I have located many resources on the web giving general overviews of MVCC (multi-version concurrency control) concepts, but no detailed technical references on exactly how it should work or be implemented. Are there any documents online, or books offline, that contain enough theory (and a bit of practical help, ideally) on which to base an implementation? I wish to emulate more or less what PostgreSQL does.
(For info I will be implementing it in SAS using SAS/Share - which provides some locking primitives and concurrent read/write access to the underlying data store, but nothing in the way of transaction isolation or proper DBMS features. If anyone is familiar with SAS/Share and thinks this is an impossible task, please shout!)
Transaction Processing: Concepts and Techniques and Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency Control and Recovery are authoritative source of transaction processing.
Both these books are also mentioned in PostgreSQL Wiki.
I wrote a blog post about this:
https://elliot.land/post/implementing-your-own-transactions-with-mvcc
A table in PostgreSQL can store multiple versions of the same row.
More, there are two additional columns:
tmin - marking the transaction id that inserted the row
tmax - marking the transaction id that deleted the row
The update is done by deleting and inserting a new record, and the VACUUM process collects the old versions that are no longer in use.
I implemented MVCC in Java. See transaction, runner and mvcc code.
Imagine each transaction gets a number timestamp that goes up for each transaction. We have transactions 1 and 2 in this example.
Transaction 1 reads A and writes value (A + 1). The snapshot isolation creates a temporary version of (A) which transaction 1 owns. The read timestamp of A is set to Transaction 1.
If transaction 2 comes along at the same time and reads A, it will also read the committed A -- it wont see A + 1 because it hasn't been committed. Transaction 2 can see versions of A that are == lastCommittedA and <= transaction 2.
At the time transaction 2 reads A, it will also check the read timestamp of A and see that a transaction 1 is there and check transaction 1 timestamp < transaction 2 timestamp. Because 1 < 2 then the transaction 2 will be aborted because it already depends on an old value of A.
Related
I've been reading about the read-only lock-free transactions as implemented in Google Spanner and CockroachDB. Both claim to be implemented in a lock-free manner by making use of system clocks. Before getting to the question, here is my understanding (please skip the following section if you are aware of the machineries in both systems or just in CockroachDB):
Spanner's approach is simpler -- before committing a write transaction, Spanner picks the max timestamp across all involved shards as the commit timestamp, adds a wait, called commit wait, to for the max clock error before returning from it's write transaction. This means that all causally dependent transactions (both reads and writes) will have a timestamp value higher than the commit timestamp of the previous write. For read transactions, we pick the latest timestamp on the serving node. For example, if there was a write committed at timestamp 5, and the max clock error was 2, future writes and reads-only transactions will at least have a timestamp of 7.
CockroachDB on the other hand, does something more complicated. On writes, it picks the highest timestamp among all the involved shards, but does not wait. On reads, it assigns a preliminary read timestamp as the current timestamp on the serving node, then proceeds optimistically by reading across all shards and restarting the read transaction if any key on any shard reports a write timestamp that might imply uncertainty about whether the write causally preceeded the read transaction. It assumes that keys with write timestamps less than the timestamp for the read transaction either appeared before the read transaction or were concurrent with it. The uncertainty machinery kicks in on timestamps higher than the read transaction timestamp. For example, if there was a write committed at timestamp 8, and a read transaction was assigned timestamp 7, we are unsure about whether that write came before the read or after, so we restart the read transaction with a read timestamp of 8.
Relevant sources - https://www.cockroachlabs.com/blog/living-without-atomic-clocks/ and https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf
Given this implementation does CockroachDB guarantee that the following two transactions will not see a violation of serializability?
A user blocks another user, then posts a message that they don't want the blocked user to see as one write transaction.
The blocked user loads their friends list and their posts as one read transaction.
As an example, consider that the friends list and posts lived on different shards. And the following ordering happens (assuming a max clock error of 2)
The initial posts and friends list was committed at timestamp 5.
