proper factory pattern in C++ - c++

in C# you have to declare everything in a class so an example factory pattern could look like:
namespace MySpace {
public class CFactory
{
public static CFactory Current()
{
static CFactory singleton;
return singleton;
}
public CBase Create() { return null; }
}
}
in C++ you dont have this limitation.. So is it considered "bad practice" to have "factory" methods be global functions vs having them be a class?
example 1:
namespace MySpace {
// factory method
std::shared_ptr<CBase> CreateBase() { return NULL; }
}
example 2:
namespace MySpace {
// factory class
class CFactory
{
public:
std::shared_ptr<CBase> CreateBase() { return NULL; }
};
// factory method exposing class
CFactory& GetFactory()
{
static CFactory singleton;
return singleton;
}
}
example 3:
namespace MySpace {
// factory class with no global function
class CFactory
{
public:
std::shared_ptr<CBase> CreateBase() { return NULL; }
public:
static CFactory& getFactory()
{
static CFactory singleton;
return singleton;
}
};
}
the std library uses a lot of global functions for "factory methods".. an example of this would be std::make_shared.
I have used both before and I am just not sure if one is considered "better" over the other

You can presume from its usage in the standard library that a namespaced global factory is not implicitly wrong. Nothing prevents it from being correct.
Your approach of wrapping the factory in a class is an organizational change. Organization itself is neither good nor bad. It can be done well or poorly.
You should be fine doing whichever approach feels comfortable for its context. I have also seen both approaches used many times and neither were particularly problematic.

I still recommend putting the functions into a class (and even make them virtual). It's very nice to be able to replace your factory for any number of reasons, and doing things that way will make this much easier.
In the standard library the factory functions largely exist because function template expansion can be based on the types of the arguments, but until C++17 you couldn't have template classes that create instances of the class based on the types fed to the constructor. So those factory functions are more properly thought of as non-member constructors than a factory. They always return an instance of a particular type for example.
In a 'true' factory, the factory can return any type that implements the specified interface or is derived from the specified type. True factories always return pointers or (in rare instances) references, but not actual instances.

Here is an example of a way to implement singleton in c++
This way you can avoid global.
Hope this helps.
/* header file */
#ifndef EXAMPLE_H
#define EXAMPLE_H
class example
{
private:
example(); // constructor
public:
~example(); // destructor
static example *getExampleObject();
}
#endif
/* cpp file */
#include "example.h"
example *example::getExampleObject()
{
static example *theInstance = NULL;
if(theInstance == NULL)
{
theInstance = new example();
}
return theInstance;
}

Free functions are fine in C++ and I would go with that route.
Somewhat unrelated: why are you returning a shared smart pointer from a factory? Is the ownership of the newly created object always going to be shared?

Related

Duplicated singleton when using shared library

I am trying to bind a shared library in Python using pybind11.
I created a simplified version, that illustrates the problem.
From python I call the function foobar.
This function calls a static function, that calls a factory, that again calls a factory, that constructs the Singleton.
This works fine when I run the code as a executable (without using the binder).
The problem is that when the library is used with the binder through Python, the Singleton gets constructed twice (e.i, with every use of the Singleton).
Once in the constructor of Factory2 and later in the foobar function.
I have already tried what other solutions here suggest by hiding the factories, but that didn't work or I might have implemented it wrong.
Any ideas on how this could be solved, so that the singleton only gets constructed once?
Any help would be greatly appreciated!
I created a small example that illustrates the problem.
Main.cpp:
int foobar(){
Singleton::createModel();
Singleton::getModel(); //SECOND CALL TO CONSTRUCTOR
return 0;
}
Singleton.h:
class Singleton {
public:
static void createModel(){
Factory factory;
}
static void setModel(Model *model) {
Singleton::getInstance().model = model;
}
static Model *getModel() {
return Singleton::getInstance().model;
}
private:
static Singleton &getInstance() {
static Singleton instance;
return instance;
}
Singleton() : model(nullptr) {};
~Singleton() {};
Model *model;
};
Factory.h:
class Factory {
public:
Factory(){
Factory2 factory2;
}
};
Factory2.h:
class Factory2 {
public:
Factory2();
};

