& rhs) const
{
return it != rhs.it;
}
private:
const LinkedList * parent;
LLNode * it;
};
using my_alloc=typename
std::allocator_traits<ALLOC>::template rebind_alloc<LLNode>;
using my_traits=typename
std::allocator_traits<ALLOC>::template rebind_traits<LLNode>;
// Linked List class definition
LinkedList(const ALLOC& alloc = ALLOC() ) : mem(alloc)
{
init();
}
LinkedList(const LinkedList& rhs) : mem(rhs.mem)
{
init();
cp(rhs);
}
LinkedList(LinkedList&& rhs) : mem(rhs.mem) // Move
{
init();
shallow_cp(rhs);
}
~LinkedList()
{
rm();
}
LinkedList operator =(const LinkedList& rhs)
{
if (this != &rhs)
{
rm();
cp(rhs);
}
return *this;
}
LinkedList operator =(LinkedList&& rhs) // Move
{
if (this != &rhs)
{
rm();
shallow_cp(rhs);
}
return *this;
}
const_iterator begin() const
{
return const_iterator(this, sentinel.nxt);
}
iterator begin()
{
return iterator(this, sentinel.nxt);
}
const_iterator rbegin() const
{
return const_iterator(this, sentinel.prv);
}
iterator rbegin()
{
return iterator(this, sentinel.prv);
}
const_iterator end() const
{
return const_iterator(this, &sentinel);
}
iterator end()
{
return iterator(this, &sentinel);
}
T& front() // illegal if is_empty() is true
{
return sentinel.nxt->get_data();
}
T& back() // illegal if is_empty() is true
{
return sentinel.prv->get_data();
}
size_t size() const
{
return count;
}
bool is_empty() const
{
return count==0;
}
void insert_first(const T& x)
{
LLNode * add=alloc_node(x);
insert(&sentinel->nxt, add);
}
void insert_last(const T& x)
{
LLNode * add=alloc_node(x);
insert(&sentinel, add);
}
void erase_first() // illegal if is_empty() is true
{
remove(sentinel.nxt);
}
void erase_last() // illegal if is_empty() is true
{
remove(sentinel.prv);
}
private:
LLNode * alloc_node(const T& x)
{
auto ret = my_traits::allocate(mem,1);
my_traits::construct(mem, &(ret->data), x);
return ret;
}
void unalloc_node(LLNode * dead)
{
my_traits::deallocate(mem, dead, 1);
}
void insert(LLNode * after, LLNode * added)
{
LLNode * before=after->prv;
added->prv=before;
added->nxt=after;
before->nxt=added;
after->prv=added;
++count;
}
void remove(LLNode * node) // illegal if is_empty() is true
{
node->prv->nxt=node->nxt;
node->nxt->prv=node->prv;
unalloc_node(node);
--count;
}
void cp(const LinkedList& rhs)
{
mem = rhs.mem;
for (const_iterator i=rhs.begin(); i != rhs.end(); ++i)
{
insert_last(*i);
}
}
void shallow_cp(LinkedList& rhs)
{
if (rhs.count)
{
count=rhs.count;
sentinel=rhs.sentinel; // shallow copy
// fix the links to the old sentinel
sentinel.nxt.prv=&sentinel;
sentinel.prv.nxt=&sentinel;
rhs.init();
}
}
void rm()
{
LLNode * run=sentinel.nxt;
while (run != &sentinel)
{
LLNode * dead=run;
run=run->nxt;
unalloc_node(dead);
}
}
void init()
{
count=0;
sentinel.nxt = sentinel.prv = &sentinel; // setup circular ref
}
LLNode sentinel;
size_t count;
my_alloc mem;
};
Is anything missing/wrong?
it would seem that using std::unique_ptr makes sense, but there still needs to be other pointers "sharing" the unique_ptr. I.e if nxt is a unique_ptr, what do I do with prv and iterator::it?
Don't. (1) It makes various internal algorithms trickier to perform without accidentally deleting a node, and (2) unique_ptr stores the deleter, in your case that's either (A) a copy of the iterator, or (B) a pointer to the iterator. Either one is a waste of space. The container should store the allocator, and the container should handle deletions.
it would seem that it should take an allocator as a template paraemter, but it will be an allocator of type T, not LLNode?
Containers take an allocator of type T, though all of them use a rebound type internally. The standard is that allocators to containers take type T, and that way every std::vector<T, allocator<?>> matches every other. Also, outsiders should not be able to access LLNode. You'd probably store a given_allocator<LLNode> internally though. That's why we have rebinding.
are there any traits, that need to be "registered"?
For containers, no. There are interfaces to match, but those are relatively obvious.
Yes, your iterators are supposed to register traits, but that's easily done by merely adding five typedefs at the front.
typedef ptrdiff_t difference_type; //usually ptrdif_t
typedef T value_type; //usually T
typedef T& reference; //usually T&
typedef T* pointer; //usually T*
typedef std::bidirectional_iterator_tag iterator_category;
if move semantics are used, what methods should be defined e.g. operator=() && etc.?
Obviously the container should be move constructable and move assignable if it makes sense, which it does 99.99% of the time. Even std::array has move operators. Also decide which member functions should support move-only-T (insert range via iterators, but not insert range + count), and which member functions support any T (emplace one).
what undefined behavior (if any) needs to be corrected?
It would appear that your insert(iterator, data) inserts the data after the iterator, when the standard is to insert before the iterator. Your way makes it impossible to add data to the beginning, and makes it possible to add data after the after-the-end.
