What RegEx pattern should be used to match CP_ but not CPLAT::CP_?
(?<!CPLAT::)CP_
Uses negative lookbehind
Also, does anyone have a very simple tutorial like RegEx for Dummies? Is it strange that I code in C++ but cannot grasp RegEx easily?
No, it's not strange. Regex mastery requires a certain mindset that doesn't come naturally. And being able to program, in C++ or any other language, doesn't seem to help--if anything, it's a handicap. There's a good tutorial here, but even the best tutorial will only get you to a pidgin level. If you really want to get your head around regexes, you need The Book.
Another problem is that there's no standard for regexes; every programming language, every framework, every IDE or text editor seems to have its own "flavor" of regex. Some have features that others don't, while some use different syntax to do the same things. That's where The Other Book comes in. Many examples of the kinds of tasks we commonly use regexes for, in several of the most popular flavors, and thoroughly explained.
[^:]CP_
Will find all instances of CP_ that aren't preceeded by a :
use the g option (depending on regex flavor) if you expect more than one CP_ match per line.
I think you want "^CP_" as your regular expression. The ^ tells the expression to check to this patter at the start of the input.
http://www.regular-expressions.info/anchors.html
Related
I have been using Vim for a while now, and I've come to realize how powerful it is each time I do so. One thing that I know is that each usage leads me to a whole new learning experience about new commands that always seem to come in handy once I know them.
One thing I notice coming to SO is that a lot of users answer Vim questions in regexps. Things like this: :s/\(\S\+\)/"\1"/ (supposedly this is an awesome regexp). So I have two questions regarding this.
(a) Am I not harnessing the full power of Vim if I don't use regexps? Aren't there commands to do pretty much what any regexp would do?
(b) If you do think regexps are worth learning, please point me to reading material ranging from intro to advanced levels. If it helps, I use Vim mostly for writing up TeX files and Python scripts.
Thanks SO community, you rock.
a) In my opinion, if you're not using it and you're happy the way you're working now, leave it at that. Once the time comes and you start needing regular expressions for something you'll learn them. To the extent you need. Most people use them in just that way.
Very few know them to the point where they, let's say go writing their own syntax files or something similar.
b) Vim has its own particular flavour of regular expressions (one of many), but for a start, apart from Vim's help of course, I'd recommend one of the introductory books to Perl. For example, Learning Perl. It has a nice gentle approach so that expressions start making sense (and you don't just learn them as one liners for some particular problem at hand). Beginning Perl (free version !) can be found here.
Advanced books on Regexes are Mastering Regular Expressions, and similar of the series. Also, Intermediate and Mastering Perl are not bad.
Essentially Regular expressions are most useful for search and replaces. Many problems can be solved by searching for the offending text and replacing it in a clever manner with desired text. That is not always the best way to solve and rarely is it the only way.
Regular expressions find a pattern so if you are wanting to edit text in a bunch of places that has a similar pattern you can often identify them with a regular expression
Ex:
/my name is .*
Will find "my name is "
"my name is Joe"
or anything else that starts with "my name is "
the . matches any character and the * tells vim to match 0 to infinity of the previous symbol (in this case . or anything)
this is probably the simplest form of regex. for more advanced usage use the answers provided by Idigas
This interesting question Regex to match anything (including the empty string) except a specific given string concerned how to do a negative look-ahead in MySQL. The poster wanted to get the effect of
Kansas(?! State)
because MySQL doesn't implement look-ahead assertions, a number of answers came up the equivalent
Kansas($|[^ ]| ($|[^S])| S($|[^t])| St($|[^a])| Sta($|[^t])| Stat($|[^e]))
The poster pointed out that's a PITA to do for potentially lots of expressions.
Is there a script/utility/mode of PCRE (or some other package) that will convert a PCRE (if possible) to an equivalent regex that doesn't use Perl's snazzy features? I'm fully aware that some Perl-style regexes cannot be stated as an ordinary regex, so I would not expect the tool to do the impossible, of course!