Single Instance

I am new to object oriented programming in C++, and well, it hasn't clicked with me yet, so this may sound like a too easy question. In my homework, I need to: Create a single instance of the class in function main().
What does my professor mean by that? When I tried searching for an answer, they were too specific to a problem, and I just want a general answer please
Sound like you just need something like:
class A {};
int main() {
A a; // creates instance of class A
return 0;
}
Below is my codeļ¼š
Singleton.h
#ifndef __C__Review__Singleton__
#define __C__Review__Singleton__
#include <iostream>
class Singleton{
private:
Singleton() { }
Singleton(const Singleton&);
Singleton& operator=(const Singleton&);
static Singleton *instance;
public:
static Singleton *getInstance();
static void release();
};
#endif /* defined(__C__Review__Singleton__) */
Singleton.cpp
#include "Singleton.h"
Singleton *Singleton::instance = 0;
Singleton* Singleton::getInstance()
{
if(instance == nullptr)
instance = new Singleton();
return instance;
}
void Singleton::release()
{
if (instance != NULL) {
delete instance;
instance = NULL;
}
}
Classes are one of the main part of C++. Moreover, using OOPs concepts while creating and extending classes is also very powerful feature of cpp.
Classes contains properties and member functions. Both of these can be public, private or protected.
Private members of a class are accessible only from within other member functions of the same class.
Protected are similar to private but, they can be accessed by child classes also.
Public members, as the name suggests, can be accessed by objects(instance) of the class.
You can visualize class as a type and object as a variable if that type. Just for understanding.
Classes in C++ are created as follows.
class Circle {
int radius; // member variable/property
public: // type of function()
void set_values (int,int);
int area() {return 3.14*radius*radius;}
};
Creating an object/instance of class means you are creating a variable of type class.
Objects can simply be crated as follows:
Circle c; // Stack based object
static Circle t1; // Static object
Here, keyword static is used to create a singleton instance/object of that class.
For further information, just google it. May be basic knowledge of C++ is required, can be obtained from this,this or this links.

