How can I loop through all combinations of n playing cards in a standard deck of 52 cards?
You need all combinations of n items from a set of N items (in your case, N == 52, but I'll keep the answer generic).
Each combination can be represented as an array of item indexes, size_t item[n], such that:
0 <= item[i] < N
item[i] < item[i+1], so that each combination is a unique subset.
Start with item[i] = i. Then to iterate to the next combination:
If the final index can be incremented (i.e. item[n-1] < N-1), then do that.
Otherwise, work backwards until you find an index that can be incremented, and still leave room for all the following indexes (i.e. item[n-i] < N-i). Increment that, then reset all the following indexes to the smallest possible values.
If you can't find any index that you can increment (i.e. item[0] == N-n), then you're done.
In code, it might look something vaguely like this (untested):
void first_combination(size_t item[], size_t n)
{
for (size_t i = 0; i < n; ++i) {
item[i] = i;
}
}
bool next_combination(size_t item[], size_t n, size_t N)
{
for (size_t i = 1; i <= n; ++i) {
if (item[n-i] < N-i) {
++item[n-i];
for (size_t j = n-i+1; j < n; ++j) {
item[j] = item[j-1] + 1;
}
return true;
}
}
return false;
}
It might be nice to make it more generic, and to look more like std::next_permutation, but that's the general idea.
This combinations iterator class is derived from the previous answers posted here.
I did some benchmarks and it is a least 3x faster than any next_combination() function you would have used before.
I wrote the code in MetaTrader mql4 to do testing of triangular arbitrage trading in forex. I think you can port it easily to Java or C++.
class CombinationsIterator
{
private:
int input_array[];
int index_array[];
int m_indices; // K
int m_elements; // N
public:
CombinationsIterator(int &src_data[], int k)
{
m_indices = k;
m_elements = ArraySize(src_data);
ArrayCopy(input_array, src_data);
ArrayResize(index_array, m_indices);
// create initial combination (0..k-1)
for (int i = 0; i < m_indices; i++)
{
index_array[i] = i;
}
}
// https://stackoverflow.com/questions/5076695
// bool next_combination(int &item[], int k, int N)
bool advance()
{
int N = m_elements;
for (int i = m_indices - 1; i >= 0; --i)
{
if (index_array[i] < --N)
{
++index_array[i];
for (int j = i + 1; j < m_indices; ++j)
{
index_array[j] = index_array[j - 1] + 1;
}
return true;
}
}
return false;
}
void get(int &items[])
{
// fill items[] from input array
for (int i = 0; i < m_indices; i++)
{
items[i] = input_array[index_array[i]];
}
}
};
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
// driver program to test above class
#define N 5
#define K 3
void OnStart()
{
int x[N] = {1, 2, 3, 4, 5};
CombinationsIterator comboIt(x, K);
int items[K];
do
{
comboIt.get(items);
printf("%s", ArrayToString(items));
} while (comboIt.advance());
}
Output:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
#include <iostream>
#include <vector>
using namespace std;
class CombinationsIndexArray {
vector<int> index_array;
int last_index;
public:
CombinationsIndexArray(int number_of_things_to_choose_from, int number_of_things_to_choose_in_one_combination) {
last_index = number_of_things_to_choose_from - 1;
for (int i = 0; i < number_of_things_to_choose_in_one_combination; i++) {
index_array.push_back(i);
}
}
int operator[](int i) {
return index_array[i];
}
int size() {
return index_array.size();
}
bool advance() {
int i = index_array.size() - 1;
if (index_array[i] < last_index) {
index_array[i]++;
return true;
} else {
while (i > 0 && index_array[i-1] == index_array[i]-1) {
i--;
}
if (i == 0) {
return false;
} else {
index_array[i-1]++;
while (i < index_array.size()) {
index_array[i] = index_array[i-1]+1;
i++;
}
return true;
}
}
}
};
int main() {
vector<int> a;
a.push_back(1);
a.push_back(2);
a.push_back(3);
a.push_back(4);
a.push_back(5);
int k = 3;
CombinationsIndexArray combos(a.size(), k);
do {
for (int i = 0; i < combos.size(); i++) {
cout << a[combos[i]] << " ";
}
cout << "\n";
} while (combos.advance());
return 0;
}
Output:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
I see this problem is essentially the same as the power set problem. Please see Problems with writing powerset code to get an elegant solution.