A read transaction starts at timestamp 7, it reads the friends list, which it sees as being committed at timestamp 5.
Then the write transaction for blocking the friend and making a post gets committed at 6.
The read transaction reads the posts, which it sees as being committed at timestamp 6.
Now, the transactions violate serializability becasue the read transaction saw an old write and a newer write in the same transaction.
What am I missing?
CockroachDB handles this with a mechanism called the timestamp cache (which is an unfortunate name; it's not much of a cache).
In this example, at step two when the transaction reads the friends list at timestamp 7, the shard that holds the friends list remembers that it has served a read for this data at t=7 (the timestamp requested by the reading transaction, not the last-modified timestamp of the data that exists) and it can no longer allow any writes to commit with lower timestamps.
Then in step three, when the writing transaction attempts to write and commit at t=6, this conflict is detected and the writing transaction's timestamp gets pushed to t=8 or higher. Then that transaction must refresh its reads to see if it can commit as-is at t=8. If not, an error may be returned and the transaction must be retried from the beginning.
In step four, the reading transaction completes, seeing a consistent snapshot of the data as it existed at t=7, while both parts of the writing transaction are "in the future" at t=8.
Reading upon many Kimball design tips regarding fact tables (transaction, accumulating, periodic) etc. I'm still vague what should I do with my case of updating a fact table which I believe is not that uncommon. To the case.
We're processing complaints from clients, and we want to be able to reflect current status of complaint in the Data Warehouse. Our complaints have a workflow of statuses they go through, different assignees that deal with them on time, but for our analysis this is irrelevant as of now. We would like to review what the current situation on complaint is.
To my understanding the grain of the fact table would be single complaint, with columns (irrelevant for this question whether it should be junk dimension, degenerate etc) such as:
Complaint Number
Current Status
Current Status Date
Current Assignee
Type of complaint
As far as I understand, since we don't want to view the process history, but instead see what the current status of the process is, storing multiple rows for each complaint representing it's state is an overkill, so instead we store only one row per complaint and update it.
Now, is my reasoning correct to do that? In above case, complaint number and type of complaint store values that don't change, while "Current" columns do and we need to update the row, so we could implement Change Data Capture mechanism (just like we do for dimensions right now) to compare incoming rows from source system for this fact with currently stored fact rows to improve time cost of such operation.
It honestly looks like a Dimension table with mixed SCD Type 0&1 for me, but it stores facts of receiving complaints.
SO Post for reference: Fact table with information that is regularly updatable in source system
Edit
I'm aware that I could use accumulating fact table with time stamps which is somewhat SCD Type 2 alike but the end user doesn't really care about the history of the process. There are more facts involved in the analysis later on, so separating this need from data warehouse doesn't really work in this case.
I’ve encountered similar use cases in the past, where an accumulating snapshot would be the default solution.
However, the accumulating snapshot doesn’t allow processes with varying length. I’ve designed a different pattern, when 2 rows are added for each event: if an object goes from state A to state B you first insert a row with state A and quantity -1, then a new one with state B and quantity +1.
The end result allows:
- no updates necessary, only inserts;
- map-reduce friendly;
- arbitrary length processes;
- counting how many of each in each state at any point in time (with the help of a periodic snapshot for performance reasons);
- how many entered or left any state at any point in time.;
- calculate time in each state and age overall.
Details in 5 blog posts here (with implementation in Pentaho Data Integration):
http://ubiquis.co.uk/dwh/status-change-fact-table-part-1-the-problem/
In an attempt to use Dynamodb for one of projects, I have a doubt regarding the strong consistency model of dynamodb. From the FAQs
Strongly Consistent Reads — in addition to eventual consistency, Amazon DynamoDB also gives you the
flexibility and control to request a strongly consistent read if your application, or an element of your application, requires it. A strongly consistent read returns a result that reflects all writes that received a successful response prior to the read.