Elegant way to implement extensible factories in C++

I am looking for an intuitive and extensible way to implement factories for subclasses of a given base class in c++. I want to provide such a factory function in a library.The tricky part is that I want said factory to work for user-defined subclasses as well (e.g. having the library's factory function build different subclasses depending on what modules are linked to it). The goal is to have minimal burden/confusion for downstream developers to use the factories.
An example of what I want to do is: given a std::istream, construct and return an object of whatever subclass matches the content, or a null pointer if no matches are found. The global factory would have a signature like:
Base* Factory(std::istream &is){ ... };
I am familiar with prototype factories, but I prefer to avoid the need to make/store prototype objects. A related question is posted here for java: Allowing maximal flexibly/extensibility using a factory.
I am not looking for c++11-specific solutions at the moment, but if they are more elegant I would be happy to learn about those.
I came up with one working solution which I believe is fairly elegant, which I will post as an answer. I can imagine this problem to be fairly common, so I am wondering if anyone knows of better approaches.
EDIT: it seems some clarification is in order...
The idea is for the factory to construct an object of a derived class, without containing the logic to decide which one. To make matters worse, the factory method will end up as part of a library and derived classes may be defined in plugins.
Derived classes must be able to decide for themselves whether or not they are fit for construction, based on the input provided (for example an input file). This decision can be implemented as a predicate that can be used by the factory, as was suggested by several people (great suggestion, by the way!).
If I understand this correctly, we want a factory function that can select which derived class to instantiate based on constructor inputs. This is the most generic solution that I could come up with so far. You specify mapping inputs to organize factory functions, and then you can specify constructor inputs upon factory invocation. I hate to say that the code explains more than I could in words, however I think the example implementations of FactoryGen.h in Base.h and Derived.h are clear enough with the help of comments. I can provide more details if necessary.
FactoryGen.h
#pragma once
#include <map>
#include <tuple>
#include <typeinfo>
//C++11 typename aliasing, doesn't work in visual studio though...
/*
template<typename Base>
using FactoryGen<Base> = FactoryGen<Base,void>;
*/
//Assign unique ids to all classes within this map. Better than typeid(class).hash_code() since there is no computation during run-time.
size_t __CLASS_UID = 0;
template<typename T>
inline size_t __GET_CLASS_UID(){
static const size_t id = __CLASS_UID++;
return id;
}
//These are the common code snippets from the factories and their specializations.
template<typename Base>
struct FactoryGenCommon{
typedef std::pair<void*,size_t> Factory; //A factory is a function pointer and its unique type identifier
//Generates the function pointer type so that I don't have stupid looking typedefs everywhere
template<typename... InArgs>
struct FPInfo{ //stands for "Function Pointer Information"
typedef Base* (*Type)(InArgs...);
};
//Check to see if a Factory is not null and matches it's signature (helps make sure a factory actually takes the specified inputs)
template<typename... InArgs>
static bool isValid(const Factory& factory){
auto maker = factory.first;
if(maker==nullptr) return false;
//we have to check if the Factory will take those inArgs
auto type = factory.second;
auto intype = __GET_CLASS_UID<FPInfo<InArgs...>>();
if(intype != type) return false;
return true;
}
};
//template inputs are the Base type for which the factory returns, and the Args... that will determine how the function pointers are indexed.
template<typename Base, typename... Args>
struct FactoryGen : FactoryGenCommon<Base>{
typedef std::tuple<Args...> Tuple;
typedef std::map<Tuple,Factory> Map; //the Args... are keys to a map of function pointers
inline static Map& get(){
static Map factoryMap;
return factoryMap;
}
template<typename... InArgs>
static void add(void* factory, const Args&... args){
Tuple selTuple = std::make_tuple(args...); //selTuple means Selecting Tuple. This Tuple is the key to the map that gives us a function pointer
get()[selTuple] = Factory(factory,__GET_CLASS_UID<FPInfo<InArgs...>>());
}
template<typename... InArgs>
static Base* make(const Args&... args, const InArgs&... inArgs){
Factory factory = get()[std::make_tuple(args...)];
if(!isValid<InArgs...>(factory)) return nullptr;
return ((FPInfo<InArgs...>::Type)factory.first) (inArgs...);
}
};
//Specialize for factories with no selection mapping
template<typename Base>
struct FactoryGen<Base,void> : FactoryGenCommon<Base>{
inline static Factory& get(){
static Factory factory;
return factory;
}
template<typename... InArgs>
static void add(void* factory){
get() = Factory(factory,__GET_CLASS_UID<FPInfo<InArgs...>>());