Related
I have a piece of code as follows, and the number of for loops is determined by n which is known at compile time. Each for loop iterates over the values 0 and 1. Currently, my code looks something like this
for(int in=0;in<2;in++){
for(int in_1=0;in_1<2;in_1++){
for(int in_2=0;in_2<2;in_2++){
// ... n times
for(int i2=0;i2<2;i2++){
for(int i1=0;i1<2;i1++){
d[in][in_1][in_2]...[i2][i1] =updown(in)+updown(in_1)+...+updown(i1);
}
}
// ...
}
}
}
Now my question is whether one can write it in a more compact form.
The n bits in_k can be interpreted as the representation of one integer less than 2^n.
This allows easily to work with a 1-D array (vector) d[.].
In practice, an interger j corresponds to
j = in[0] + 2*in[1] + ... + 2^n-1*in[n-1]
Moreover, a direct implementation is O(NlogN). (N = 2^n)
A recursive solution is possible, for example using
f(val, n) = updown(val%2) + f(val/2, n-1) and f(val, 0) = 0.
This would correspond to a O(N) complexity, at the condition to introduce memoization, not implemented here.
Result:
0 : 0
1 : 1
2 : 1
3 : 2
4 : 1
5 : 2
6 : 2
7 : 3
8 : 1
9 : 2
10 : 2
11 : 3
12 : 2
13 : 3
14 : 3
15 : 4
#include <iostream>
#include <vector>
int up_down (int b) {
if (b) return 1;
return 0;
}
int f(int val, int n) {
if (n < 0) return 0;
return up_down (val%2) + f(val/2, n-1);
}
int main() {
const int n = 4;
int size = 1;
for (int i = 0; i < n; ++i) size *= 2;
std::vector<int> d(size, 0);
for (int i = 0; i < size; ++i) {
d[i] = f(i, n);
}
for (int i = 0; i < size; ++i) {
std::cout << i << " : " << d[i] << '\n';
}
return 0;
}
As mentioned above, the recursive approach allows a O(N) complexity, at the condition to implement memoization.
Another possibility is to use a simple iterative approach, in order to get this O(N) complexity.
(here N represents to total number of data)
#include <iostream>
#include <vector>
int up_down (int b) {
if (b) return 1;
return 0;
}
int main() {
const int n = 4;
int size = 1;
for (int i = 0; i < n; ++i) size *= 2;
std::vector<int> d(size, 0);
int size_block = 1;
for (int i = 0; i < n; ++i) {
for (int j = size_block-1; j >= 0; --j) {
d[2*j+1] = d[j] + up_down(1);
d[2*j] = d[j] + up_down(0);
}
size_block *= 2;
}
for (int i = 0; i < size; ++i) {
std::cout << i << " : " << d[i] << '\n';
}
return 0;
}
You can refactor your code slightly like this:
for(int in=0;in<2;in++) {
auto& dn = d[in];
auto updown_n = updown(in);
for(int in_1=0;in_1<2;in_1++) {
// dn_1 == d[in][in_1]
auto& dn_1 = dn[in_1];
// updown_n_1 == updown(in)+updown(in_1)
auto updown_n_1 = updown_n + updown(in_1);
for(int in_2=0;in_2<2;in_2++) {
// dn_2 == d[in][in_1][in_2]
auto& dn_2 = dn_1[in_2];
// updown_n_2 == updown(in)+updown(in_1)+updown(in_2)
auto updown_n_2 = updown_n_1 + updown(in_2);
.
.
.