You don't want to do this. It isn't actually mindbogglingly difficult to translate the advanced features to basic features - it's just another flavor of compiler, and compiler writers are pretty clever people - but most of the things that the snazzy features solve are (a) impossible to do with a standard regex because they recognize non-regular languages, so you'd have to approximate them so that at least they work for a limited-length text or (b) possible, but only with a regex of exponential size. And 'exponential' is compsci-speak for "don't go there". You will get swamped in OutOfMemory errors and seemingly-infinite loops if you try to use an exponential solution on anything you would actually want to process.
In other words, Abandon all hope, ye who enter here. It is virtually always better to let the regex do what it's good at and do the rest with other tools. Even such a simple thing as inverting a regex is much, much easier solved with the original regex in combination with the negation operator than with the monstrosity that would result from an accurate regex inverter.
I don’t understand or see the need for regular expressions.
Can some explain them in simple terms and provide some basic examples where they could be useful, or even critical.
Use them where you need to use/manipulate patterns. For instance, suppose you need to recognise the following pattern:
Any letter, A-Z, either upper or lower case, 5 or 6 times
3 digits
a single letter a-z (definitely lower case)
(Things like this crop up for zip code, credit card, social security number validation etc.)
That's not really hard to write in code - but it becomes harder as the pattern becomes more complicated. With a regular expression, you describe the pattern (rather than the code to validate it) and let the regex engine do the work for you.
The pattern here would be something like
[A-Za-z]{5,6}[0-9]{3}[a-z]
(There are other ways of expressing it too.) Grouping constructs make it easy to match a whole pattern and grab (or replace) different bits of it, too.
A few downsides though:
Regexes can become complicated and hard to read quite quickly. Document thoroughly!
There are variations in behaviour between different regex engines
The complexity can be hard to judge if you're not an expert (which I'm certainly not!); there are "gotchas" which can make the patterns really slow against particular input, and these gotchas aren't obvious at all
Some people overuse regular expressions massively (and some underuse them, of course). The worst example I've seen was where someone asked (on a C# group) how to check whether a string was length 3 - this is clearly a job for using String.Length, but someone seriously suggested matching a regex. Madness. (They also got the regex wrong, which kinda proves the point.)
Regexes use backslashes to escape various things (e.g. use . to mean "a dot" rather than just "any character". In many languages the backslash itself needs escaping.
What regular expressions are used for:
Regular expressions is a language in itself that allows you to perform complex validation of string inputs. I.e. you pass it a string and it will return true or false if it is a match or not.
How regular expressions are used:
Form validation, determine if what the user entered is of the format you want
Finding the position of a certain pattern in a block of text
Search and replace where the search term is a regex and what to replace is a normal string.
Some regular expression language features:
Alternation: allows you to select one thing or another. Example match only yes or no.
yes|no
Grouping: You can define scope and have precedence using parentheses. For example match 3 color shades.
gr(a|e)y|black|white
Quantification: You can quantify how much of something you want. ? means 1 or 0, * means 0 or more. + means at least one. Example: Accept a binary string that is not empty:
(0|1)+
Why regular expressions?
Regular expressions make it easy to match strings, it can often replace several dozen lines of source code with a simple small regular expression string.
Not for all types of matching:
To understand how something is useful, you should also understand how it is not useful. Regular expressions are bad for certain tasks for example when you need to guarantee that a string has an equal number of parentheses.
Available in just about all languages:
Regular expressions are available in just about any programming language.
Formal language:
Any regular expression can be converted to a deterministic finite state machine. And in this same way you can figure out how to make source code that will validate your regular expression.
Example:
[hc]+at
matches "hat", "cat", "hhat", "chat", "hcat", "ccchat", and so on, but not "at"
Source, further reading
They look a bit cryptic but they provide a very powerful tool for finding patterns in text. Anything from href tags in HTML pages to validating email addresses.
And they can be processed into a very efficient data structure (FSA) that finds matches very fast.