}
template<typename... InArgs>
static Base* make(const InArgs&... inArgs){
Factory factory = get();
if(!isValid<InArgs...>(factory)) return nullptr;
return ((FPInfo<InArgs...>::Type)factory.first) (inArgs...);
}
};
//this calls the function "initialize()" function to register each class ONCE with the respective factory (even if a class tries to initialize multiple times)
//this step can probably be circumvented, but I'm not totally sure how
template <class T>
class RegisterInit {
int& count(void) { static int x = 0; return x; } //counts the number of callers per derived
public:
RegisterInit(void) {
if ((count())++ == 0) { //only initialize on the first caller of that class T
T::initialize();
}
}
};
Base.h
#pragma once
#include <map>
#include <string>
#include <iostream>
#include "Procedure.h"
#include "FactoryGen.h"
class Base {
public:
static Base* makeBase(){ return new Base; }
static void initialize(){ FactoryGen<Base,void>::add(Base::makeBase); } //we want this to be the default mapping, specify that it takes void inputs
virtual void speak(){ std::cout << "Base" << std::endl; }
};
RegisterInit<Base> __Base; //calls initialize for Base
Derived.h
#pragma once
#include "Base.h"
class Derived0 : public Base {
private:
std::string speakStr;
public:
Derived0(std::string sayThis){ speakStr=sayThis; }
static Base* make(std::string sayThis){ return new Derived0(sayThis); }
static void initialize(){ FactoryGen<Base,int>::add<std::string>(Derived0::make,0); } //we map to this subclass via int with 0, but specify that it takes a string input
virtual void speak(){ std::cout << speakStr << std::endl; }
};
RegisterInit<Derived0> __d0init; //calls initialize() for Derived0
class Derived1 : public Base {
private:
std::string speakStr;
public:
Derived1(std::string sayThis){ speakStr=sayThis; }
static Base* make(std::string sayThat){ return new Derived0(sayThat); }
static void initialize(){ FactoryGen<Base,int>::add<std::string>(Derived0::make,1); } //we map to this subclass via int with 1, but specify that it takes a string input
virtual void speak(){ std::cout << speakStr << std::endl; }
};
RegisterInit<Derived1> __d1init; //calls initialize() for Derived1
Main.cpp
#include <windows.h> //for Sleep()
#include "Base.h"
#include "Derived.h"
using namespace std;
int main(){
Base* b = FactoryGen<Base,void>::make(); //no mapping, no inputs
Base* d0 = FactoryGen<Base,int>::make<string>(0,"Derived0"); //int mapping, string input
Base* d1 = FactoryGen<Base,int>::make<string>(1,"I am Derived1"); //int mapping, string input
b->speak();
d0->speak();
d1->speak();
cout << "Size of Base: " << sizeof(Base) << endl;
cout << "Size of Derived0: " << sizeof(Derived0) << endl;
Sleep(3000); //Windows & Visual Studio, sry
}
I think this is a pretty flexible/extensible factory library. While the code for it is not very intuitive, I think using it is fairly simple. Of course, my view is biased seeing as I'm the one that wrote it, so please let me know if it is the contrary.
EDIT : Cleaned up the FactoryGen.h file. This is probably my last update, however this has been a fun exercise.
My comments were probably not very clear. So here is a C++11 "solution" relying on template meta programming : (Possibly not the nicest way of doing this though)
#include <iostream>
#include <utility>
// Type list stuff: (perhaps use an existing library here)
class EmptyType {};
template<class T1, class T2 = EmptyType>
struct TypeList
{
typedef T1 Head;
typedef T2 Tail;
};
template<class... Etc>
struct MakeTypeList;
template <class Head>
struct MakeTypeList<Head>
{
typedef TypeList<Head> Type;
};
template <class Head, class... Etc>
struct MakeTypeList<Head, Etc...>
{
typedef TypeList<Head, typename MakeTypeList<Etc...>::Type > Type;
};
// Calling produce
template<class TList, class BaseType>
struct Producer;
template<class BaseType>
struct Producer<EmptyType, BaseType>
{
template<class... Args>
static BaseType* Produce(Args... args)
{
return nullptr;
}
};
template<class Head, class Tail, class BaseType>
struct Producer<TypeList<Head, Tail>, BaseType>
{
template<class... Args>
static BaseType* Produce(Args... args)
{
BaseType* b = Head::Produce(args...);
if(b != nullptr)
return b;
return Producer<Tail, BaseType>::Produce(args...);
}
};
// Generic AbstractFactory:
template<class BaseType, class Types>
struct AbstractFactory {
typedef Producer<Types, BaseType> ProducerType;
template<class... Args>
static BaseType* Produce(Args... args)
{
return ProducerType::Produce(args...);
}
};
class Base {}; // Example base class you had
struct Derived0 : public Base { // Example derived class you had
Derived0() = default;
static Base* Produce(int value)
{
if(value == 0)
return new Derived0();
return nullptr;
}
};
struct Derived1 : public Base { // Another example class
Derived1() = default;
static Base* Produce(int value)
{
if(value == 1)
return new Derived1();
return nullptr;
}
};
int main()
{
// This will be our abstract factory type:
typedef AbstractFactory<Base, MakeTypeList<Derived0, Derived1>::Type> Factory;
Base* b1 = Factory::Produce(1);
Base* b0 = Factory::Produce(0);
Base* b2 = Factory::Produce(2);
// As expected b2 is nullptr