From the definition above, what I get is that a strong consistent read will return the latest write value.
Taking an example: Lets say Client1 issues a write command on Key K1 to update the value from V0 to V1. After few milliseconds Client2 issues a read command for Key K1, then in case of strong consistency V1 will be returned always, however in case of eventual consistency V1 or V0 may be returned. Is my understanding correct?
If it is, What if the write operation returned success but the data is not updated to all replicas and we issue a strongly consistent read, how it will ensure to return the latest write value in this case?
The following link
AWS DynamoDB read after write consistency - how does it work theoretically? tries to explain the architecture behind this, but don't know if this is how it actually works? The next question that comes to my mind after going through this link is: Is DynamoDb based on Single Master, multiple slave architecture, where writes and strong consistent reads are through master replica and normal reads are through others.
Short answer: Writing successfully in strongly consistent mode requires that your write succeed on a majority of servers that can contain the record, therefore any future consistent reads will always see the same data, because a consistent read must read a majority of the servers that can contain the desired record. If you do not perform a strongly consistent read, the system will ask a random server for the record, and it is possible that the data will not be up-to-date.
Imagine three servers. Server 1, server 2 and server 3. To write a strongly consistent record, you pick two servers at minimum, and write the data. Let's pick 1 and 2.
Now you want to read the data consistently. Pick a majority of servers. Let's say we picked 2 and 3.
Server 2 has the new data, and this is what the system returns.
Eventually consistent reads could come from server 1, 2, or 3. This means if server 3 is chosen by random, your new write will not appear yet, until replication occurs.
If a single server fails, your data is still safe, but if two out of three servers fail your new write may be lost until the offline servers are restored.
More explanation:
DynamoDB (assuming it is similar to the database described in the Dynamo paper that Amazon released) uses a ring topology, where data is spread to many servers. Strong consistency is guaranteed because you directly query all relevant servers and get the current data from them. There is no master in the ring, there are no slaves in the ring. A given record will map to a number of identical hosts in the ring, and all of those servers will contain that record. There is no slave that could lag behind, and there is no master that can fail.
Feel free to read any of the many papers on the topic. A similar database called Apache Cassandra is available which also uses ring replication.
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
Disclaimer: the following cannot be verified based on the public DynamoDB documentation, but they are probably very close to the truth
Starting from the theory, DynamoDB makes use of quorums, where V is the total number of replica nodes, Vr is the number of replica nodes a read operation asks and Vw is the number of replica nodes where each write is performed. The read quorum (Vr) can be leveraged to make sure the client is getting the latest value, while the write quorum (Vw) can be leveraged to make sure that writes do not create conflicts.
Based on the fact that there are no write conflicts in DynamoDB (since these would have to be reconciliated from the client, thus being exposed in the API), we conclude that DynamoDB is using a Vw that respects the second law (Vw > V/2), probably just V/2+1 to reduce write latency.
Now regarding read quorums, DynamoDB provides 2 different kinds of read. The strongly consistent read uses a read quorum that respects the first law (Vr + Vw > V), probably just V/2 if we assume V/2+1 for writes as before. However, an eventually consistent read can use only a single random replica Vr = 1, thus being much quicker but giving zero guarantee around consistency.
Note: There's a possibility that the write quorum used does not respect the second law (Vw > V/2), but that would mean DynamoDB resolves automatically such conflicts (e.g. by selecting the latest one based on local time) without reconciliation from the client. But, I believe that this is really unlikely to be true, since there is no such reference in the DynamoDB documentation. Even in that case though, the rest reasoning stays the same.
You can find answer to your question here: http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/APISummary.html
When you issue a strongly consistent read request, Amazon DynamoDB returns a response with the most up-to-date data that reflects updates by all prior related write operations to which Amazon DynamoDB returned a successful response.
In your example, if the updateItem request to update the value from v0 to v1 was successful, the subsequent strongly consistent read request will return v1.