They are a bit tricky, but extremely powerful and worth learning. The web is full of tutorial and examples, start for example from here and look at the examples here.
If I could direct the OP to some of the answers/comments on one of my own questions: How important is knowing Regexs?
Regular expressions are a very concise way to specify most pattern-matching and -replacement problems, and regexp engines can be very highly optimized.
If you wanted to do the same job as even a relatively simple regexp, you'd have to write a lot of code, which probably would contain a number of bugs, be hard to understand and perform badly.
Whereas doing the same with a regexp is much shorter, almost certainly performs as well as is technically possible, and is easier to understand to anyone familiar with regexpes (though it should be commented in either case)
The email example is actually a bad example for regular expressions. Regexes can be used, but the resulting expression (for example this one which doesn't handle "John Doe " style addresses) is hugely complicated - take a look at the email address specification and you'll see why...
However regexes are very useful in a host of other situations, extracting ip addresses from text, tags from html etc. Finding all versioned files would be another example. Something along the lines of:
my_versioned_file_(\d{4}-\d{2}-\d{2}).txt
will match any filenames of the format my_versioned_file_2009-02-26.txt and pull out the date as a captured group (the part wrapped in "()") for you to further analyse.
No regexes are not necessary, but they can save a world of time in writing a hand rolled parser for something a regex can easily achieve.
Whenever you've got some pattern to find in a lot of textual data or if you want to check that a string is in a certain format.
For example an email address...
The code for checking for an at symbol and the presence of a valid domain will look quite big where you could just use a regular expression and have an answer in 2 lines of code.
Regex r = new Regex("<An Email Address Regex>");
bool isValidEmail = r.IsMatch(MyInput);
Other examples would be for checking numbers are in the correct format before parsing them into integers etc.
Jon and Sqook gave a fine explanation and definition of Regular Expressions, and for simple problems it is pretty understandable, but if you use it for complex problems regular expressions can be a &$#( (at least for me ;-))
I use Expresso a lot to help me build complex regular expression code.
http://www.ultrapico.com/Expresso.htm
It has a build in library with expressions you can use, a design mode where you can build your code and a test mode where you can test and validate the code. It helped me build and understand complex expressions better!
Goodluck!
Some practical real world usages:
Finding abstract classes that extend JUnit's TestCase:
abstract\s+class\s+\w+\s+extends\s+TestCase
This is useful for finding test cases that cannot be instantiated and will need excluding from an ant build script that runs test cases. You cannot search for regular text because you don't know the class names in advance. hence the \w+ (At least one word character).
Finding running bash or bourne shell scripts:
ps -e | grep -e " sh| bash"
this is useful if you want to kill them all or something, if you did a search for just sh you'd not get the bash ones and have to run the command again for bash scripts. Again, more serviceable than perfect, but nearly no regex you write on the fly will be.
It's not perfect, but most regexes won't be, or they'll take so long to write they're not worth it. The ones you perfect are the ones you commit as part of some sort of validation or built application.
Example of critical use is JavaScript:
If you need to do search or replace on a string, the only matching you can do is a regular expression. It's in the JavaScript API on those string methods...
Personally, I mostly use regular expressions only when I need some advanced matching in some automated find/replace in a text editor (TextPad or Visual Studio). The most powerful feature in my view is the ability to match a pattern that can be inserted in the replace.
To give you some examples:
Email Address
Password requires at least 1 alphabet and 1 digit
How can you acheive these requirements?
The best way is to use regular expression.
Read the following links to learn more:
How To: Use Regular Expressions to Constrain Input in ASP.NET
http://msdn.microsoft.com/en-us/library/ms998267.aspx
I use regex buddy which takes in a regex and then gives out the meaning of it from which one gets what it could be doing? On similar lines is it possible to have some engine which takes natural language input describing about the pattern one needs to match/replace and gives out the correct(almost correct) regex for that description?
e.g. Match the whole word 'dio' in some file
So regex for that could be : <dio>
or
\bdio\b
-AD.
