Syntax Error in Preprocessor Macro Code - c++

I am trying to write some code for a macro which returns the length of a string, and am attempting to implement it using BOOST_PP_WHILE. The code stems from the fact that a character at a position specified by position of the string represented by a macro argument foo may be obtained by #foo[position]. Compiling using either MSVC or Intel C++ results in similar syntax errors; if you could point out why the code is generating these syntax errors and how I would rectify code, it would be greatly appreciated. I know that the errors are caused by the code within the PREDICATE macro, but any expression I attempt to use within it barring BOOST_PP_TUPLE_ELEM results in a compile-time error.
Errors:
prog.cpp:47:1: error: pasting "BOOST_PP_BOOL_" and ""\"Hello, World!\""" does not give a valid preprocessing token
prog.cpp: In function ‘int main(int, char**)’:
prog.cpp:47: error: ‘BOOST_PP_TUPLE_ELEM_2_1’ was not declared in this scope
As one would expect, the line numbers are not very useful since both point to the line at which the macro MACRO_STRLEN is called.
Code
Below follows the source listing in which I attempt to implement the macro which I describe.
#include <boost/preprocessor/arithmetic/dec.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/comparison/equal.hpp>
#include <boost/preprocessor/control/while.hpp>
#include <boost/preprocessor/tuple/elem.hpp>
#include <cstdio>
#define TEST_STRING0 "Hello, World!"
#define MACRO_IS_NULL_IMPL(x, position) \
#x[position] == '\0'
#define MACRO_IS_NULL(x, position) \
MACRO_IS_NULL_IMPL(x, position)
#define PREDICATE_D(string, position) \
MACRO_IS_NULL(string, position)
#define PREDICATE(n, state) \
PREDICATE_D( \
BOOST_PP_TUPLE_ELEM(2, 0, state), \
BOOST_PP_TUPLE_ELEM(2, 1, state) \
)
#define OPERATION_D(string, position) \
( \
string, \
BOOST_PP_INC(position) \
)
#define OPERATION(d, state) \
OPERATION_D( \
BOOST_PP_TUPLE_ELEM(2, 0, state), \
BOOST_PP_TUPLE_ELEM(2, 1, state) \
)
#define MACRO_STRLEN_IMPL(string) \
BOOST_PP_TUPLE_ELEM( \
2, 1, BOOST_PP_WHILE(PREDICATE, OPERATION, (string, 0)) \
)
#define MACRO_STRLEN(string) \
MACRO_STRLEN_IMPL(string)
int main(int argc, char ** argv) {
printf("String length: %d.\n", MACRO_STRLEN(TEST_STRING0));
return 0;
}

How about this - http://codepad.org/aT7SK1Lu
Its still a compile-time strlen, and would be likely much faster to compile.
#include <stdio.h>
#include <string.h>
#define TEST_STRING "Hello, World!"
template <int N> struct xtmp2 { typedef char (&t)[N]; };
template< class T, int N > typename xtmp2<N>::t xlen( T (&)[N] );
#define STRLEN(x) (sizeof(xlen(x))-1)
int main( void ) {
printf( "strlen(\"%s\") = %i %i\n", TEST_STRING, STRLEN(TEST_STRING), strlen(TEST_STRING) );
}
As to macro debug, its possible to get a preprocessor output (like gcc -E);
it may be also helpful to undefine most macros, then enable them one by one to
see what happens.

Please forgive me if this is an irrelevant pointing out.
The predicate for BOOST_PP_WHILE is evaluated while preprocess.
However, if I understand correctly, MACRO_IS_NULL_IMPL determines whether
the character is '\0' at compile-time(runtime?).
So, I think it is difficult to accomplish the goal directly with string
literal "Hello, World!".

It won't work, and for a simple reason: the preprocessor is not meant to deal with literals.
The preprocessor only knows about "tokens", it can catenate them, it can transform one into a string literal, and it can operate macros replacements, but that's it.
Here, the condition to stop the loop (use of [] and ==) could be, at best, executed by the compiler (and most likely at runtime), therefore is not suitable for BOOST_PP_WHILE.
You can, actually, use the compiler to get the number of elements of an array (here an array of characters):
For example using sizeof: sizeof(array)/sizeof(array[0]). This can be abstracted in a macro, however it cannot become a "regular" function, since arrays cannot be passed to "regular" functions, only pointers (where you've lost the information size).
You can also use a template function:
template <typename T, size_t N>
size_t size(T (&)[N]) { return N; }
(this actually work on any array with a constant size)
But, for your own issue, you'll be pleased to know that most compilers have a built-in strlen implementation for constants that evaluates at compile-time.

