fill high data in wxListCtrl using wxThread- i can but - c++

i want to fill database table in wxListCtrl, i can do this , i m using wxThread for this. my problem is - my concept is working for small amount of data, when i increase the size, it shows a error like-
showingdatainwxlistctrl: ../../src/XlibInt.c:595: _XPrivSyncFunction: Assertion `dpy->synchandler == _XPrivSyncFunction' failed.
my code is given below:-
void *MyThread :: Entry()
{
int i=1,j,k=0 ;
while(i!=400)
{
long index=this->temp->data_list_control->InsertItem(i,wxT("amit"));
for(j=1;j<3;j++)
{
this->temp->data_list_control->SetItem(index,j,wxT("pathak"));
}
k++;
if(k==30)
{
this->Sleep(1000);
k=0;
}
i++;
}
}
if i used i =4, 10 100, it is working but i crossed the limit( i dont know at which point) it start showing error
if you have any suggestion then pls help me...

Instead of direct SetItem call from the worker thread, you need to post event to the main thread and add item in the event handler. Data for list control event should be placed to custom event class. See details in wxPostEvent function and here: http://wiki.wxwidgets.org/Custom_Events

You're accessing a non-threadsafe wxListCtrl from another thread, this will simply not work.
A better solution may be to skip the thread, use a wxTimer, then fill 400 more entries every time OnTimer is called.

Related

Function gets called multiple times

So, inside the game loop function that tracks user input is called multiple times. I guess this happens because game loop goes like 40 iterations each second and if I hold down the key for a 0.5 second, function gets called 20 times. I tried to handle this with sfml events too but it didn't work window.setKeyRepeatEnabled(false). How can I solve this?
//this gets called 20-30times
if (sf::Keyboard::isKeyPressed(sf::Keyboard::Left))
{
leftPlayerPoints++;
}
Use two boolean flags: One for checking if the key is pressed or not, and one that is used to check if the action have happened yet.
In short something like
if (key_is_pressed)
{
if (!action_have_happened)
{
// Perform action...
action_have_happened = true;
}
// Else: Action have already happened this key-press, don't do it again
}
When the key is released reset both flags (to false).
That's what exactly IsKeyPressed is suppose to do , you have to use bitmasking and make it toggle state instead of continuing pressing.
Below is code from Win32API (C++). I know SFML has different events than Win32API but Masking should work in SFML also.
BOOL IsKeyToggled(CONST INT key)
{
SHORT key_state = GetAsyncKeyState(key);
BOOL is_toggled = key_state & 0x1;
return is_toggled;
}
The main point here is key_state & 0x1; bit masking with 0x1

Run two delays at once C++

I want to make a program in which there are two dots blinking (with a break of 10ms) simultaneously, but one with delay 200ms and other with delay of 300ms. How can I play these two dots simultaneously from beginning? Is there a better way to that from following:
for(int i=1;i<100;i++)
{
if (i%2==0)
circle(10,10,2);
if (i%3==0)
circle(20,10,2);
delay(10);
cleardevice();
delay(100);
}
I would do something like this instead:
int t0=0,t1=0,t=0,s0=0,s1=0,render=1;
for (;;)
{
if (some stop condition like keyboard hit ...) break;
// update time, state
if (t>=t0) { render=1; s0=!s0; if (s0) t0+=10; else t0+=200; }
if (t>=t1) { render=1; s1=!s1; if (s1) t1+=10; else t1+=300; }
// render
if (render)
{
render=0;
cleardevice();
if (s0) circle(10,10,2);
if (s1) circle(20,10,2);
}
// update main time
delay(10); // Sleep(10) would be better but I am not sure it is present in TC++
t+=10;
if (t>10000) // make sure overflow is not an issue
{
t -=10000;
t0-=10000;
t1-=10000;
}
}
Beware the code is untested as I wrote it directly in here (so there might be syntax errors or typos).
The basic idea is having one global time t with small enough granularity (10ms). And for each object have time of event (t0,t1) state of object (s0,s1) and periods (10/200 , 10/300).
If main time reach the event time swap the state on/off and update event time to next state swap time.
This way you can have any number of objects just make sure your main time step is small enough.
The render flag just ensures that the scene is rendered on change only.
To improve timing you can use RDTSC instead of t+=10 and actually measure how much time has passed with CPU frequency accuracy.
To display the two circles simultaneously in the first round, you have to satisfy both conditions i%2==0 and i%3==0 at once. You can achieve it by simply changing
for(int i=1;i<100;i++)
to
for(int i=0;i<100;i++)
// ↑ zero here