for(int i2=0;i2<2;i1++) {
// d2 == d[in][in_1][in_2]...[i2]
auto& d2 = d3[i2];
// updown_2 = updown(in)+updown(in_1)+updown(in_2)+...+updown(i2)
auto updown_2 = updown_3 + updown(i2);
for(int i1=0;i1<2;i1++) {
// d1 == d[in][in_1][in_2]...[i2][i1]
auto& d1 = d2[i1];
// updown_1 = updown(in)+updown(in_1)+updown(in_2)+...+updown(i2)+updown(i1)
auto updown_1 = updown_2 + updown(i1);
// d[in][in_1][in_2]...[i2][i1] = updown(in)+updown(in_1)+...+updown(i1);
d1 = updown_1;
}
}
}
}
}
And make this into a recursive function now:
template<std::size_t N, typename T>
void loop(T& d) {
for (int i = 0; i < 2; ++i) {
loop<N-1>(d[i], updown(i));
}
}
template<std::size_t N, typename T, typename U>
typename std::enable_if<N != 0>::type loop(T& d, U updown_result) {
for (int i = 0; i < 2; ++i) {
loop<N-1>(d[i], updown_result + updown(i));
}
}
template<std::size_t N, typename T, typename U>
typename std::enable_if<N == 0>::type loop(T& d, U updown_result) {
d = updown_result;
}
If your type is int d[2][2][2]...[2][2]; or int*****... d;, you can also stop when the type isn't an array or pointer instead of manually specifying N (or change for whatever the type of d[0][0][0]...[0][0] is)
Here's a version that does that with a recursive lambda:
auto loop = [](auto& self, auto& d, auto updown_result) -> void {
using d_t = typename std::remove_cv<typename std::remove_reference<decltype(d)>::type>::type;
if constexpr (!std::is_array<d_t>::value && !std::is_pointer<d_t>::value) {
// Last level of nesting
d = updown_result;
} else {
for (int i = 0; i < 2; ++i) {
self(self, d[i], updown_result + updown(i));
}
}
};
for (int i = 0; i < 2; ++i) {
loop(loop, d[i], updown(i));
}
I am assuming that it is a multi-dimensional matrix. You may have to solve it mathematically first and then write the respective equations in the program.
I am trying to remove odd numbers from an array, but I'm not allowed to create a new array to store the new values.
So, if I have arr[1,2,3,4,5,6,7,8,9]
then I need it to be arr[2,4,6,8] so that arr[0] will be 2 and not 1.
I can't seem to be able to drop the even numbers without creating a new array to store the values and then feed it back into the original array with the new values.
I have tried to make arr[i] = 0 if its an odd number but then I wasn't able to drop the 0 and replace it with the next even number.
So far, I have this:
void removeOdd(int arr[], int& arrSize){
int i, j = 0;
int temp;
int newArrSize;
for(i = 0, newArrSize = arrSize; i < arrSize; i++){
if(arr[i] % 2 != 0){
arr[i] = 0;
}
}
arrSize = newArrSize;
}
// Moves all even numbers into the beginning of the array in their original order
int removeOdd(int arr[], int arrSize) {
int curr = 0; // keep track of current position to insert next even number into
for (int i = 0; i < arrSize; ++i) {
if (arr[i] % 2 == 0) {
arr[curr++] = arr[i];
}
}
return curr;
}
int main() {
int arr[10] = { 0,1,2,3,4,5,6,7,8,9 };
int newSize = removeOdd(arr, 10);
for (int i = 0; i < newSize; ++i) {
std::cout << arr[i] << " ";
}
}
0 2 4 6 8
You might want to use std::vector:
void removeOdd(std::vector<int>& arr) {
int curr = 0;
for (int i = 0; i < (int)arr.size(); ++i) {
if (arr[i] % 2 == 0) {
arr[curr++] = arr[i];
}
}
arr.resize(curr);
}
int main() {
std::vector<int> arr = { 0,1,2,3,4,5,6,7,8,9 };
removeOdd(arr);
for (int number : arr) {
std::cout << number << " ";
}
}
Normally (unless this is homework of some sort), you should use the algorithms in the <algorithm> header.
Using std::remove_if with std::vector's erase member function, you will accomplish exactly what you want with less code:
std::vector<int> vec{ 1,2,3,4,5,6,7,8,10 };
vec.erase(std::remove_if(std::begin(vec), std::end(vec), [](auto const& i) {
return i % 2 != 0;
}), std::end(vec));
Demo
Background:
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].
Question:
I have a list of numbers 1,2,3,4,5. My target value is 8, so I should return indices 2 and 4. My first thought is to write a a double for loop that checks to see if adding two elements from the list will get my target value. Although, when checking to see if there is such a solution, my code returns that there is none.
Here is my code:
#include <iostream>
#include <vector>
using namespace std;
int main() {
vector<int> list;
list.push_back(1);
list.push_back(2);
list.push_back(3);
list.push_back(4);
list.push_back(5);
int target = 8;
string result;
for(int i = 0; i < list.size(); i++) {
for(int j = i+1; j < list.size(); j++) {
if(list[i] + list[j] == target) {
result = "There is a solution";
}
else {
result = "There is no solution";
}
}
}
cout << result << endl;
return 0;
}
Perhaps my approach/thinking is plain wrong. Could anyone provide any hints or suggestions to solving this problem?