I wonder if it was supposed to be something like this:
#include <stdio.h>
#include <string.h>
#define TEST_STRING "Hello, World!"
#define STRLEN(x) (x[0]==0)?0:TEST_01(x,1)
#define TEST_01(x,y) (x[y]==0)?y:TEST_02(x,y+1)
#define TEST_02(x,y) (x[y]==0)?y:TEST_03(x,y+1)
#define TEST_03(x,y) (x[y]==0)?y:TEST_04(x,y+1)
#define TEST_04(x,y) (x[y]==0)?y:TEST_05(x,y+1)
#define TEST_05(x,y) (x[y]==0)?y:TEST_06(x,y+1)
#define TEST_06(x,y) (x[y]==0)?y:TEST_07(x,y+1)
#define TEST_07(x,y) (x[y]==0)?y:TEST_08(x,y+1)
#define TEST_08(x,y) (x[y]==0)?y:TEST_09(x,y+1)
#define TEST_09(x,y) (x[y]==0)?y:TEST_10(x,y+1)
#define TEST_10(x,y) (x[y]==0)?y:TEST_11(x,y+1)
#define TEST_11(x,y) (x[y]==0)?y:TEST_12(x,y+1)
#define TEST_12(x,y) (x[y]==0)?y:TEST_13(x,y+1)
#define TEST_13(x,y) (x[y]==0)?y:TEST_14(x,y+1)
#define TEST_14(x,y) (x[y]==0)?y:TEST_15(x,y+1)
#define TEST_15(x,y) (x[y]==0)?y:TEST_16(x,y+1)
#define TEST_16(x,y) (x[y]==0)?y:TEST_17(x,y+1)
#define TEST_17(x,y) (x[y]==0)?y:TEST_18(x,y+1)
#define TEST_18(x,y) (x[y]==0)?y:TEST_19(x,y+1)
#define TEST_19(x,y) (x[y]==0)?y:-1
int main( void ) {
printf( "strlen(\"%s\") = %i %i\n", TEST_STRING, STRLEN(TEST_STRING), strlen(TEST_STRING) );
}
But this isn't a compile-time evaluation, even though it would be usually
optimized to a constant.

Related

Preprocessor initialize array

How, if necessary, using boost preprocessor, initialize the array as follows:
INIT_ARRAY(plus,minus)
//extract to
std::array<std::pair<char const *,std::string>, 2> array{{
{"plus", std::string("plus")}, {"minus", std::string("minus")} }};
INIT_ARRAY(plus,minus,multiply)
//extract to
std::array<std::pair<char const *,std::string>, 3> array{{
{"plus", std::string("plus")}, {"minus", std::string("minus")}, {"multiply", std::string("multiply")} }};
P.S. Couldn't solve the problem with the last comma in the initializer (...{n-1} , {n} ,)
and counting the number of arguments to pass to std::array<...,n>. I use the preprocessor, since the names passed to the macro will be used later for code generation. Used c++20
You can use BOOST_PP_COMMA_IF for conditional commas, and BOOST_PP_VARIADIC_SIZE to work out the size beforehand.
This should work (for non-empty arrays):
#include <boost/preprocessor/punctuation/comma_if.hpp>
#include <boost/preprocessor/seq/for_each_i.hpp>
#include <boost/preprocessor/stringize.hpp>
#include <boost/preprocessor/variadic/size.hpp>
#include <boost/preprocessor/variadic/to_seq.hpp>
#define INIT_ARRAY_INITIALIZER(r, _, i, e) BOOST_PP_COMMA_IF(i) {BOOST_PP_STRINGIZE(e), std::string(BOOST_PP_STRINGIZE(e))}
#define INIT_ARRAY(...) \
std::array<std::pair<char const *, std::string>, \
BOOST_PP_VARIADIC_SIZE(__VA_ARGS__)> array{{ \
BOOST_PP_SEQ_FOR_EACH_I(INIT_ARRAY_INITIALIZER, _, BOOST_PP_VARIADIC_TO_SEQ(__VA_ARGS__)) \
}};

Ignoring MACRO argument [duplicate]