P.S. = I think few guys here might think this as a 'subjective' 'not-related-to-programming' question, but i just need to ask this question nonetheless. For myself. - Thanks.
This would be complicated to program, because you need a natural language parser able to derive meaning. Unless you limit it to a strict subset -- in which case, you're reinventing an expression language, and you'll eventually wind up back at regular expressions -- only with bigger symbols. so what's the gain?
Regexes were developed for a reason -- they're the simplest, most accurate representation possible.
There is a Symbolix Regular Expression Builder package for Emacs, but looking at it, I think that regular expressions are easier to work with.
Short answer: no, not until artificial intelligence improves A LOT.
If you wrote something like this, you'd have a very limited syntax. For someone to know "Match the whole word 'dio' in some file", they would basically need to have significant knowledge of regular expressions. At that point, just use regular expressions.
For non-technical users, this will never work unless you limit it to basic "find this phrase" or, maybe, "find lines starting/ending with ??". They're never going to come up with something like this:
Find lines containing a less-than symbol followed by the string 'img' followed by one or more groupings of: some whitespace followed by one or more letters followed by either a double-quoted string or a single-quoted string, and those groupings are followed by any length of whitespace then a slash and a greater-than sign.
That's my attempt at a plain-language version of this relatively simple regex:
/<img(\s+[a-z]+=("[^"]*"|'[^']*'))+\s*/>/i
Yeah, I agree with you that it is subjective. But I will answer your question because I think that you have asked a wrong question.
The answer is "YES". Almost anything can be coded and this would be a rather simple application to code. Will it work perfectly? No, it wouldn't because natural language is quite complex to parse and interpret. But it is possible to write such an engine with some constraints.
Generating a regex via the use of a natural language processor is quite possible. Prolog is supposed to be a good language choice for this kind of problem. In practice, however, what you'd be doing, in effect, is designing your own input language which provides a regex as output. If your goal is to produce regexs for a specific task, this might in fact be useful. Perhaps the task you are doing tends to require certain formulations that are doable but not built into regular expressions. Though whether this will be more effective than just creating the regexs one at a time depends on your project. Usually this is probably not the case, since your own language is not going to be as well-known or as well-documented as regex. If your goal is to produce a replacement for regex whose output will be parsed as a regex, I think you're asking a lot. Not to say people haven't done the same sort of thing before (e.g. the C++ language as an 'improvement' that runs, originally, on C++).
try the open source mac application Ruby Regexp Machine, at http://www.rubyregexp.sf.net. It is written in ruby, so you can use some of the code even if you are not on mac. You can describe a lot of simple regular expresions in an easy english grammar. As a disclosure, i did make this tool.
Please don't answer the obvious, but what are the limit signs that tell us a problem should not be solved using regular expressions?
For example: Why is a complete email validation too complex for a regular expression?
Regular expressions are a textual representation of finite-state automata. That is to say, they are limited to only non-recursive matching. This means that you can't have any concept of "scope" or "sub-match" in your regexp. Consider the following problem:
(())()
Are all the open parens matched with a close paren?
Obviously, when we look at this as human beings, we can easily see that the answer is "yes". However, no regular expression will be able to reliably answer this question. In order to do this sort of processing, you will need a full pushdown automaton (like a DFA with a stack). This is most commonly found in the guise of a parser such as those generated by ANTLR or Bison.
A few things to look out for:
beginning and ending tag detection -- matched pairing
recursion
needing to go backwards (though you can reverse the string, but that's a hack)
regexes, as much as I love them, aren't good at those three things. And remember, keep it simple! If you're trying to build a regex that does "everything", then you're probably doing it wrong.
When you need to parse an expression that's not defined by a regular language.
What it comes down to is using common sense. If what you are trying to match becomes an unmanageable, monster regular expression then you either need to break it up into small, logical sub-regular expressions or you need to start re-thinking your solution.