Hope this helps.
I'm currently developing a strategy for an incremental update of our user data. We assume 100_000_000 records in our database of which approximately 1_000_000 records are updated per workflow.
The idea is to update records in a MapReduce job. Is it useful to use an indexed storage (eg. Cassandra) to be able to access current records randomly? Or is it preferable to retrieve data from HDFS and join new information to existing records.
The record size is O(200 Bytes). The user data has a fixed length but should be extendable. The log events have a similar but not equal structure. The number of user records is likely to grow. Near real-time updates are desirable, ie. a 3 hour time gap is not acceptable, few minutes is OK.
Have you made any experiences with either of these strategies and data of this size?
Is the pig JOIN fast enough? Is it a bottleneck always to read all records? Is Cassandra able to hold this amount of data efficiently? Which solution is scalable? What about the complexity of the system?
You need to define your requirements first. Your record volumes are not a problem, but you don't give a record length. Are they fixed length, fixed field number, likely to change format over time? Are we talking 100 byte records or 100,000 byte records? You need an index on a field/column if you wish to query by that field/column, unless you do all your work using map/reduce. Will the number of user records stay at 100mill (1 server will probably suffice) or will it grow 100% per year ( probably multiple servers adding new ones over time).
How you access records for updating depends on whether you need to update them in real-time or whether you can run a batch job. Will updates be every minute, or hour, or month?
I would strongly suggest you do some experimenting. Have you done any testing already? This will give you a context for your questions and this will lead to more objective questions and answers. It is unlikely that you can 'whiteboard' a solution based on your question.
Long story short, I'm rewriting a piece of a system and am looking for a way to store some hit counters in AWS SimpleDB.
For those of you not familiar with SimpleDB, the (main) problem with storing counters is that the cloud propagation delay is often over a second. Our application currently gets ~1,500 hits per second. Not all those hits will map to the same key, but a ballpark figure might be around 5-10 updates to a key every second. This means that if we were to use a traditional update mechanism (read, increment, store), we would end up inadvertently dropping a significant number of hits.
One potential solution is to keep the counters in memcache, and using a cron task to push the data. The big problem with this is that it isn't the "right" way to do it. Memcache shouldn't really be used for persistent storage... after all, it's a caching layer. In addition, then we'll end up with issues when we do the push, making sure we delete the correct elements, and hoping that there is no contention for them as we're deleting them (which is very likely).
Another potential solution is to keep a local SQL database and write the counters there, updating our SimpleDB out-of-band every so many requests or running a cron task to push the data. This solves the syncing problem, as we can include timestamps to easily set boundaries for the SimpleDB pushes. Of course, there are still other issues, and though this might work with a decent amount of hacking, it doesn't seem like the most elegant solution.
Has anyone encountered a similar issue in their experience, or have any novel approaches? Any advice or ideas would be appreciated, even if they're not completely flushed out. I've been thinking about this one for a while, and could use some new perspectives.
The existing SimpleDB API does not lend itself naturally to being a distributed counter. But it certainly can be done.
Working strictly within SimpleDB there are 2 ways to make it work. An easy method that requires something like a cron job to clean up. Or a much more complex technique that cleans as it goes.
The Easy Way
The easy way is to make a different item for each "hit". With a single attribute which is the key. Pump the domain(s) with counts quickly and easily. When you need to fetch the count (presumable much less often) you have to issue a query
SELECT count(*) FROM domain WHERE key='myKey'
Of course this will cause your domain(s) to grow unbounded and the queries will take longer and longer to execute over time. The solution is a summary record where you roll up all the counts collected so far for each key. It's just an item with attributes for the key {summary='myKey'} and a "Last-Updated" timestamp with granularity down to the millisecond. This also requires that you add the "timestamp" attribute to your "hit" items. The summary records don't need to be in the same domain. In fact, depending on your setup, they might best be kept in a separate domain. Either way you can use the key as the itemName and use GetAttributes instead of doing a SELECT.