Check for a condition periodically without blocking

In my project, function clipsUpdate reads some facts which are set by CLIPS without the interference of my C++ code. Based on the read facts, clipsUpdate calls the needed function.
void updateClips(void)
{
// read clipsAction
switch(clipsAction)
{
case ActMove:
goToPosition (0, 0, clipsActionArg);
break;
}
}
In goToPosition function, a message is sent to the vehicle to move to the specified position and then a while loop is used to wait until the vehicle reaches the position.
void goToPosition(float north, float east, float down)
{
// Prepare and send the message
do
{
// Read new location information.
}while(/*Specified position reached?*/)
}
The problem is that updateClips should be called every 500 ms and when the goToPosition function is called, the execution is blocked until the target location is reached. During this waiting period, something may happen that requires the vehicle to stop. Therefore, updateClips should be called every 500 ms no matter what, and it should be able to stop executing goToPosition if it's running.
I tried using threads as following, but it didn't work successfully with me and it was difficult for me to debug. I think it can be done with a simpler and cleaner way.
case ActMove:
std::thread t1(goToPosition, 0, 0, clipsActionArg);
t1.detach();
break;
My question is, how can I check if the target location is reached without blocking the execution, i.e., without using while?
You probably want an event-driven model.
In an event-driven model, your main engine is a tight loop that reads events, updates state, then waits for more events.
Some events are time based, others are input based.
The only code that is permitted to block your main thread is the main loop, where it blocks until a timer hits or a new event arrives.
It might very roughly look like this:
using namespace std::literals::chrono_literals;
void main_loop( engine_state* state ) {
bool bContinue = true;
while(bContinue) {
update_ui(state);
while(bContinue && process_message(state, 10ms)) {
bContinue = update_state(state);
}
bContinue = update_state(state);
}
}
update_ui provides feedback to the user, if required.
process_message(state, duration) looks for a message to process, or for 10ms to occur. If it sees a message (like goToPosition), it modifies state to reflect that message (for example, it might store the desired destionation). It does not block, nor does it take lots of time.
If no message is recived in duration time, it returns anyhow without modifying state (I'm assuming you want things to happen even if no new input/messages occur).
update_state takes the state and evolves it. state might have a last updated time stamp; update_state would then make the "physics" reflect the time since last one. Or do any other updates.
The point is that process_message doesn't do work on the state (it encodes desires), while update_state advances "reality".
It returns false if the main loop should exit.
update_state is called once for every process_message call.
updateClips being called every 500ms can be encoded as a repeated automatic event in the queue of messages process_message reads.
void process_message( engine_state* state, std::chrono::milliseconds ms ) {
auto start = std::chrono::high_resolution_clock::now();
while (start + ms > std::chrono::high_resolution_clock::now()) {
// engine_state::delayed is a priority_queue of timestamp/action
// ordered by timestamp:
while (!state->delayed.empty()) {
auto stamp = state->delayed.front().stamp;
if (stamp >= std::chrono::high_resolution_clock::now()) {
auto f = state->queue.front().action;
state->queue.pop();
f(stamp, state);
} else {
break;
}
}
//engine_state.queue is std::queue<std::function<void(engine_state*)>>
if (!state->queue.empty()) {
auto f = state->queue.front();
state->queue.pop();
f(state);
}
}
}
The repeated polling is implemented as a delayed action that, as its first operation, inserts a new delayed action due 500ms after this one. We pass in the time the action was due to run.
"Normal" events can be instead pushed into the normal action queue, which is a sequence of std::function<void(engine_state*)> and executed in order.
If there is nothing to do, the above function busy-waits for ms time and then returns. In some cases, we might want to go to sleep instead.
This is just a sketch of an event loop. There are many, many on the internet.

How to run two forms in C++Builder

It's a pleasure to share some information with you.
Excuse me, does anybody know how to have two FORMS running at the same time?
I mean, I execute a FOR clicking one BUTTON on FORM1 and set FOR's values to a LABEL on FORM2.
Here some codes in FORM1:
void __fastcall Form1::Button1Click(TObject *Sender){
int i = 0;
for (i=0;i<=10000;i++){
Form1->Label1->Caption = i;
Form2->Label1->Caption = i;
}
}
I just want to see this:
if.... Form1->Label1->Caption = 1, Form2->Label1->Caption has to be 1 too and so on.
FORM2 shows me just the last result, which is 10,000.
I appreciate any help.
Thank you !
Just call Update(): (*)
void __fastcall Form1::Button1Click(TObject *Sender)
{
for(int i = 0; i <= 10000; ++i)
{
Form1->Label1->Caption = i;
Form2->Label1->Caption = i;
Form1->Label1->Update();
Form2->Label1->Update();
}
}
Update():
Processes any pending paint messages immediately.
Call Update to force the control to be repainted before any more, possibly time-consuming,
processing takes place. Use Update to provide immediate feedback to the user that cannot wait
for the Windows paint message to arrive.
Update does not invalidate the control, but simply forces a repaint of any regions that have
already been invalidated.
Application->ProcessMessages() will also work, but it's not the right choice: it interrupts the execution of an application so that it can process the message queue. ProcessMessages can be way slower.
(*) Changed since Remy's hint was absolutely better than the original answer (Update vs ProcessMessages)