Is there some way of getting optional parameters with C++ Macros? Some sort of overloading would be nice too.
Here's one way to do it. It uses the list of arguments twice, first to form the name of the helper macro, and then to pass the arguments to that helper macro. It uses a standard trick to count the number of arguments to a macro.
enum
{
plain = 0,
bold = 1,
italic = 2
};
void PrintString(const char* message, int size, int style)
{
}
#define PRINT_STRING_1_ARGS(message) PrintString(message, 0, 0)
#define PRINT_STRING_2_ARGS(message, size) PrintString(message, size, 0)
#define PRINT_STRING_3_ARGS(message, size, style) PrintString(message, size, style)
#define GET_4TH_ARG(arg1, arg2, arg3, arg4, ...) arg4
#define PRINT_STRING_MACRO_CHOOSER(...) \
GET_4TH_ARG(__VA_ARGS__, PRINT_STRING_3_ARGS, \
PRINT_STRING_2_ARGS, PRINT_STRING_1_ARGS, )
#define PRINT_STRING(...) PRINT_STRING_MACRO_CHOOSER(__VA_ARGS__)(__VA_ARGS__)
int main(int argc, char * const argv[])
{
PRINT_STRING("Hello, World!");
PRINT_STRING("Hello, World!", 18);
PRINT_STRING("Hello, World!", 18, bold);
return 0;
}
This makes it easier for the caller of the macro, but not the writer.
With great respect to Derek Ledbetter for his answer — and with apologies for reviving an old question.
Getting an understanding of what it was doing and picking up elsewhere on the ability to preceed the __VA_ARGS__ with ## allowed me to come up with a variation...
// The multiple macros that you would need anyway [as per: Crazy Eddie]
#define XXX_0() <code for no arguments>
#define XXX_1(A) <code for one argument>
#define XXX_2(A,B) <code for two arguments>
#define XXX_3(A,B,C) <code for three arguments>
#define XXX_4(A,B,C,D) <code for four arguments>
// The interim macro that simply strips the excess and ends up with the required macro
#define XXX_X(x,A,B,C,D,FUNC, ...) FUNC
// The macro that the programmer uses
#define XXX(...) XXX_X(,##__VA_ARGS__,\
XXX_4(__VA_ARGS__),\
XXX_3(__VA_ARGS__),\
XXX_2(__VA_ARGS__),\
XXX_1(__VA_ARGS__),\
XXX_0(__VA_ARGS__)\
)
For non-experts like me who stumble upon the answer, but can't quite see how it works, I'll step through the actual processing, starting with the following code...
XXX();
XXX(1);
XXX(1,2);
XXX(1,2,3);
XXX(1,2,3,4);
XXX(1,2,3,4,5); // Not actually valid, but included to show the process
Becomes...
XXX_X(, XXX_4(), XXX_3(), XXX_2(), XXX_1(), XXX_0() );
XXX_X(, 1, XXX_4(1), XXX_3(1), XXX_2(1), XXX_1(1), XXX_0(1) );
XXX_X(, 1, 2, XXX_4(1,2), XXX_3(1,2), XXX_2(1,2), XXX_1(1,2), XXX_0(1,2) );
XXX_X(, 1, 2, 3, XXX_4(1,2,3), XXX_3(1,2,3), XXX_2(1,2,3), XXX_1(1,2,3), XXX_0(1,2,3) );
XXX_X(, 1, 2, 3, 4, XXX_4(1,2,3,4), XXX_3(1,2,3,4), XXX_2(1,2,3,4), XXX_1(1,2,3,4), XXX_0(1,2,3,4) );
XXX_X(, 1, 2, 3, 4, 5, XXX_4(1,2,3,4,5), XXX_3(1,2,3,4,5), XXX_2(1,2,3,4,5), XXX_1(1,2,3,4,5), XXX_0(1,2,3,4,5) );
Which becomes just the sixth argument...
XXX_0();
XXX_1(1);
XXX_2(1,2);
XXX_3(1,2,3);
XXX_4(1,2,3,4);
5;
PS: Remove the #define for XXX_0 to get a compile error [ie: if a no-argument option is not allowed].
PPS: Would be nice to have the invalid situations (eg: 5) be something that gives a clearer compilation error to the programmer!
PPPS: I'm not an expert, so I'm very happy to hear comments (good, bad or other)!
With greatest respect to Derek Ledbetter, David Sorkovsky, Syphorlate for their answers, together with the ingenious method to detect empty macro arguments by Jens Gustedt at
https://gustedt.wordpress.com/2010/06/08/detect-empty-macro-arguments/
finally I come out with something that incorporates all the tricks, so that the solution
Uses only standard C99 macros to achieve function overloading, no GCC/CLANG/MSVC extension involved (i.e., comma swallowing by the specific expression , ##__VA_ARGS__ for GCC/CLANG, and implicit swallowing by ##__VA_ARGS__ for MSVC). So feel free to pass the missing --std=c99 to your compiler if you wish =)
Works for zero argument, as well as unlimited number of arguments, if you expand it further to suit your needs
Works reasonably cross-platform, at least tested for
GNU/Linux + GCC (GCC 4.9.2 on CentOS 7.0 x86_64)
GNU/Linux + CLANG/LLVM, (CLANG/LLVM 3.5.0 on CentOS 7.0 x86_64)
OS X + Xcode, (XCode 6.1.1 on OS X Yosemite 10.10.1)
Windows + Visual Studio, (Visual Studio 2013 Update 4 on Windows 7 SP1 64 bits)
For the lazies, just skip to the very last of this post to copy the source. Below is the detailed explanation, which hopefully helps and inspires all people looking for the general __VA_ARGS__ solutions like me. =)
Here's how it goes. First define the user-visible overloaded "function", I named it create, and the related actual function definition realCreate, and the macro definitions with different number of arguments CREATE_2, CREATE_1, CREATE_0, as shown below:
#define create(...) MACRO_CHOOSER(__VA_ARGS__)(__VA_ARGS__)
void realCreate(int x, int y)
{
printf("(%d, %d)\n", x, y);
}
#define CREATE_2(x, y) realCreate(x, y)
#define CREATE_1(x) CREATE_2(x, 0)
#define CREATE_0() CREATE_1(0)