Now getting the count is a two step process. You have to pull the summary record and also query for 'Timestamp' strictly greater than whatever the 'Last-Updated' time is in your summary record and add the two counts together.
SELECT count(*) FROM domain WHERE key='myKey' AND timestamp > '...'
You will also need a way to update your summary record periodically. You can do this on a schedule (every hour) or dynamically based on some other criteria (for example do it during regular processing whenever the query returns more than one page). Just make sure that when you update your summary record you base it on a time that is far enough in the past that you are past the eventual consistency window. 1 minute is more than safe.
This solution works in the face of concurrent updates because even if many summary records are written at the same time, they are all correct and whichever one wins will still be correct because the count and the 'Last-Updated' attribute will be consistent with each other.
This also works well across multiple domains even if you keep your summary records with the hit records, you can pull the summary records from all your domains simultaneously and then issue your queries to all domains in parallel. The reason to do this is if you need higher throughput for a key than what you can get from one domain.
This works well with caching. If your cache fails you have an authoritative backup.
The time will come where someone wants to go back and edit / remove / add a record that has an old 'Timestamp' value. You will have to update your summary record (for that domain) at that time or your counts will be off until you recompute that summary.
This will give you a count that is in sync with the data currently viewable within the consistency window. This won't give you a count that is accurate up to the millisecond.
The Hard Way
The other way way is to do the normal read - increment - store mechanism but also write a composite value that includes a version number along with your value. Where the version number you use is 1 greater than the version number of the value you are updating.
get(key) returns the attribute value="Ver015 Count089"
Here you retrieve a count of 89 that was stored as version 15. When you do an update you write a value like this:
put(key, value="Ver016 Count090")
The previous value is not removed and you end up with an audit trail of updates that are reminiscent of lamport clocks.
This requires you to do a few extra things.
the ability to identify and resolve conflicts whenever you do a GET
a simple version number isn't going to work you'll want to include a timestamp with resolution down to at least the millisecond and maybe a process ID as well.
in practice you'll want your value to include the current version number and the version number of the value your update is based on to more easily resolve conflicts.
you can't keep an infinite audit trail in one item so you'll need to issue delete's for older values as you go.
What you get with this technique is like a tree of divergent updates. you'll have one value and then all of a sudden multiple updates will occur and you will have a bunch of updates based off the same old value none of which know about each other.
When I say resolve conflicts at GET time I mean that if you read an item and the value looks like this:
11 --- 12
/
10 --- 11
\
11
You have to to be able to figure that the real value is 14. Which you can do if you include for each new value the version of the value(s) you are updating.
It shouldn't be rocket science
If all you want is a simple counter: this is way over-kill. It shouldn't be rocket science to make a simple counter. Which is why SimpleDB may not be the best choice for making simple counters.
That isn't the only way but most of those things will need to be done if you implement an SimpleDB solution in lieu of actually having a lock.
Don't get me wrong, I actually like this method precisely because there is no lock and the bound on the number of processes that can use this counter simultaneously is around 100. (because of the limit on the number of attributes in an item) And you can get beyond 100 with some changes.
Note
But if all these implementation details were hidden from you and you just had to call increment(key), it wouldn't be complex at all. With SimpleDB the client library is the key to making the complex things simple. But currently there are no publicly available libraries that implement this functionality (to my knowledge).
To anyone revisiting this issue, Amazon just added support for Conditional Puts, which makes implementing a counter much easier.
Now, to implement a counter - simply call GetAttributes, increment the count, and then call PutAttributes, with the Expected Value set correctly. If Amazon responds with an error ConditionalCheckFailed, then retry the whole operation.