Getting item sequence numbers from a QtConcurrent Threaded Calculation

The QtConcurrent namespace is really great for simplifying the management of multi-threaded calculations. Overall this works great and I have been able to use QtConcurrent run(), map(), and other variants in the way they are described in the API.
Overall Goal:
I would like to query, cancel(), or pause() a numerically intensive calculation from QML. So far this is working the way I would like, except that I cannot access the sequence numbers in the calculation. Here is a link that describes a similar QML setup.
Below is an image from small test app that I created to encapsulate what I am trying to do:
In the example above the calculation has nearly completed and all the cores have been enqueued with work properly, as can be seen from a system query:
But what I really would like to do is use the sequence numbers from a given list of the items IN THE multi-threaded calculation itself. E.g., one approach might be to simply setup the sequence numbers directly in a QList or QVector (other C++ STL containers can work as well), like this:
void TaskDialog::mapTask()
{
// Number of times the map function will be called:
int N = 5;
// Prepare the vector that we operate on with mapFunction:
QList<int> vectorOfInts;
for (int i = 0; i < N; i++) {
vectorOfInts << i;
}
// Start the calc:
QFuture<void> future = QtConcurrent::map(vectorOfInts, mapFunction);
_futureWatcher.setFuture(future);
//_futureWatcher.waitForFinished();
}
The calculation is non-blocking with the line: _futureWatcher.waitForFinished(); commented out, as shown in the code above. Note that when setup as a non-blocking calculation, the GUI thread is responsive, and the progress bar updates as desired.
But when the values in the QList container are queried during the calculation, what appears seem to be the uninitialized garbage values that one would expect when the array is not properly initialized.
Below is the example function I am calling:
void mapFunction(int& n)
{
// Check the n values:
qDebug() << "n = " << n;
/* Below is an arbitrary task but note that we left out n,
* although normally we would want to use it): */
const long work = 10000 * 10000 * 10;
long s = 0;
for (long j = 0; j < work; j++)
s++;
}
And the output of qDebug() is:
n = 30458288
n = 204778
n = 270195923
n = 0
n = 270385260
The n-values are useless but the sum values, s, are correct (although not shown) when the calculation is mapped in this fashion (non-blocking).
Now, if I uncomment the _futureWatcher.waitForFinished(); line then I get the expected values (the order is irrelevant):
n = 0
n = 2
n = 4
n = 3
n = 1
But in this case, with _futureWatcher.waitForFinished(); enabled, my GUI thread is blocked and the progress bar does not update.
What then would be the advantage of using QtConcurrent::map() with blocking enabled, if the goal to not block the main GUI thread?
Secondly, how can get the correct values of n in the non-blocking case, allowing the GUI to remain responsive and have the progress bar keep updating?
My only option may be to use QThread directly but I wanted to take advantage of all the nice tools setup for us in QtConcurrent.
Thoughts? Suggestions? Other options? Thanks.
EDIT: Thanks to user2025983 for the insight which helped me to solve this. The bottom line is that I first needed to dynamically allocate the QList:
QList<int>* vectorOfInts = new QList<int>;
for (int i = 0; i < N; i++)
vectorOfInts->push_back(i);
Next, the vectorOfInts is passed by reference to the map function by de-referencing the pointer, like this:
QFuture<void> future = QtConcurrent::map(*vectorOfInts, mapFunction);
Note also that the prototype of the mapFunction remains the same:
void mapFunction(int& n)
And then it all works properly: the GUI remained responsive, progress bar updated, the values of n are all correct, etc., WITHOUT the need to add blocking through the function:
_futureWatcher.waitForFinished();
Hope these extra details can help someone else.
The problem here is that your QList goes out of the scope when mapTask() finishes.
Since the mapFunction(int &n) takes the parameter by reference, it gets references to integer values which are now part of an array which is out of scope! So then the computer is free to do whatever it likes with that memory, which is why you see garbage values. If you are just using integer parameters, I would recommend passing the parameters by value and then everything should work.
Alternatively, if you must pass by reference you can have the futureWatcher delete the array when its finished.
QList<int>* vectorOfInts = new QList<int>;
// push back into structure
connect(_futureWatcher, SIGNAL(finished()), vectorOfInts, SLOT(deleteLater()));
// launch stuff
QtConcurrent::map...
// profit