Your approach is correct but you are forgetting you are in a loop that continues after finding the solution.
This will get you halfway there. I recommend putting both loops in a function, and returning once you find a match. One thing you could do is return a pair<int,int> from that function or you could simply output the results from within that point in the loop.
bool solutionFound = false;
int i,j;
for(i = 0; i < list.size(); i++)
{
for(j = i+1; j < list.size(); j++)
{
if(list[i] + list[j] == target)
{
solutionFound = true;
}
}
}
Here is what the function approach might look like:
pair<int, int> findSolution(vector<int> list, int target)
{
for (int i = 0; i < list.size(); i++)
{
for (int j = i + 1; j < list.size(); j++)
{
if (list[i] + list[j] == target)
{
return pair<int, int>(i, j);
}
}
}
return pair<int, int>(-1, -1);
}
int main() {
vector<int> list;
list.push_back(1);
list.push_back(2);
list.push_back(3);
list.push_back(4);
list.push_back(5);
int target = 8;
pair<int, int> results = findSolution(list, target);
cout << results.first << " " << results.second << "\n";
return 0;
}
Here's the C++ incorporating Dave's answer for linear execution time and a couple helpful comments:
pair<int, int> findSolution(vector<int> list, int target)
{
unordered_map<int, int> valueToIndex;
for (int i = 0; i < list.size(); i++)
{
int needed = target - list[i];
auto it = valueToIndex.find(needed);
if (it != valueToIndex.end())
{
return pair<int, int>(it->second, i);
}
valueToIndex.emplace(list[i], i);
}
return pair<int, int>(-1, -1);
}
int main()
{
vector<int> list = { 1,2,3,4,5 };
int target = 10;
pair<int, int> results = findSolution(list, target);
cout << results.first << " " << results.second << "\n";
}
You're doing this in n^2 time. Solve it in linear time by hashing each element, and checking each element to see if it's complement wrt. the total you're trying to achieve is in the hash.
E.g., for 1,2,3,4,5, with a target of 8
indx 0, val 1: 7 isn't in the map; H[1] = 0
indx 1, val 2: 6 isn't in the map, H[2] = 1
indx 2, val 3: 5 isn't in the map, H[3] = 2
indx 3, val 4: 4 isn't in the map, H[4] = 3
indx 4, val 5: 3 is in the map. H[3] = 2. Return 2,4
Code, as requested (Ruby)
def get_indices(arr, target)
value_to_index = {}
arr.each_with_index do |val, index|
if value_to_index.has_key?(target - val)
return [value_to_index[target - val], index]
end
value_to_index[val] = index
end
end
get_indices([1,2,3,4,5], 8)
Basically the same as zzxyz's most recent edit but a little quicker and dirtier.
#include <iostream>
#include <vector>
bool FindSolution(const std::vector<int> &list, // const reference. Less copying
int target)
{
for (int i: list) // Range-based for (added in C++11)
{
for (int j: list)
{
if (i + j == target) // i and j are the numbers from the vector.
// no need for indexing
{
return true;
}
}
}
return false;
}
int main()
{
std::vector<int> list{1,2,3,4,5}; // Uniform initialization Added in C++11.
// No need for push-backs of fixed data
if (FindSolution(list, 8))
{
std::cout << "There is a solution\n";
}
else
{
std::cout << "There is no solution\n";
}
return 0;
}
I try to generate all permutations with repetition of a number array by putting bound on summation of values.
Example;
I have my array {3,4,5,6} and my bound is 11.
I would like to generate all repetitive permutations reaching and just crossing 11 as:
3 3 3 3 //
3 4 3 3 //
3 3 5 3 //
3 3 3 6 //
3 4 4 3 //
4 4 4 //
6 6 //
6 4 3 //
5 5 5 //
..
So the cardinalty doesnt need to be the same as what we have with array.