Note that you can only have one expected value per PutAttributes call. So, if you want to have multiple counters in a single row, then use a version attribute.
pseudo-code:
begin
attributes = SimpleDB.GetAttributes
initial_version = attributes[:version]
attributes[:counter1] += 3
attributes[:counter2] += 7
attributes[:version] += 1
SimpleDB.PutAttributes(attributes, :expected => {:version => initial_version})
rescue ConditionalCheckFailed
retry
end
I see you've accepted an answer already, but this might count as a novel approach.
If you're building a web app then you can use Google's Analytics product to track page impressions (if the page to domain-item mapping fits) and then to use the Analytics API to periodically push that data up into the items themselves.
I haven't thought this through in detail so there may be holes. I'd actually be quite interested in your feedback on this approach given your experience in the area.
Thanks
Scott
For anyone interested in how I ended up dealing with this... (slightly Java-specific)
I ended up using an EhCache on each servlet instance. I used the UUID as a key, and a Java AtomicInteger as the value. Periodically a thread iterates through the cache and pushes rows to a simpledb temp stats domain, as well as writing a row with the key to an invalidation domain (which fails silently if the key already exists). The thread also decrements the counter with the previous value, ensuring that we don't miss any hits while it was updating. A separate thread pings the simpledb invalidation domain, and rolls up the stats in the temporary domains (there are multiple rows to each key, since we're using ec2 instances), pushing it to the actual stats domain.
I've done a little load testing, and it seems to scale well. Locally I was able to handle about 500 hits/second before the load tester broke (not the servlets - hah), so if anything I think running on ec2 should only improve performance.
Answer to feynmansbastard:
If you want to store huge amount of events i suggest you to use distributed commit log systems such as kafka or aws kinesis. They allow to consume stream of events cheap and simple (kinesis's pricing is 25$ per month for 1K events per seconds) – you just need to implement consumer (using any language), which bulk reads all events from previous checkpoint, aggregates counters in memory then flushes data into permanent storage (dynamodb or mysql) and commit checkpoint.
Events can be logged simply using nginx log and transfered to kafka/kinesis using fluentd. This is very cheap, performant and simple solution.
Also had similiar needs/challenges.
I looked at using google analytics and count.ly. the latter seemed too expensive to be worth it (plus they have a somewhat confusion definition of sessions). GA i would have loved to use, but I spent two days using their libraries and some 3rd party ones (gadotnet and one other from maybe codeproject). unfortunately I could only ever see counters post in GA realtime section, never in the normal dashboards even when the api reported success. we were probably doing something wrong but we exceeded our time budget for ga.
We already had an existing simpledb counter that updated using conditional updates as mentioned by previous commentor. This works well, but suffers when there is contention and conccurency where counts are missed (for example, our most updated counter lost several million counts over a period of 3 months, versus a backup system).
We implemented a newer solution which is somewhat similiar to the answer for this question, except much simpler.
We just sharded/partitioned the counters. When you create a counter you specify the # of shards which is a function of how many simulatenous updates you expect. this creates a number of sub counters, each which has the shard count started with it as an attribute :
COUNTER (w/5shards) creates :
shard0 { numshards = 5 } (informational only)
shard1 { count = 0, numshards = 5, timestamp = 0 }
shard2 { count = 0, numshards = 5, timestamp = 0 }
shard3 { count = 0, numshards = 5, timestamp = 0 }
shard4 { count = 0, numshards = 5, timestamp = 0 }
shard5 { count = 0, numshards = 5, timestamp = 0 }
Sharded Writes
Knowing the shard count, just randomly pick a shard and try to write to it conditionally. If it fails because of contention, choose another shard and retry.
If you don't know the shard count, get it from the root shard which is present regardless of how many shards exist. Because it supports multiple writes per counter, it lessens the contention issue to whatever your needs are.
Sharded Reads
if you know the shard count, read every shard and sum them.
If you don't know the shard count, get it from the root shard and then read all and sum.
Because of slow update propogation, you can still miss counts in reading but they should get picked up later. This is sufficient for our needs, although if you wanted more control over this you could ensure that- when reading- the last timestamp was as you expect and retry.