std::cout << b0 << ", " << b1 << ", " << b2 << std::endl;
}
Advantages:
No (additional) run-time overhead as you would have with the function pointers.
Works for any base type, and for any number of derived types. You still end up calling the functions of course.
Thanks to variadic templates this works with any number of arguments (giving an incorrect number of arguments will produce a compile-time error message).
Explicit registering of the produce member functions
is not required.
Disadvantages:
All of your derived types must be available when you declare the
Factory type. (You must know what the possible derived types are and they must be complete.)
The produce member functions for the derived types must be public.
Can make compilation slower. (As always the case when relying on template metaprogramming)
In the end, using the prototype design pattern might turn out better. I don't know since I haven't tried using my code.
I'd like to state some additional things (after further discussion on the chat):
Each factory can only return a single object. This seems strange, as the users decide whether they will take the input to create their object or not. I would for that reason suggest your factory can return a collection of objects instead.
Be careful not to overcomplicate things. You want a plugin system, but I don't think you really want factories. I would propose you simply make users register their classes (in their shared object), and that you simply pass the arguments to the classes' Produce (static) member functions. You store the objects if and only if they're not the nullptr.
Update: This answer made the assumption that some kind of magic existed that could be read and passed to the factory, but that's apparently not the case. I'm leaving the answer here because a) I may update it, and b) I like it anyway.
Not hugely different from your own answer, not using C++11 techniques (I've not had a chance to update it yet, or have it return a smart pointer, etc), and not entirely my own work, but this is the factory class I use. Importantly (IMHO) it doesn't call each possible class's methods to find the one that matches - it does this via the map.
#include <map>
// extraneous code has been removed, such as empty constructors, ...
template <typename _Key, typename _Base, typename _Pred = std::less<_Key> >
class Factory {
public:
typedef _Base* (*CreatorFunction) (void);
typedef std::map<_Key, CreatorFunction, _Pred> _mapFactory;
// called statically by all classes that can be created
static _Key Register(_Key idKey, CreatorFunction classCreator) {
get_mapFactory()->insert(std::pair<_Key, CreatorFunction>(idKey, classCreator));
return idKey;
}
// Tries to create instance based on the key
static _Base* Create(_Key idKey) {
_mapFactory::iterator it = get_mapFactory()->find(idKey);
if (it != get_mapFactory()->end()) {
if (it->second) {
return it->second();
}
}
return 0;
}
protected:
static _mapFactory * get_mapFactory() {
static _mapFactory m_sMapFactory;
return &m_sMapFactory;
}
};
To use this you just declare the base-type, and for each class you register it as a static. Note that when you register, the key is returned, so I tend to add this as a member of the class, but it's not necessary, just neat :) ...
// shape.h
// extraneous code has been removed, such as empty constructors, ...
// we also don't technically need the id() method, but it could be handy
// if at a later point you wish to query the type.
class Shape {
public:
virtual std::string id() const = 0;
};
typedef Factory<std::string, Shape> TShapeFactory;
Now we can create a new derived class, and register it as creatable by TShapeFactory...
// cube.h
// extraneous code has been removed, such as empty constructors, ...
class Cube : public Shape {
protected:
static const std::string _id;
public:
static Shape* Create() {return new Cube;}
virtual std::string id() const {return _id;};
};
// cube.cpp
const std::string Cube::_id = TShapeFactory::Register("cube", Cube::Create);
Then we can create a new item based on, in this case, a string:
Shape* a_cube = TShapeFactory::Create("cube");
Shape* a_triangle = TShapeFactory::Create("triangle");
// a_triangle is a null pointer, as we've not registered a "triangle"
The advantage of this method is that if you create a new derived, factory-generatable class, you don't need to change any other code, providing you can see the factory class and derive from the base:
// sphere.h
// extraneous code has been removed, such as empty constructors, ...
class Sphere : public Shape {
protected:
static const std::string _id;
public:
static Shape* Create() {return new Sphere;}
virtual std::string id() const {return _id;};
};
// sphere.cpp
const std::string Sphere::_id = TShapeFactory::Register("sphere", Sphere::Create);
Possible improvements that I'll leave to the reader include adding things like: typedef _Base base_class to Factory, so that when you've declared your custom factory, you can make your classes derive from TShapeFactory::base_class, and so on. The Factory should probably also check if a key already exists, but again... it's left as an exercise.