Thanks for help in advance
I tried the following conversion from Java code, I got it, but still C++ gave the error "Unhandled exception":
void permute(int array[], int start[]){
int sum=0;
for (int i=0; i< sizeof(start)/sizeof(start[0]); i++) {
sum+= start[i];
}
if (sum >= 11) {
for (int n=0; n< sizeof(start) / sizeof(start[0]); n++)
cout << start[n] << " ";
cout << "\n";
return;
}
for (int i= 0; i < sizeof(array) / sizeof(array[0]) ; i++) {
int* newStart = new int[sizeof(start) / sizeof(start[0]) + 1];
memcpy (newStart, start, sizeof(start) / sizeof(start[0]) + 1);
newStart[sizeof(start) / sizeof(start[0])] = array[i];
permute(array, newStart);
}
}
void main ()
{
int array[] = {3,4,5,6};
int newarray[1];
for (int i=0; i< sizeof(array)/sizeof(array[0]); i++) {
newarray[0]=array[i];
permute(array, newarray);
}
system("pause");}
Additionally I would like to keep the indice numbers of all permutations and positions of each member. Example:
Permutation[1119] = [ 3 3 5 3],
Member[1119][1] = 3,
Member[1119][2] = 3 etc.
This is not so complicated. Because you're so vague about your language requirements, I took the freedom to invent my own pseudocode:
function generate(int[] array, int bound, int[] solution, int sum)
if (sum > bound)
print solution
else
for each elt in array
generate(array, bound, solution ++ [elt], sum + elt)
And call this as
generate([3, 4, 5, 6], 11, [], 0)
This is code for Java:
private static boolean checkConstraint(int[] array) {
int sum=0;
for (int i=0; i<array.length; i++) {
sum+= array[i];
}
//we found it, print
if (sum >= 11) {
System.out.println(Arrays.toString(array));
return true;
}
return false;
}
public static void permute(int[] array, int[] start){
if (checkConstraint(start)) {
return;
}
for (int i= 0; i < array.length; i++) {
int[] newStart= Arrays.copyOf(start, start.length + 1);
newStart[start.length] = array[i];
permute(array, newStart);
}
}
public static void main(String[] args) {
int[] array= {3,4,5,6};
for (int i=0; i<array.length; i++) {
permute(array, new int[] {array[i]});
}
}
I am currently reading "Programming: Principles and Practice Using C++", in Chapter 4 there is an exercise in which:
I need to make a program to calculate prime numbers between 1 and 100 using the Sieve of Eratosthenes algorithm.
This is the program I came up with:
#include <vector>
#include <iostream>
using namespace std;
//finds prime numbers using Sieve of Eratosthenes algorithm
vector<int> calc_primes(const int max);
int main()
{
const int max = 100;
vector<int> primes = calc_primes(max);
for(int i = 0; i < primes.size(); i++)
{
if(primes[i] != 0)
cout<<primes[i]<<endl;
}
return 0;
}
vector<int> calc_primes(const int max)
{
vector<int> primes;
for(int i = 2; i < max; i++)
{
primes.push_back(i);
}
for(int i = 0; i < primes.size(); i++)
{
if(!(primes[i] % 2) && primes[i] != 2)
primes[i] = 0;
else if(!(primes[i] % 3) && primes[i] != 3)
primes[i]= 0;
else if(!(primes[i] % 5) && primes[i] != 5)
primes[i]= 0;
else if(!(primes[i] % 7) && primes[i] != 7)
primes[i]= 0;
}
return primes;
}
Not the best or fastest, but I am still early in the book and don't know much about C++.
Now the problem, until max is not bigger than 500 all the values print on the console, if max > 500 not everything gets printed.
Am I doing something wrong?
P.S.: Also any constructive criticism would be greatly appreciated.
I have no idea why you're not getting all the output, as it looks like you should get everything. What output are you missing?
The sieve is implemented wrongly. Something like
vector<int> sieve;
vector<int> primes;
for (int i = 1; i < max + 1; ++i)
sieve.push_back(i); // you'll learn more efficient ways to handle this later
sieve[0]=0;
for (int i = 2; i < max + 1; ++i) { // there are lots of brace styles, this is mine
if (sieve[i-1] != 0) {
primes.push_back(sieve[i-1]);
for (int j = 2 * sieve[i-1]; j < max + 1; j += sieve[i-1]) {
sieve[j-1] = 0;
}
}
}
would implement the sieve. (Code above written off the top of my head; not guaranteed to work or even compile. I don't think it's got anything not covered by the end of chapter 4.)