Your iterators have but do not need remove and insert functions. I wouldn't have mentioned it, but in this case they require the iterators to be twice as big as needed. I'd offer a tentative suggestion to remove them, but only tentative. That's a small penalty, and potentially a useful feature.
Your operator = deallocates everything and then reallocates. It might be handy to simply copy element by element skipping that when possible. Trickier to code though.
You're missing a constructor that constructs from a pair of iterators.
Your iterators allow mutating of data from const containers. THIS ONE IS BIG
get_first and get_last are normally called front and back.
what am i not concerned about that I should be?
The big one that everyone overlooks is exception safety. Your code is exception safe, but that appears to be because your code is amazingly simple, and you skipped all of the "hard" parts :P
For more information review these:
Writing your own STL Container
How to implement an STL-style iterator and avoid common pitfalls?
Edit for your C++11 followup:
missing:
template LLNode(U&& x) //or, one T&& and one const T&
LinkedList(std::initializer_list x)
T& LLNode::get_data() const //important, your code doesn't even compile
T* iterator::operator->() const //important
const_iterator cbegin() const
const_iterator cend() const
const T& front() const //important
const T& back() const //important
template void assign(iter, iter);
void assign(std::initializer_list);
void swap(const X&);
Incorrect:
insert_* should probably take a U&& and use std::forward<U>(x). Variadic templates would be better.
no iterator pair constructor.
memory leak in alloc_node, and you should be constructing a LLNode, you have uninitialized prv/nxt.
unalloc_node never destroys, only deallocates, leading to a memory leak
Missing but pretty unimportant
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
reverse_iterator rbegin(); //optional
const_reverse_iterator rbegin() const;
const_reverse_iterator crbegin() const;
reverse_iterator rend(); //optional
const_reverse_iterator rend() const;
const_reverse_iterator crend() const;
Optional:
not sure why my_alloc and my_traits and they're identical.
inherit privately from the allocator. It's a little wierd, but commonly saves you 8 bytes.

Determining Purpose of operator[] Usage

Let's say I have something like the following method in my container class:
Datatype& operator[](const unsigned int Index) // I know this should use size_t instead.
{
return *(BasePointer + Index); // Where BasePointer is the start of the array.
}
I'd like to implement some sort of bounds-checking for the MyInstance[Index] = Value usage so the container resizes automatically if the user tries to change a value outside its range. However, I want something else to happen if the user tries to access a value outside the container's range, e.g. MyVariable = MyInstance[Index]. How can I detect how operator[] is being used?
Sketch:
return a proxy object instead of the actual data entry. The proxy object then defines operator = to handle the assignment case, and an implicit conversion operator for the reading-out case.
template <typename T>
class AccessorProxy {
friend class Container<T>;
public:
AccessorProxy(Container<T>& data, unsigned index)
: data(data), index(index) { }
void operator =(T const& new_value) {
// Expand array.
}
operator const T&() const {
// Do bounds check.
return *(data.inner_array + index);
}
private:
AccessorProxy(const AccessorProxy& rhs)
: data(rhs.data), index(rhs.index) {}
AccessorProxy& operator=(const AccessorProxy&);
Container<T>& data;
unsigned index;
};
template <typename T>
class ConstAccessorProxy {
friend class Container<T>;
public:
ConstAccessorProxy(const Container<T>& data, unsigned index)
: data(data), index(index) { }
operator const T&() const {
// Do bounds check.
return *(data.inner_array + index);
}
private:
ConstAccessorProxy(const ConstAccessorProxy& rhs)
: data(rhs.data), index(rhs.index) {}
ConstAccessorProxy& operator=(const ConstAccessorProxy&);
const Container<T>& data;
unsigned index;
};
AccessorProxy<Datatype> operator[](const unsigned int Index)
{
return AccessorProxy<Datatype>(*this, Index);
}
ConstAccessorProxy<Datatype> operator[] const (const unsigned int Index)
{
return ConstAccessorProxy<Datatype>(*this, Index);
}
The accessor classes will likely need to be be friends of the container class.
Finding ways to avoid the code duplication is left as an exercise to the reader. :)
Use a dummy class type to represent expressions like MyInstance[Index] and delay figuring out what to do until that expression is used.
class MyContainer {
private:
class IndexExpr {
public:
// Get data from container:
operator const Datatype&() const;
// Expand container if necessary, then store data:
Datatype& operator=(const Datatype& value);
// Treat MyInstance[i] = MyInstance[j]; as expected:
Datatype& operator=(const IndexExpr& rhs)
{ return *this = static_cast<const Datatype&>(rhs); }
private:
IndexExpr(MyContainer& cont, unsigned int ind);
MyContainer& container_;
unsigned int index_;
friend class MyContainer;
};
public:
IndexExpr operator[](unsigned int Index)
{ return IndexExpr(*this, Index); }
// No IndexExpr needed when container is const:
const Datatype& operator[](unsigned int Index) const;
// ...
};
This is not a perfect answer to "how to detect", but, if the user is accessing the operator[] via a const instance, then throw an exception if the index is out of bounds.
i.e.
Datatype const& operator[]() const { .. // don't modify here, throw exception
However, if the user is accessing the instance via a non const instance, then by all means expand if the index is out of bounds (and within your acceptable ranges)
Datatype& operator[]() { .. // modify here
Basically, you are using the const attribute of the instance to determine what your semantics would be (as done in std::map - i.e. trying to call operator[] on a const instance of a map results in a compiler error - i.e. there is no const qualified operator[] for map, because the function is guaranteed to create a mapping if the key does not exist already.)