The best solution I can currently think of is by using a Factory class which stores pointers to producing functions for each derived class. When a new derived class is made, a function pointer to a producing method can be stored in the factory.
Here is some code to illustrate my approach:
#include <iostream>
#include <vector>
class Base{};
// Factory class to produce Base* objects from an int (for simplicity).
// The class uses a list of registered function pointers, which attempt
// to produce a derived class based on the given int.
class Factory{
public:
typedef Base*(*ReadFunPtr)(int);
private:
static vector<ReadFunPtr> registeredFuns;
public:
static void registerPtr(ReadFunPtr ptr){ registeredFuns.push_back(ptr); }
static Base* Produce(int value){
Base *ptr=NULL;
for(vector<ReadFunPtr>::const_iterator I=registeredFuns.begin(),E=registeredFuns.end();I!=E;++I){
ptr=(*I)(value);
if(ptr!=NULL){
return ptr;
}
}
return NULL;
}
};
// initialize vector of funptrs
std::vector<Factory::ReadFunPtr> Factory::registeredFuns=std::vector<Factory::ReadFunPtr>();
// An example Derived class, which can be produced from an int=0.
// The producing method is static to avoid the need for prototype objects.
class Derived : public Base{
private:
static Base* ProduceDerivedFromInt(int value){
if(value==0) return new Derived();
return NULL;
}
public:
Derived(){};
// registrar is a friend because we made the producing function private
// this is not necessary, may be desirable (e.g. encapsulation)
friend class DerivedRegistrar;
};
// Register Derived in the Factory so it will attempt to construct objects.
// This is done by adding the function pointer Derived::ProduceDerivedFromInt
// in the Factory's list of registered functions.
struct DerivedRegistrar{
DerivedRegistrar(){
Factory::registerPtr(&(Derived::ProduceDerivedFromInt));
}
} derivedregistrar;
int main(){
// attempt to produce a Derived object from 1: should fail
Base* test=Factory::Produce(1);
std::cout << test << std::endl; // outputs 0
// attempt to produce a Derived object from 0: works
test=Factory::Produce(0);
std::cout << test << std::endl; // outputs an address
}
TL;DR: in this approach, downstream developers need to implement the producing function of a derived class as a static member function (or a non-member function) and register it in the factory using a simple struct.
This seems simple enough and does not require any prototype objects.
Here is a sustainable idiom for managing factories that resolve at runtime. I've used this in the past to support fairly sophisticated behavior. I favor simplicity and maintainability without giving up much in the way of functionality.
TLDR:
Avoid static initialization in general
Avoid "auto-loading" techniques like the plague
Communicate ownership of objects AND factories
Separate usage and factory management concerns
Using Runtime Factories
Here is the base interface that users of this factory system will interact with. They shouldn't need to worry about the details of the factory.
class BaseObject {
public:
virtual ~BaseObject() {}
};
BaseObject* CreateObjectFromStream(std::istream& is);
As an aside, I would recommend using references, boost::optional, or shared_ptr instead of raw pointers. In a perfect world, the interface should tell me who owns this object. As a user, am I responsible for deleting this pointer when it's given to me? It's painfully clear when it's a shared_ptr.
Implementing Runtime Factories
In another header, put the details of managing the scope of when the factories are active.
class RuntimeFactory {
public:
virtual BaseObject* create(std::istream& is) = 0;
};
void RegisterRuntimeFactory(RuntimeFactory* factory);
void UnregisterRuntimeFactory(RuntimeFactory* factory);
I think the salient point in all of this is that usage is a different concern from how the factories are initialized and used.
We should note that the callers of these free functions own the factories. The registry does not own them.
This isn't strictly necessary, though it offers more control when and where these factories get destroyed. The point where it matters is when you see things like "post-create" or "pre-destroy" calls. Factory methods with these sorts of names are design smells for ownership inversion.
Writing another wrapper around this to manage the factories life-time would be simple enough anyway. It also lends to composition, which is better.
Registering Your New Factory
Write wrappers for each factory registration. I usually put each factory registration in its own header. These headers are usually just two function calls.
void RegisterFooFactory();
void UnregisterFooFactory();
This may seem like overkill, but this sort of diligence keeps your compile times down.
My main then is reduced to a bunch of register and unregister calls.
#include <foo_register.h>
#include <bar_register.h>
int main(int argc, char* argv[]) {
SetupLogging();
SetupRuntimeFactory();
RegisterFooFactory();
RegisterBarFactory();
// do work...
UnregisterFooFactory();
UnregisterBarFactory();
CleanupLogging();
return 0;
}
Avoid Static Init Pitfalls
This specifically avoids objects created during static loading like some of the other solutions. This is not an accident.