Return primes as usual, and print out the entire contents.
Think of the sieve as a set.
Go through the set in order. For each value in thesive remove all numbers that are divisable by it.
#include <set>
#include <algorithm>
#include <iterator>
#include <iostream>
typedef std::set<int> Sieve;
int main()
{
static int const max = 100;
Sieve sieve;
for(int loop=2;loop < max;++loop)
{
sieve.insert(loop);
}
// A set is ordered.
// So going from beginning to end will give all the values in order.
for(Sieve::iterator loop = sieve.begin();loop != sieve.end();++loop)
{
// prime is the next item in the set
// It has not been deleted so it must be prime.
int prime = *loop;
// deleter will iterate over all the items from
// here to the end of the sieve and remove any
// that are divisable be this prime.
Sieve::iterator deleter = loop;
++deleter;
while(deleter != sieve.end())
{
if (((*deleter) % prime) == 0)
{
// If it is exactly divasable then it is not a prime
// So delete it from the sieve. Note the use of post
// increment here. This increments deleter but returns
// the old value to be used in the erase method.
sieve.erase(deleter++);
}
else
{
// Otherwise just increment the deleter.
++deleter;
}
}
}
// This copies all the values left in the sieve to the output.
// i.e. It prints all the primes.
std::copy(sieve.begin(),sieve.end(),std::ostream_iterator<int>(std::cout,"\n"));
}
From Algorithms and Data Structures:
void runEratosthenesSieve(int upperBound) {
int upperBoundSquareRoot = (int)sqrt((double)upperBound);
bool *isComposite = new bool[upperBound + 1];
memset(isComposite, 0, sizeof(bool) * (upperBound + 1));
for (int m = 2; m <= upperBoundSquareRoot; m++) {
if (!isComposite[m]) {
cout << m << " ";
for (int k = m * m; k <= upperBound; k += m)
isComposite[k] = true;
}
}
for (int m = upperBoundSquareRoot; m <= upperBound; m++)
if (!isComposite[m])
cout << m << " ";
delete [] isComposite;
}
Interestingly, nobody seems to have answered your question about the output problem. I don't see anything in the code that should effect the output depending on the value of max.
For what it's worth, on my Mac, I get all the output. It's wrong of course, since the algorithm isn't correct, but I do get all the output. You don't mention what platform you're running on, which might be useful if you continue to have output problems.
Here's a version of your code, minimally modified to follow the actual Sieve algorithm.
#include <vector>
#include <iostream>
using namespace std;
//finds prime numbers using Sieve of Eratosthenes algorithm
vector<int> calc_primes(const int max);
int main()
{
const int max = 100;
vector<int> primes = calc_primes(max);
for(int i = 0; i < primes.size(); i++)
{
if(primes[i] != 0)
cout<<primes[i]<<endl;
}
return 0;
}
vector<int> calc_primes(const int max)
{
vector<int> primes;
// fill vector with candidates
for(int i = 2; i < max; i++)
{
primes.push_back(i);
}
// for each value in the vector...
for(int i = 0; i < primes.size(); i++)
{
//get the value
int v = primes[i];
if (v!=0) {
//remove all multiples of the value
int x = i+v;
while(x < primes.size()) {
primes[x]=0;
x = x+v;
}
}
}
return primes;
}
In the code fragment below, the numbers are filtered before they are inserted into the vector. The divisors come from the vector.
I'm also passing the vector by reference. This means that the huge vector won't be copied from the function to the caller. (Large chunks of memory take long times to copy)
vector<unsigned int> primes;
void calc_primes(vector<unsigned int>& primes, const unsigned int MAX)
{
// If MAX is less than 2, return an empty vector
// because 2 is the first prime and can't be placed in the vector.
if (MAX < 2)
{
return;
}
// 2 is the initial and unusual prime, so enter it without calculations.
primes.push_back(2);
for (unsigned int number = 3; number < MAX; number += 2)
{
bool is_prime = true;
for (unsigned int index = 0; index < primes.size(); ++index)
{
if ((number % primes[k]) == 0)
{
is_prime = false;
break;
}
}
if (is_prime)
{
primes.push_back(number);
}
}
}
This not the most efficient algorithm, but it follows the Sieve algorithm.
