Erlang record item list - list

For example i have erlang record:
-record(state, {clients
}).
Can i make from clients field list?
That I could keep in client filed as in normal list? And how can i add some values in this list?
Thank you.

Maybe you mean something like:
-module(reclist).
-export([empty_state/0, some_state/0,
add_client/1, del_client/1,
get_clients/1]).
-record(state,
{
clients = [] ::[pos_integer()],
dbname ::char()
}).
empty_state() ->
#state{}.
some_state() ->
#state{
clients = [1,2,3],
dbname = "QA"}.
del_client(Client) ->
S = some_state(),
C = S#state.clients,
S#state{clients = lists:delete(Client, C)}.
add_client(Client) ->
S = some_state(),
C = S#state.clients,
S#state{clients = [Client|C]}.
get_clients(#state{clients = C, dbname = _D}) ->
C.
Test:
1> reclist:empty_state().
{state,[],undefined}
2> reclist:some_state().
{state,[1,2,3],"QA"}
3> reclist:add_client(4).
{state,[4,1,2,3],"QA"}
4> reclist:del_client(2).
{state,[1,3],"QA"}
::[pos_integer()] means that the type of the field is a list of positive integer values, starting from 1; it's the hint for the analysis tool dialyzer, when it performs type checking.
Erlang also allows you use pattern matching on records:
5> reclist:get_clients(reclist:some_state()).
[1,2,3]
Further reading:
Records
Types and Function Specifications
dialyzer(1)
#JUST MY correct OPINION's answer made me remember that I love how Haskell goes about getting the values of the fields in the data type.
Here's a definition of a data type, stolen from Learn You a Haskell for Great Good!, which leverages record syntax:
data Car = Car {company :: String
,model :: String
,year :: Int
} deriving (Show)
It creates functions company, model and year, that lookup fields in the data type. We first make a new car:
ghci> Car "Toyota" "Supra" 2005
Car {company = "Toyota", model = "Supra", year = 2005}
Or, using record syntax (the order of fields doesn't matter):
ghci> Car {model = "Supra", year = 2005, company = "Toyota"}
Car {company = "Toyota", model = "Supra", year = 2005}
ghci> let supra = Car {model = "Supra", year = 2005, company = "Toyota"}
ghci> year supra
2005
We can even use pattern matching:
ghci> let (Car {company = c, model = m, year = y}) = supra
ghci> "This " ++ c ++ " " ++ m ++ " was made in " ++ show y
"This Toyota Supra was made in 2005"
I remember there were attempts to implement something similar to Haskell's record syntax in Erlang, but not sure if they were successful.
Some posts, concerning these attempts:
In Response to "What Sucks About Erlang"
Geeking out with Lisp Flavoured Erlang. However I would ignore parameterized modules here.
It seems that LFE uses macros, which are similar to what provides Scheme (Racket, for instance), when you want to create a new value of some structure:
> (define-struct car (company model year))
> (define supra (make-car "Toyota" "Supra" 2005))
> (car-model supra)
"Supra"
I hope we'll have something close to Haskell record syntax in the future, that would be really practically useful and handy.

Yasir's answer is the correct one, but I'm going to show you WHY it works the way it works so you can understand records a bit better.
Records in Erlang are a hack (and a pretty ugly one). Using the record definition from Yasir's answer...
-record(state,
{
clients = [] ::[pos_integer()],
dbname ::char()
}).
...when you instantiate this with #state{} (as Yasir did in empty_state/0 function), what you really get back is this:
{state, [], undefined}
That is to say your "record" is just a tuple tagged with the name of the record (state in this case) followed by the record's contents. Inside BEAM itself there is no record. It's just another tuple with Erlang data types contained within it. This is the key to understanding how things work (and the limitations of records to boot).
Now when Yasir did this...
add_client(Client) ->
S = some_state(),
C = S#state.clients,
S#state{clients = [Client|C]}.
...the S#state.clients bit translates into code internally that looks like element(2,S). You're using, in other words, standard tuple manipulation functions. S#state.clients is just a symbolic way of saying the same thing, but in a way that lets you know what element 2 actually is. It's syntactic saccharine that's an improvement over keeping track of individual fields in your tuples in an error-prone way.
Now for that last S#state{clients = [Client|C]} bit, I'm not absolutely positive as to what code is generated behind the scenes, but it is likely just straightforward stuff that does the equivalent of {state, [Client|C], element(3,S)}. It:
tags a new tuple with the name of the record (provided as #state),
copies the elements from S (dictated by the S# portion),
except for the clients piece overridden by {clients = [Client|C]}.
All of this magic is done via a preprocessing hack behind the scenes.
Understanding how records work behind the scenes is beneficial both for understanding code written using records as well as for understanding how to use them yourself (not to mention understanding why things that seem to "make sense" don't work with records -- because they don't actually exist down in the abstract machine...yet).