The MACRO_CHOOSER(__VA_ARGS__) part ultimately resolves to the macro definition names, and the second (__VA_ARGS__) part comprises their parameter lists. So a user's call to create(10) resolves to CREATE_1(10), the CREATE_1 part comes from MACRO_CHOOSER(__VA_ARGS__), and the (10) part comes from the second (__VA_ARGS__).
The MACRO_CHOOSER uses the trick that, if __VA_ARGS__ is empty, the following expression is concatenated into a valid macro call by the preprocessor:
NO_ARG_EXPANDER __VA_ARGS__ () // simply shrinks to NO_ARG_EXPANDER()
Ingeniusly, we can define this resulting macro call as
#define NO_ARG_EXPANDER() ,,CREATE_0
Note the two commas, they are explained soon. The next useful macro is
#define MACRO_CHOOSER(...) CHOOSE_FROM_ARG_COUNT(NO_ARG_EXPANDER __VA_ARGS__ ())
so the calls of
create();
create(10);
create(20, 20);
are actually expanded to
CHOOSE_FROM_ARG_COUNT(,,CREATE_0)();
CHOOSE_FROM_ARG_COUNT(NO_ARG_EXPANDER 10 ())(10);
CHOOSE_FROM_ARG_COUNT(NO_ARG_EXPANDER 20, 20 ())(20, 20);
As the macro name suggests, we are to count number of arguments later. Here comes another trick: the preprocessor only does simple text replacement. It infers the number of arguments of a macro call merely from the number of commas it sees inside the parentheses. The actual "arguments" separated by commas need not to be of valid syntax. They can be any text. That's to say, in the above example, NO_ARG_EXPANDER 10 () is counted as 1 argument for the middle call. NO_ARG_EXPANDER 20 and 20 () are counted as 2 arguments for the bottom call respectively.
If we use the following helper macros to further expand them
##define CHOOSE_FROM_ARG_COUNT(...) \
FUNC_RECOMPOSER((__VA_ARGS__, CREATE_2, CREATE_1, ))
#define FUNC_RECOMPOSER(argsWithParentheses) \
FUNC_CHOOSER argsWithParentheses
The trailing , after CREATE_1 is a work-around for GCC/CLANG, suppressing a (false positive) error saying that ISO C99 requires rest arguments to be used when passing -pedantic to your compiler. The FUNC_RECOMPOSER is a work-around for MSVC, or it can not count number of arguments (i.e., commas) inside the parentheses of macro calls correctly. The results are further resolved to
FUNC_CHOOSER (,,CREATE_0, CREATE_2, CREATE_1, )();
FUNC_CHOOSER (NO_ARG_EXPANDER 10 (), CREATE_2, CREATE_1, )(10);
FUNC_CHOOSER (NO_ARG_EXPANDER 20, 20 (), CREATE_2, CREATE_1, )(20, 20);
As the eagle-eyed you may have seen, the last only step we need is to employ a standard argument counting trick to finally pick the wanted macro version names:
#define FUNC_CHOOSER(_f1, _f2, _f3, ...) _f3
which resolves the results to
CREATE_0();
CREATE_1(10);
CREATE_2(20, 20);
and certainly gives us the desired, actual function calls:
realCreate(0, 0);
realCreate(10, 10);
realCreate(20, 20);
Putting all together, with some rearrangement of statements for better readability, the whole source of the 2-argument example is here:
#include <stdio.h>
void realCreate(int x, int y)
{
printf("(%d, %d)\n", x, y);
}
#define CREATE_2(x, y) realCreate(x, y)
#define CREATE_1(x) CREATE_2(x, 0)
#define CREATE_0() CREATE_1(0)
#define FUNC_CHOOSER(_f1, _f2, _f3, ...) _f3
#define FUNC_RECOMPOSER(argsWithParentheses) FUNC_CHOOSER argsWithParentheses
#define CHOOSE_FROM_ARG_COUNT(...) FUNC_RECOMPOSER((__VA_ARGS__, CREATE_2, CREATE_1, ))
#define NO_ARG_EXPANDER() ,,CREATE_0
#define MACRO_CHOOSER(...) CHOOSE_FROM_ARG_COUNT(NO_ARG_EXPANDER __VA_ARGS__ ())
#define create(...) MACRO_CHOOSER(__VA_ARGS__)(__VA_ARGS__)
int main()
{
create();
create(10);
create(20, 20);
//create(30, 30, 30); // Compilation error
return 0;
}
Although complicated, ugly, burdening the API developer, there comes a solution for overloading and setting optional parameters of C/C++ functions to us crazy people. The usage of the out-coming overloaded APIs become very enjoyable and pleasant. =)
If there is any further possible simplification of this approach, please do let me know at
https://github.com/jason-deng/C99FunctionOverload
Again special thanks to all of the brilliant people that inspired and led me to achieve this piece of work! =)
C++ macros haven't changed from C. Since C didn't have overloading and default arguments for functions, it certainly didn't have them for macros. So to answer your question: no, those features don't exist for macros. Your only option is to define multiple macros with different names (or not use macros at all).
As a sidenote: In C++ it's generally considered good practice to move away from macros as much as possible. If you need features like this, there's a good chance you're overusing macros.
For anyone painfully searching some VA_NARGS solution that works with Visual C++. Following macro worked for me flawlessly(also with zero parameters!) in visual c++ express 2010:
#define VA_NUM_ARGS_IMPL(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,_12,_13,_14,_15,_16,_17,_18,_19,_20,_21,_22,_23,_24,N,...) N
#define VA_NUM_ARGS_IMPL_(tuple) VA_NUM_ARGS_IMPL tuple
#define VA_NARGS(...) bool(#__VA_ARGS__) ? (VA_NUM_ARGS_IMPL_((__VA_ARGS__, 24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1))) : 0