below is my version which basically uses a bit vector of bool and then goes through the odd numbers and a fast add to find multiples to set to false. In the end a vector is constructed and returned to the client of the prime values.
std::vector<int> getSieveOfEratosthenes ( int max )
{
std::vector<bool> primes(max, true);
int sz = primes.size();
for ( int i = 3; i < sz ; i+=2 )
if ( primes[i] )
for ( int j = i * i; j < sz; j+=i)
primes[j] = false;
std::vector<int> ret;
ret.reserve(primes.size());
ret.push_back(2);
for ( int i = 3; i < sz; i+=2 )
if ( primes[i] )
ret.push_back(i);
return ret;
}
Here is a concise, well explained implementation using bool type:
#include <iostream>
#include <cmath>
void find_primes(bool[], unsigned int);
void print_primes(bool [], unsigned int);
//=========================================================================
int main()
{
const unsigned int max = 100;
bool sieve[max];
find_primes(sieve, max);
print_primes(sieve, max);
}
//=========================================================================
/*
Function: find_primes()
Use: find_primes(bool_array, size_of_array);
It marks all the prime numbers till the
number: size_of_array, in the form of the
indexes of the array with value: true.
It implemenets the Sieve of Eratosthenes,
consisted of:
a loop through the first "sqrt(size_of_array)"
numbers starting from the first prime (2).
a loop through all the indexes < size_of_array,
marking the ones satisfying the relation i^2 + n * i
as false, i.e. composite numbers, where i - known prime
number starting from 2.
*/
void find_primes(bool sieve[], unsigned int size)
{
// by definition 0 and 1 are not prime numbers
sieve[0] = false;
sieve[1] = false;
// all numbers <= max are potential candidates for primes
for (unsigned int i = 2; i <= size; ++i)
{
sieve[i] = true;
}
// loop through the first prime numbers < sqrt(max) (suggested by the algorithm)
unsigned int first_prime = 2;
for (unsigned int i = first_prime; i <= std::sqrt(double(size)); ++i)
{
// find multiples of primes till < max
if (sieve[i] = true)
{
// mark as composite: i^2 + n * i
for (unsigned int j = i * i; j <= size; j += i)
{
sieve[j] = false;
}
}
}
}
/*
Function: print_primes()
Use: print_primes(bool_array, size_of_array);
It prints all the prime numbers,
i.e. the indexes with value: true.
*/
void print_primes(bool sieve[], unsigned int size)
{
// all the indexes of the array marked as true are primes
for (unsigned int i = 0; i <= size; ++i)
{
if (sieve[i] == true)
{
std::cout << i <<" ";
}
}
}
covering the array case. A std::vector implementation will include minor changes such as reducing the functions to one parameter, through which the vector is passed by reference and the loops will use the vector size() member function instead of the reduced parameter.
Here is a more efficient version for Sieve of Eratosthenes algorithm that I implemented.
#include <iostream>
#include <cmath>
#include <set>
using namespace std;
void sieve(int n){
set<int> primes;
primes.insert(2);
for(int i=3; i<=n ; i+=2){
primes.insert(i);
}
int p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
int maxRoot = sqrt(*(primes.rbegin()));
while(primes.size()>0){
if(p>maxRoot){
while(primes.size()>0){
p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
}
break;
}
int i=p*p;
int temp = (*(primes.rbegin()));
while(i<=temp){
primes.erase(i);
i+=p;
i+=p;
}
p=*primes.begin();
cout<<p<<"\n";
primes.erase(p);
}
}
int main(){
int n;
n = 1000000;
sieve(n);
return 0;
}
Here's my implementation not sure if 100% correct though :
http://pastebin.com/M2R2J72d
#include<iostream>
#include <stdlib.h>
using namespace std;
void listPrimes(int x);
int main() {
listPrimes(5000);
}
void listPrimes(int x) {
bool *not_prime = new bool[x];
unsigned j = 0, i = 0;
for (i = 0; i <= x; i++) {
if (i < 2) {
not_prime[i] = true;
} else if (i % 2 == 0 && i != 2) {
not_prime[i] = true;
}
}
while (j <= x) {
for (i = j; i <= x; i++) {
if (!not_prime[i]) {
j = i;
break;
}
}
for (i = (j * 2); i <= x; i += j) {
not_prime[i] = true;
}
j++;
}
for ( i = 0; i <= x; i++) {
if (!not_prime[i])
cout << i << ' ';
}
return;
}
I am following the same book now. I have come up with the following implementation of the algorithm.