Take email addresses (as per your example). This simple regular expression (taken from RegEx buddy) matches 99% of all emails out there:
\b[A-Z0-9._%+-]+#[A-Z0-9.-]+\.[A-Z]{2,4}\b
It is short and to the point and you will rarely run into issues with it. However, as the author of RegEx buddy points out, if your email address is in the rare top-level domain ".museum" it will not be accepted.
To truely match all email addresses you need to adhere to the standard known as RFC 2822. It outlines the multitude of ways email addresses can be formatted and it is extremely complex.
Here is a sample regular expression attempting to adhere to RFC 2822:
(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|"
(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x
0c\x0e-\x7f])*")#(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9]
(?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.)
{3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08
\x0b\x0c\x0e-\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])
This obviously becomes a problem of diminishing returns. It is better to use the easily maintained implementation that matches 99% of email addresses vs the monsterous one that accepts 99.9% of them.
Regular expressions are a great tool to have in your programmers toolbox but they aren't a solution to all your parsing problems. If you find your RegEx solution starting to become extremely complex you need to either attempt to logically break it up into smaller regular expressions to match portions of your text or you need to start looking at other methods to solve your problem. Similarly, there are simply problems that Regular Expressions, due to their nature, can't solve (as one poster said, not adhering to Regular Language).
Regular expressions are suited for tokenizing, finding or identifying individual bits of text, e.g. finding keywords, strings, comments, etc. in source code.
Regular expressions are not suited for determining the relationship between multiple bits of text, e.g. finding a block of source code with properly paired braces. You need a parser for that. The parser can use regular expressions for tokenizing the input, while the parser itself determines how the different regex matches fit together.
Essentially, you're going to far with your regular expressions if you start thinking about "balancing groups" (.NET's capture group subtraction feature) or "recursion" (Perl 5.10 and PCRE).
Here's a good quote from Raymond Chen:
Don't make regular expressions do what they're not good at. If you want to match a simple pattern, then match a simple pattern. If you want to do math, then do math. As commenter Maurits put it, "The trick is not to spend time developing a combination hammer/screwdriver, but just use a hammer and a screwdriver.
Source
Solve the problem with a regex, then give it to somebody else conversant in regexes. If they can't tell you what it does (or at least say with confidence that they understand) in about 10 minutes, it's too complex.
Sure sign to stop using regexps is this: if you have many grouping braces '()' and many alternatives '|' then it is a sure sign that you try to do a (complex) parsing with regular expressions.
Add to the mix Perl extensions, backreferences, etc and soon you have yourself a parser that is hard to read, hard to modify, and hard to reason about it's properties (e.g. is there an input on which this parser will work in a exponential time).
This is a time to stop regexing and start parsing (with hand-made parser, parser generators or parser combinators).
Along with tremendous expressions, there are principal limitations on the words, which can be handled by regexp.
For instance you can not not write regexp for word described by n chars a, then n chars b, where n can be any, more strictly .
In different languages regexp is a extension of Regular language, but time of parsing can be extremely large and this code is non-portable.
Whenever you can't be sure it really solves the problem, for example:
HTML parsing
Email validation
Language parsers
Especially so when there already exist tools that solve the problem in a totally understandable way.
Regex can be used in the domains I mentioned, but only as a subset of the whole problem and for specific, simple cases.
This goes beyond the technical limitations of regexes (regular languages + extensions), the maintainability and readability limit is surpassed a lot earlier than the technical limit in most cases.
A problem is too complex for regular expressions when constraints of the problem can change after the solution is written. So, in your example, how can you be sure an email address is valid when you do not have access to the target mail system to verify that the email address is attached to a valid user? You can't.
My limit is a Regex pattern that's about 30-50 characters long (varying depending on how much is fixed text and how much is regex commands)
This may sound stupid but I often lament not being able to do database type of queries using regular expression. Now especially more then before because I am entering those types of search string all the time on search engines. its very difficult, if not impossible to search for +complex AND +"regular expression"
For example, how do I search in emacs for commands that have both Buffer and Window in their name? I need to search separately for .*Buffer.*Window and .*Window.*Buffer