If you want a macro with optional parameters you can do:
//macro selection(vc++)
#define SELMACRO_IMPL(_1,_2,_3, N,...) N
#define SELMACRO_IMPL_(tuple) SELMACRO_IMPL tuple
#define mymacro1(var1) var1
#define mymacro2(var1,var2) var2*var1
#define mymacro3(var1,var2,var3) var1*var2*var3
#define mymacro(...) SELMACRO_IMPL_((__VA_ARGS__, mymacro3(__VA_ARGS__), mymacro2(__VA_ARGS__), mymacro1(__VA_ARGS__)))
That worked for me aswell in vc. But it doesn't work for zero parameters.
int x=99;
x=mymacro(2);//2
x=mymacro(2,2);//4
x=mymacro(2,2,2);//8
gcc/g++ supports varargs macros but I don't think this is standard, so use it at your own risk.
More concise version of Derek Ledbetter's code:
enum
{
plain = 0,
bold = 1,
italic = 2
};
void PrintString(const char* message = NULL, int size = 0, int style = 0)
{
}
#define PRINT_STRING(...) PrintString(__VA_ARGS__)
int main(int argc, char * const argv[])
{
PRINT_STRING("Hello, World!");
PRINT_STRING("Hello, World!", 18);
PRINT_STRING("Hello, World!", 18, bold);
return 0;
}
#include <stdio.h>
#define PP_NARG(...) \
PP_NARG_(__VA_ARGS__,PP_RSEQ_N())
#define PP_NARG_(...) \
PP_ARG_N(__VA_ARGS__)
#define PP_ARG_N( \
_1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
_11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
_21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
_31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
_41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
_51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
_61,_62,_63,N,...) N
#define PP_RSEQ_N() \
63,62,61,60, \
59,58,57,56,55,54,53,52,51,50, \
49,48,47,46,45,44,43,42,41,40, \
39,38,37,36,35,34,33,32,31,30, \
29,28,27,26,25,24,23,22,21,20, \
19,18,17,16,15,14,13,12,11,10, \
9,8,7,6,5,4,3,2,1,0
#define PP_CONCAT(a,b) PP_CONCAT_(a,b)
#define PP_CONCAT_(a,b) a ## b
#define THINK(...) PP_CONCAT(THINK_, PP_NARG(__VA_ARGS__))(__VA_ARGS__)
#define THINK_0() THINK_1("sector zz9 plural z alpha")
#define THINK_1(location) THINK_2(location, 42)
#define THINK_2(location,answer) THINK_3(location, answer, "deep thought")
#define THINK_3(location,answer,computer) \
printf ("The answer is %d. This was calculated by %s, and a computer to figure out what this"
" actually means will be build in %s\n", (answer), (computer), (location))
int
main (int argc, char *argv[])
{
THINK (); /* On compilers other than GCC you have to call with least one non-default argument */
}
DISCLAIMER: Mostly harmless.
As a big fan of horrible macro monsters, I wanted to expand on Jason Deng's answer and make it actually usable. (For better or worse.) The original is not very nice to use because you need to modify the big alphabet soup every time you want to make a new macro and it's even worse if you need different amount of arguments.
So I made a version with these features:
0 argument case works
1 to 16 arguments without any modifications to the messy part
Easy to write more macro functions
Tested in gcc 10, clang 9, Visual Studio 2017
Currently I just made 16 argument maximum, but if you need more (really now? you're just getting silly...) you can edit FUNC_CHOOSER and CHOOSE_FROM_ARG_COUNT, then add some commas to NO_ARG_EXPANDER.
Please see Jason Deng's excellent answer for more details on the implementation, but I'll just put the code here:
#include <stdio.h>
void realCreate(int x, int y)
{
printf("(%d, %d)\n", x, y);
}
// This part you put in some library header:
#define FUNC_CHOOSER(_f0, _f1, _f2, _f3, _f4, _f5, _f6, _f7, _f8, _f9, _f10, _f11, _f12, _f13, _f14, _f15, _f16, ...) _f16
#define FUNC_RECOMPOSER(argsWithParentheses) FUNC_CHOOSER argsWithParentheses
#define CHOOSE_FROM_ARG_COUNT(F, ...) FUNC_RECOMPOSER((__VA_ARGS__, \
F##_16, F##_15, F##_14, F##_13, F##_12, F##_11, F##_10, F##_9, F##_8,\
F##_7, F##_6, F##_5, F##_4, F##_3, F##_2, F##_1, ))
#define NO_ARG_EXPANDER(FUNC) ,,,,,,,,,,,,,,,,FUNC ## _0
#define MACRO_CHOOSER(FUNC, ...) CHOOSE_FROM_ARG_COUNT(FUNC, NO_ARG_EXPANDER __VA_ARGS__ (FUNC))
#define MULTI_MACRO(FUNC, ...) MACRO_CHOOSER(FUNC, __VA_ARGS__)(__VA_ARGS__)
// When you need to make a macro with default arguments, use this:
#define create(...) MULTI_MACRO(CREATE, __VA_ARGS__)
#define CREATE_0() CREATE_1(0)
#define CREATE_1(x) CREATE_2(x, 0)
#define CREATE_2(x, y) \
do { \
/* put whatever code you want in the last macro */ \
realCreate(x, y); \
} while(0)
int main()
{
create();
create(10);
create(20, 20);
//create(30, 30, 30); // Compilation error
return 0;
}
That's not really what the preprocessor is designed for.
That said, if you want to enter into the area of seriously challenging macro programming with a modicum of readability, you should take a look at the Boost preprocessor library. After all, it wouldn't be C++ if there weren't three completely Turing compatible levels of programming (preprocessor, template metaprogramming, and base level C++)!
#define MY_MACRO_3(X,Y,Z) ...
#define MY_MACRO_2(X,Y) MY_MACRO(X,Y,5)
#define MY_MACRO_1(X) MY_MACRO(X,42,5)