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
inline void keep_window_open() { char ch; cin>>ch; }
int main ()
{
int max_no = 100;
vector <int> numbers (max_no - 1);
iota(numbers.begin(), numbers.end(), 2);
for (unsigned int ind = 0; ind < numbers.size(); ++ind)
{
for (unsigned int index = ind+1; index < numbers.size(); ++index)
{
if (numbers[index] % numbers[ind] == 0)
{
numbers.erase(numbers.begin() + index);
}
}
}
cout << "The primes are\n";
for (int primes: numbers)
{
cout << primes << '\n';
}
}
Here is my version:
#include "std_lib_facilities.h"
//helper function:check an int prime, x assumed positive.
bool check_prime(int x) {
bool check_result = true;
for (int i = 2; i < x; ++i){
if (x%i == 0){
check_result = false;
break;
}
}
return check_result;
}
//helper function:return the largest prime smaller than n(>=2).
int near_prime(int n) {
for (int i = n; i > 0; --i) {
if (check_prime(i)) { return i; break; }
}
}
vector<int> sieve_primes(int max_limit) {
vector<int> num;
vector<int> primes;
int stop = near_prime(max_limit);
for (int i = 2; i < max_limit+1; ++i) { num.push_back(i); }
int step = 2;
primes.push_back(2);
//stop when finding the last prime
while (step!=stop){
for (int i = step; i < max_limit+1; i+=step) {num[i-2] = 0; }
//the multiples set to 0, the first none zero element is a prime also step
for (int j = step; j < max_limit+1; ++j) {
if (num[j-2] != 0) { step = num[j-2]; break; }
}
primes.push_back(step);
}
return primes;
}
int main() {
int max_limit = 1000000;
vector<int> primes = sieve_primes(max_limit);
for (int i = 0; i < primes.size(); ++i) {
cout << primes[i] << ',';
}
}
Here is a classic method for doing this,
int main()
{
int max = 500;
vector<int> array(max); // vector of max numbers, initialized to default value 0
for (int i = 2; i < array.size(); ++ i) // loop for rang of numbers from 2 to max
{
// initialize j as a composite number; increment in consecutive composite numbers
for (int j = i * i; j < array.size(); j +=i)
array[j] = 1; // assign j to array[index] with value 1
}
for (int i = 2; i < array.size(); ++ i) // loop for rang of numbers from 2 to max
if (array[i] == 0) // array[index] with value 0 is a prime number
cout << i << '\n'; // get array[index] with value 0
return 0;
}
I think im late to this party but im reading the same book as you, this is the solution in came up with! Feel free to make suggestions (you or any!), for what im seeing here a couple of us extracted the operation to know if a number is multiple of another to a function.
#include "../../std_lib_facilities.h"
bool numIsMultipleOf(int n, int m) {
return n%m == 0;
}
int main() {
vector<int> rawCollection = {};
vector<int> numsToCheck = {2,3,5,7};
// Prepare raw collection
for (int i=2;i<=100;++i) {
rawCollection.push_back(i);
}
// Check multiples
for (int m: numsToCheck) {
vector<int> _temp = {};
for (int n: rawCollection) {
if (!numIsMultipleOf(n,m)||n==m) _temp.push_back(n);
}
rawCollection = _temp;
}
for (int p: rawCollection) {
cout<<"N("<<p<<")"<<" is prime.\n";
}
return 0;
}
Try this code it will be useful to you by using java question bank
import java.io.*;
class Sieve
{
public static void main(String[] args) throws IOException
{
int n = 0, primeCounter = 0;
double sqrt = 0;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println(“Enter the n value : ”);
n = Integer.parseInt(br.readLine());
sqrt = Math.sqrt(n);
boolean[] prime = new boolean[n];
System.out.println(“\n\nThe primes upto ” + n + ” are : ”);
for (int i = 2; i<n; i++)
{
prime[i] = true;
}
for (int i = 2; i <= sqrt; i++)
{
for (int j = i * 2; j<n; j += i)
{
prime[j] = false;
}
}
for (int i = 0; i<prime.length; i++)
{
if (prime[i])
{
primeCounter++;
System.out.print(i + ” “);
}
}
prime = new boolean[0];
}
}