The C++ spec won't give you useful assurances about when static loading will occur
You'll get a stack trace when something goes wrong
The code is simple, direct, easy to follow
Implementing the Registry
Implementation details are fairly mundane, as you'd imagine.
class RuntimeFactoryRegistry {
public:
void registerFactory(RuntimeFactory* factory) {
factories.insert(factory);
}
void unregisterFactory(RuntimeFactory* factory) {
factories.erase(factory);
}
BaseObject* create(std::istream& is) {
std::set<RuntimeFactory*>::iterator cur = factories.begin();
std::set<RuntimeFactory*>::iterator end = factories.end();
for (; cur != end; cur++) {
// reset input?
if (BaseObject* obj = (*cur)->create(is)) {
return obj;
}
}
return 0;
}
private:
std::set<RuntimeFactory*> factories;
};
This assumes that all factories are mutually exclusive. Relaxing this assumption is unlikely to result in well-behaving software. I'd probably make stronger claims in person, hehe. Another alternative would be to return a list of objects.
The below implementation is static for simplicity of demonstration. This can be a problem for multi-threaded environments. It doesn't have to be static, nor do I recommend it should or shouldn't be static, it just is here. It isn't really the subject of the discussion, so I'll leave it at that.
These free functions only act as pass-through functions for this implementation. This lets you unit test the registry or reuse it if you were so inclined.
namespace {
static RuntimeFactoryRegistry* registry = 0;
} // anon
void SetupRuntimeFactory() {
registry = new RuntimeFactoryRegistry;
}
void CleanupRuntimeFactory() {
delete registry;
registry = 0;
}
BaseObject* CreateObjectFromStream(std::istream& is) {
return registry->create(is);
}
void RegisterRuntimeFactory(RuntimeFactory* factory) {
registry->registerFactory(factory);
}
void UnregisterRuntimeFactory(RuntimeFactory* factory) {
registry->unregisterFactory(factory);
}
First, there's not really enough detail here to form an opinion, so I'm left to guess. You've provided a challenging question and a minimal solution, but not clarified what is wrong with your solution.
I suspect the complaint centers around the reset back to knowing nothing between a refused construction and the following construction attempts. Given a very large number of potential factories this reset could have us parsing the same data hundreds or thousands of times. If this is the problem the question is this: how do you structure the predicate evaluation phase to limit the amount of work, and allow it to reuse previous parsing results.
I suggest having each factory register with:
1) a factory builder function taking the specialization parameter(s) (iostream in the example)
2) an unordered set of boolean predicates
3) required boolean values of each predicate to allow construction
The set of predicates is used to create/modify the predicate tree. Interior nodes in the tree represent predicates (branching to 'pass', 'fail', and possibly 'don't care'). Both interior nodes and leaves hold constructors which are satisfied if the ancestral predicates are satisfied. As you traverse the tree you first look for constructors at the current level, then evaluate the predicate and follow the required path. If no solution is found along that child path the follow the 'don't care' path.
This allows new factories to share predicate functions. There's probably lots of questions about managing/sorting the tree when the factories go on/off line. There's also the possibility of parser state data that needs to be retained across predicates and reset when construction is completed. There's lots of open questions, but this may work toward addressing the perceived problems with your solution.
TL:DR; Create a graph of predicates to traverse when attempting construction.
Simple solution is just a switch-case:
Base *create(int type, std::string data) {
switch(type) {
case 0: return new Derived1(data);
case 1: return new Derived2(data);
};
}
But then it's just deciding which type you want:
int type_of_obj(string s) {
int type = -1;
if (isderived1(s)) type=0;
if (isderived2(s)) type=1;
return type;
}
Then it's just connecting the two:
Base *create_obj(string s, string data,
Base *(*fptr)(int type, string data),
int (*fptr2)(string s))
{
int type = fptr2(s);
if (type==-1) return 0;
return fptr(type, data);
}
Then it's just registering the function pointers:
class Registry {
public:
void push_back(Base* (*fptr)(int type, string data),
int (*fptr2)(string s));
Base *create(string s, string data);
};
The plugin will have the 2 functions, and the following:
void register_classes(Registry &reg) {
reg.push_back(&create, &type_of_obj);
...
}
Plugin loader will dlopen/dlsym the register_classes functions.
(on the other hand, I'm not using this kind of plugins myself because creating new plugins is too much work. I have better way to provide modularity for my program's pieces. What kills plugins is the fact that you need to modify your build system to create new dll's or shared_libs, and doing that is just too much work - ideally new module is just one class; without anything more complicated build system modifications)