You know at the point of call how many args you're going to pass in so there's really no need for overloading.
You can use BOOST_PP_OVERLOAD from a boost library.
Example from official boost doc:
#include <boost/preprocessor/facilities/overload.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/facilities/empty.hpp>
#include <boost/preprocessor/arithmetic/add.hpp>
#define MACRO_1(number) MACRO_2(number,10)
#define MACRO_2(number1,number2) BOOST_PP_ADD(number1,number2)
#if !BOOST_PP_VARIADICS_MSVC
#define MACRO_ADD_NUMBERS(...) BOOST_PP_OVERLOAD(MACRO_,__VA_ARGS__)(__VA_ARGS__)
#else
// or for Visual C++
#define MACRO_ADD_NUMBERS(...) \
BOOST_PP_CAT(BOOST_PP_OVERLOAD(MACRO_,__VA_ARGS__)(__VA_ARGS__),BOOST_PP_EMPTY())
#endif
MACRO_ADD_NUMBERS(5) // output is 15
MACRO_ADD_NUMBERS(3,6) // output is 9
Depending on what you need, you could do it with var args with macros. Now, optional parameters or macro overloading, there is no such thing.
Not directly answering the question, but using the same trick as David Sorkovsky answer and giving a clear example of how to build complex macros.
Just compile this with g++ -E test.cpp -o test && cat test:
// #define GET_FIRST_ARG_0_ARGS(default) (default)
// #define GET_FIRST_ARG_1_ARGS(default, a) (a)
// #define GET_FIRST_ARG_2_ARGS(default, a, b) (a)
// #define GET_FIRST_ARG_3_ARGS(default, a, b, c) (a)
// #define GET_FIRST_ARG_4_ARGS(default, a, b, c, d) (a)
#define GET_FIRST_ARG_MACROS(default, a, b, c, d, macro, ...) macro
#define GET_FIRST_ARG(default, ...) GET_FIRST_ARG_MACROS( \
,##__VA_ARGS__, \
GET_FIRST_ARG_4_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_3_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_2_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_1_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_0_ARGS(default, ##__VA_ARGS__), \
)
"0,"; GET_FIRST_ARG(0);
"0,1"; GET_FIRST_ARG(0,1);
"0,1,2"; GET_FIRST_ARG(0,1,2);
"0,1,2,3"; GET_FIRST_ARG(0,1,2,3);
"0,1,2,3,4"; GET_FIRST_ARG(0,1,2,3,4);
To see the output:
# 1 "test.cpp"
# 1 "<built-in>"
# 1 "<command-line>"
# 1 "/usr/x86_64-linux-gnu/include/stdc-predef.h" 1 3
# 1 "<command-line>" 2
# 1 "test.cpp"
# 16 "test.cpp"
"0,"; GET_FIRST_ARG_0_ARGS(0);
"0,1"; GET_FIRST_ARG_1_ARGS(0, 1);
"0,1,2"; GET_FIRST_ARG_2_ARGS(0, 1,2);
"0,1,2,3"; GET_FIRST_ARG_3_ARGS(0, 1,2,3);
"0,1,2,3,4"; GET_FIRST_ARG_4_ARGS(0, 1,2,3,4);
Now, a full working program would be:
#include <iostream>
#define GET_FIRST_ARG_0_ARGS(default) (default)
#define GET_FIRST_ARG_1_ARGS(default, a) (a)
#define GET_FIRST_ARG_2_ARGS(default, a, b) (a)
#define GET_FIRST_ARG_3_ARGS(default, a, b, c) (a)
#define GET_FIRST_ARG_4_ARGS(default, a, b, c, d) (a)
#define GET_FIRST_ARG_MACROS(default, a, b, c, d, macro, ...) macro
#define GET_FIRST_ARG(default, ...) GET_FIRST_ARG_MACROS( \
,##__VA_ARGS__, \
GET_FIRST_ARG_4_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_3_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_2_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_1_ARGS(default, __VA_ARGS__), \
GET_FIRST_ARG_0_ARGS(default, ##__VA_ARGS__), \
)
int main(int argc, char const *argv[]) {
"0,"; GET_FIRST_ARG(0);
"0,1"; GET_FIRST_ARG(0,1);
"0,1,2"; GET_FIRST_ARG(0,1,2);
"0,1,2,3"; GET_FIRST_ARG(0,1,2,3);
"0,1,2,3,4"; GET_FIRST_ARG(0,1,2,3,4);
std::cerr << "0, == " << GET_FIRST_ARG(0) << std::endl;
std::cerr << "0,1 == " << GET_FIRST_ARG(0,1) << std::endl;
std::cerr << "0,1,2 == " << GET_FIRST_ARG(0,1,2) << std::endl;
std::cerr << "0,1,2,3 == " << GET_FIRST_ARG(0,1,2,3) << std::endl;
std::cerr << "0,1,2,3,4 == " << GET_FIRST_ARG(0,1,2,3,4) << std::endl;
return 0;
}
Which would output the following by being compiled with g++ test.cpp -o test && ./test:
0, == 0
0,1 == 1
0,1,2 == 1
0,1,2,3 == 1
0,1,2,3,4 == 1
Note: It is important to use () around the macro contents as #define GET_FIRST_ARG_1_ARGS(default, a) (a) to not break in ambiguous expressions when a is just not a integer.
Extra macro for second argument:
#define GET_SECOND_ARG_0_ARGS(default) (default)
#define GET_SECOND_ARG_1_ARGS(default, a) (default)
#define GET_SECOND_ARG_2_ARGS(default, a, b) (b)
#define GET_SECOND_ARG_3_ARGS(default, a, b, c) (b)
#define GET_SECOND_ARG_4_ARGS(default, a, b, c, d) (b)
#define GET_SECOND_ARG_MACROS(default, a, b, c, d, macro, ...) macro
#define GET_SECOND_ARG(default, ...) GET_SECOND_ARG_MACROS( \
,##__VA_ARGS__, \
GET_SECOND_ARG_4_ARGS(default, __VA_ARGS__), \
GET_SECOND_ARG_3_ARGS(default, __VA_ARGS__), \
GET_SECOND_ARG_2_ARGS(default, __VA_ARGS__), \
GET_SECOND_ARG_1_ARGS(default, __VA_ARGS__), \
GET_SECOND_ARG_0_ARGS(default, ##__VA_ARGS__), \
)
None of the above examples (from Derek Ledbetter, David Sorkovsky, and Joe D) to count arguments with macros worked for me using Microsoft VCC 10. The __VA_ARGS__ argument is always considered as a single argument (token-izing it with ## or not), so the argument shifting in which those examples rely doesn't work.
So, short answer, as stated by many others above: no, you can't overload macros or use optional arguments on them.