Create derived class in base class based on parameter

My question is more or less identical to the one at Need a design pattern to remove enums and switch statement in object creation However I don't see that the abstract factory pattern suits well here.
I'm currently planning the refactoring/reimplementation of some existing DAL/ORM mixture library. Somewhere in the existing code there is code that looks like this:
class Base
{
static Base * create(struct Databasevalues dbValues)
{
switch(dbValues.ObjectType)
{
case typeA:
return new DerivedA(dbValues);
break;
case typeB:
return new DerivedB(dbValues);
break;
}
}
}
class DerivedA : public Base
{
// ...
}
class DerivedB : public Base
{
// ...
}
So the library responsible for database communication populates a struct with all information about the database entity and then the above create() method is called to actually create the corresponding object in the ORM.
But I don't like the idea of a base class knowing of all its derived classes and I don't like the switch statement either. I also would like to avoid creating another class just for the purpose of creating those Objects. What do you think about the current approach? How would you implement this functionality?
This has been discussed here milliions of times. If you don't want to create a separate factory class, you can do this.
class Base
{
public:
template <class T>
static void Register (TObjectType type)
{
_creators[type] = &creator<T>;
}
static Base* Create (TObjectType type)
{
std::map <TObjectType, Creator>::iterator C = _creators.find (type);
if (C != _creators.end())
return C->second ();
return 0;
}
private:
template <class T>
static Base* creator ()
{
return new T;
}
private:
typedef Base* (::*Creator) ();
static std::map <TObjectType, Creator> _creators;
};
int main ()
{
Base::Register <Derived1> (typeA);
Base::Register <Derived2> (typeB);
Base* a = Base::Create (typeA);
Base* b = Base::Create (typeB);
}
Let's say you replace the switch with a mapping, like map<ObjectType, function<Base* (DatabaseValues&)>>.
Now, the factory (which may or may not live in the base class), doesn't need to know about all the subclasses.
However, the map has to be populated somehow. This means either something populates it (so your knowing about all subclasses problem has just been pushed from one place to another), or you need subclasses to use static initialization to register their factory functions in the map.
No matter what you do, you'll need either switch-case or some other construct that will just hide similar logic.
What you can and should do, however, is remove the create method from your Base - you're totally correct it shouldn't be aware of it's derived ones. This logic belongs to another entity, such as factory or controller.
Just don't use enums. They are not OO construction, that was why JAVA did not have them at the beginning (unfortunately the pressure was too big to add them).
Consider instead of such enum:
enum Types {
typeA,
typeB
};
this construction, which do not need switch (another non OO construction in my opinion) and maps:
Types.h
class Base;
class BaseFactory {
public:
virtual Base* create() = 0;
};
class Types {
public:
// possible values
static Types typeA;
static Types typeB;
// just for comparison - if you do not need - do not write...
friend bool operator == (const Types & l, const Types & r)
{ return l.unique_id == r.unique_id; }
// and make any other properties in this enum equivalent - don't add them somewhere else
Base* create() { return baseFactory->create(); }
private:
Types(BaseFactory* baseFactory, unsigned unique_id);
BaseFactory* baseFactory;
unsigned unique_id; // don't ever write public getter for this member variable!!!
};
Types.cpp
#include "Types.h"
#include "Base.h"
#include "TypeA.h"
#include "TypeB.h"
namespace {
TypeAFactory typeAFactory;
TypeBFactory typeAFactory;
unsigned unique_id = 0;
}
Types Types::typeA(&typeAFactory, unique_id++);
Types Types::typeA(&typeBFactory, unique_id++);
So your example (if you really would need this function then):
class Base
{
static Base * create(struct Databasevalues dbValues)
{
return dbValues.ObjectType.create();
}
};
Missing parts should be easy to implement.

Is it possible in C++ to loop over all subclasses of an Abstract class?

I have an abstract class in C++ with several subclasses.
Is it somehow by Macros or template metaprogramming possible to do something like that:
foreach subclass of Base:
mymap[subclass::SOME_CONSTANT] = new subclass();
No, you cannot.
What you want, apparently, is a Factory (or perhaps Abstract Factory).
In C++, you setup a Factory class and register builders.
class FooFactory
{
public:
typedef std::function<Foo*()> Builder;
/// returns true if the registration succeeded, false otherwise
bool Register(std::string const& key, Builder const& builder) {
return map.insert(std::make_pair(key, builder)).second;
}
/// returns a pointer to a new instance of Foo (or a derived class)
/// if the key was found, 0 otherwise
Foo* Build(std::string const& key) const {
auto it = _map.find(key);
if (it == _map.end()) { return 0; } // no such key
return (it->second)();
}
private:
std::map<std::string, Builder> _map;
};
You can create a singleton of this factory, to register the derived classes during library load, which is handy for plugins-like architecture:
FooFactory& GetFooFactory() { static FooFactory F; return F; }
And you can prepare a handy builder:
template <typename Derived>
Foo* fooBuilder() { return new Derived(); }
Then people are expected to register their derived classes in the factory:
static const bool registeredBar =
GetFooFactory().Register("Bar", fooBuilder<Bar>);
Note: it is far from being mandatory that the factory should be a singleton, though it's not as evil here because it's constant once the load of the libraries ends.
Note: for a proper plugin architecture, you'd need to use RAII (instead of a bool), to handle the unregistration at library unload. It's much rarer though.
C++ does not allow to iterate over types. Also enumeration of enum members are not possible. See this:
enum Color
{
red,
green,
blue=5,
yellow
};
Further the C++ compiler compiles compilation units independent. You can imaging that it cannot known when compiling the base class implementation that the class will be inherited sometimes.