Portable variadic macro

I'm looking to make a variadic macro that simply calls a certain function for every argument (say, up to 6). So far I've been using the following code in MSVC:
#define do_write2(x,y) do{do_write(x);do_write(y);}while(0)
#define do_write3(x,y,z) do{do_write(x);do_write(y);do_write(z);}while(0)
#define do_write4(x,y,z,w) do{do_write(x);do_write(y);do_write(z);do_write(w);}while(0)
#define do_write5(x,y,z,w,t) do{do_write(x);do_write(y);do_write(z);do_write(w);do_write(t);}while(0)
#define do_write6(x,y,z,w,t,u) do{do_write(x);do_write(y);do_write(z);do_write(w);do_write(t);do_write(u);}while(0)
#define expand(x) x
#define _get_write(_1,_2,_3,_4,_5,_6,name,...) name
#define dumpval(...) expand(_get_write(__VA_ARGS__,do_write6,do_write5,do_write4,do_write3,do_write2,do_write))expand((__VA_ARGS__))
The expand is needed due to a peculiar handling of __VA_ARGS__ in MSVC, otherwise I get
error C2660: 'do_write' : function does not take 6 arguments
However, now I need to build the same code in GCC, and its having trouble with it:
error: ‘do_write3’ was not declared in this scope
Simply removing the expand wrapper does the trick. However, is there any "correct" way to make the code compile in both cases without using #ifdef?
There are various techniques for variable-argument macros, discussed here: Variadic recursive preprocessor macros - is it possible?
Here are a few implementations that you might be interested in. Personally, I think call_vla2 is the best assuming you have C++11 support. If this is not possible, tell us more about your problem.
#include <iostream>
// target function
void z(int i) {
std::cout << "[" << i << "]\n";
}
// 1. manually specifying the argument count
#define call1(a) do{z(a);}while(0)
#define call2(a,b) do{z(a);z(b);}while(0)
#define call3(a,b,c) do{z(a);z(b);z(c);}while(0)
#define call_n(n, ...) call ## n (__VA_ARGS__)
// 2. using a variable-length array (GCC compatible)
// thanks to https://stackoverflow.com/a/824769/6096046
#define call_vla(...) do { \
int args[] = { __VA_ARGS__ }; \
for(size_t i = 0; i < sizeof(args)/sizeof(*args); i ++) \
z(args[i]); \
} while(0)
// 3. using a variable-length array and C++11
#define call_vla2(...) for(auto x : { __VA_ARGS__ }) z(x);
// 4. using C++11 variadic templates
template <typename... T>
void call_n_times() {}
template <typename... T>
void call_n_times(int a, T... other) {
z(a), call_n_times(other...);
}
#define call_template(...) call_n_times(__VA_ARGS__)
// tests
int main() {
call_n(1, 88); call_n(3, 1,2,3);
call_vla(88); call_vla(1,2,3);
call_vla2(88); call_vla2(1,2,3);
call_template(88); call_template(1,2,3);
return 0;
}

How do I expand a macro containing commas inside a BOOST_PP_IF

I asked the following question earlier, but the solution doesn't seem to work in this particular case.
How do I print out a comma multiple times using Boost Preprocessor
I am trying to expand a macro containing a comma conditionally. Here is an example illustrating the problem:
#define TEST(...)\
BOOST_PP_REPEAT( \
BOOST_PP_VARIADIC_SIZE(__VA_ARGS__), \
MACRO, \
BOOST_PP_VARIADIC_TO_TUPLE(__VA_ARGS__))
#define MACRO(z, n, data) BOOST_PP_IF(1,MACRO_CONTAINING_COMMA(z, z),MACRO_CONTAINING_COMMA(z, z))
#define MACRO_CONTAINING_COMMA(_NAME, _NAME2) _NAME TIBRA_EATEN_COMMA() _NAME2
#define EATEN_COMMA BOOST_PP_IF(1,BOOST_PP_COMMA,BOOST_PP_TUPLE_EAT())
TEST(1,2,3,4)
This expands to
BOOST_PP_IIF BOOST_PP_IIF BOOST_PP_IIF BOOST_PP_IIF
When it should expand to
0,0 1,1 2,2 3,3
You can delay invoking your macro by first selecting it and then invoking it:
#define TEST(...)\
BOOST_PP_REPEAT( \
BOOST_PP_VARIADIC_SIZE(__VA_ARGS__), \
MACRO, \
BOOST_PP_VARIADIC_TO_TUPLE(__VA_ARGS__))
#define MACRO(z, n, data) BOOST_PP_IF(1,MACRO_CONTAINING_COMMA,MACRO_CONTAINING_COMMA)(n, n)
#define MACRO_CONTAINING_COMMA(_NAME, _NAME2) _NAME EATEN_COMMA _NAME2
#define EATEN_COMMA BOOST_PP_IF(1,BOOST_PP_COMMA,BOOST_PP_TUPLE_EAT())()
See it work
The IF invocation expands to either your macro without an invocation or something that discard arguments when invoked. After one is chosen, the last parentheses invoke it with the desired arguments without the commas getting in the way.
Apart from that, I changed z to n and TIBRA_EATEN_COMMA() to EATEN_COMMA. As some parts are redundant, you can find a simpler version here.
It turns out that you can do this without __VA_ARGS__. In this simple example I used a comma which is in the template argument of function toString<int,int>() Working demo:
#include <boost/lexical_cast.hpp>
#include <boost/preprocessor.hpp>
#include <iostream>
#include <string>
#define SEQUENCE (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)
#define IGNORE_ARG(arg)
#define GET_NAME(data) BOOST_PP_SEQ_ELEM(0, data)
#define GET_BELOW(data) BOOST_PP_SEQ_ELEM(1, data)
#define PARSE_SEQUENCE(r, data, elem) \
BOOST_PP_IF( \
BOOST_PP_GREATER_EQUAL(elem, GET_BELOW(data)), \
GET_NAME(data), IGNORE_ARG) \
(elem)
#define SKIP_NUMBERS_BELOW(name, below) \
BOOST_PP_SEQ_FOR_EACH(PARSE_SEQUENCE, (name)(below), SEQUENCE)
#define TEST(name) SKIP_NUMBERS_BELOW(name, 4)
#define MACRO_CONTAINING_COMMA(N) toString<N, 2 * N>() <<
template <int a, int b> // whatever, I just need a comma here.
std::string toString() {
return boost::lexical_cast<std::string>(a) + ":" + boost::lexical_cast<std::string>(b) + " ";
}
int main() {
std::cout << TEST(MACRO_CONTAINING_COMMA) "\n";
}

Is there widely-available wide-character variant of `__FILE__`?

One may generally use __LINE__ and __FILE__ in C++ programs, with many toolchains, including GCC.
__LINE__ under GCC evaluates to an expression of type int;
__FILE__ evaluates to a char const[N] where N is the appropriate value.
Does any major toolchain provide an equivalent to __FILE__ with type wchar const[N]?
If so, what is it?
You can make your own WFILE:
#define WIDE2(x) L##x
#define WIDE1(x) WIDE2(x)
#define WFILE WIDE1(__FILE__)
Tested with non-ASCII characters and filename 马克.cpp:
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#define WIDE2(x) L##x
#define WIDE1(x) WIDE2(x)
#define WFILE WIDE1(__FILE__)
int main() {
_setmode(_fileno(stdout), _O_U16TEXT); // required for Unicode output to console
wprintf(L"%s\n", WFILE);
}
Demo (running from cmd.exe and Chinese language support installed):
C:\>cl /W4 /nologo 马克.cpp
马克.cpp
C:\>马克.exe
马克.cpp
Use:
WIDE(MEXPAND(__FILE__))
and
WIDE(STRINGIFY(__LINE__))
or replace __LINE__ with anything that needs to be stringified, and replace __FILE__ with any macro string literal you want to widen.
Using the following definitions:
#define STRINGIFY2(m) #m
#define MEXPAND(m) m
#define STRINGIFY(m) STRINGIFY2(m)
#define WIDE(m) L ## m
Example usage:
#define AssertBreakMethod DebugBreak
#define AssertBreakForce(expr) \
do \
{ \
if (!(expr)) \
{ \
OutputDebugStringW(WIDE(MEXPAND(__FILE__)) \
WIDE("(") WIDE(STRINGIFY(__LINE__)) \
WIDE("): Assertion failed: ") \
WIDE(#expr) WIDE("\n")); \
AssertBreakMethod(); \
} \
} \
while (0)
Note that the whole parameter to OutputDebugString is assembled statically at compile time into a single string literal.
The trick with stringification of a macro is passing it through another macro. When __FILE__ is passed to MEXPAND it is expanded at that time. MEXPAND returns its argument which is now a string. It is then legal to put the leading L there to make it wide.
STRINGIFY does the same trick, it passes its argument through STRINGIFY2 which expands the argument to the line number (which looks like an integer at that point) then STRINGIFY2 puts the # symbol before it, stringifying the integer.
In Visual Studio just surround it with _T(), for example:
TRACE( _T("function = %s"), _T(__FUNCTION__);
I would have put this answer as a comment to an earlier reply but was not allowed due to not having the minimum 50 reputation to comment...
In Visual Studio, _T(__FILE__) will NOT expand to L__FILE__ unless you modify its standard definition of _T in the tchar.h header file. _T(__FILE__) and _T(__FUNCTION__) worked 5 years ago and still work today if you are looking for wide versions of the current file and function.
_T(x) is defined as __T(x), which is defined as L##x when _UNICODE is defined and x otherwise. So _T(__FILE__) expands to something like __T("my_file.c"), which then expands to L"my_file.c" or "my_file.c" depending on _UNICODE. It is useful to test things before claiming that they do not work.
For example use const auto name = L"" __FUNCTION__;