If you are only adding or removing single items from the clients list in the state you could cut down on typing with a macro.
-record(state, {clients = [] }).
-define(AddClientToState(Client,State),
State#state{clients = lists:append([Client], State#state.clients) } ).
-define(RemoveClientFromState(Client,State),
State#state{clients = lists:delete(Client, State#state.clients) } ).
Here is a test escript that demonstrates:
#!/usr/bin/env escript
-record(state, {clients = [] }).
-define(AddClientToState(Client,State),
State#state{clients = lists:append([Client], State#state.clients)} ).
-define(RemoveClientFromState(Client,State),
State#state{clients = lists:delete(Client, State#state.clients)} ).
main(_) ->
%Start with a state with a empty list of clients.
State0 = #state{},
io:format("Empty State: ~p~n",[State0]),
%Add foo to the list
State1 = ?AddClientToState(foo,State0),
io:format("State after adding foo: ~p~n",[State1]),
%Add bar to the list.
State2 = ?AddClientToState(bar,State1),
io:format("State after adding bar: ~p~n",[State2]),
%Add baz to the list.
State3 = ?AddClientToState(baz,State2),
io:format("State after adding baz: ~p~n",[State3]),
%Remove bar from the list.
State4 = ?RemoveClientFromState(bar,State3),
io:format("State after removing bar: ~p~n",[State4]).
Result:
Empty State: {state,[]}
State after adding foo: {state,[foo]}
State after adding bar: {state,[bar,foo]}
State after adding baz: {state,[baz,bar,foo]}
State after removing bar: {state,[baz,foo]}

Related

In F#, how to construct a record list with DateTime values?

In F#, assume I have a person record as:
type person =
{ LastName: string option
BirthDate: System.DateTime option }
Now, I want to create a list of 100 persons (this fails. Both name and The System.DateTime(...) is incorrect):
let people = [for a in 1 .. 100
do yield {
LastName= Some "LastName"+a
BirthDate = System.DateTime(2012,11,27)
}]
How is this done?
TIA
There are two separate issues with the code, but your general approach is good!
First, Some "LastName"+a is interpereted as (Some "LastName")+a, which is not the right parenthesization. Also a is an int which cannot be automatically turned into a string, so you need to explicitly convert it. The correct version is Some("LastName" + string a).
Second, System.DateTime(2012,11,27) is DateTime, but you need an option. You can fix this just by adding Some and the right parentheses, i.e. Some(System.DateTime(2012,11,27)).
As a bonus, you can reduce do yield to -> (this is just a syntactic sugar to make this kind of thing shorter). I would write:
open System
let people =
[ for a in 1 .. 100 ->
{ LastName= Some ("LastName"+string a)
BirthDate = Some(DateTime(2012,11,27)) } ]

Haskell, how to implement SQL like operations?

I’m trying to do some SQL-like operations with Haskell, but I have no idea about what data structures to use. I have 3 different tables: customer, sales, and order. The schemas are below:
Customer
custid — integer (primary key)
name — string
Example:
1|Samson Bowman
2|Zelda Graves
3|Noah Hensley
4|Noelle Haynes
5|Paloma Deleon
Sales
orderid — integer (primary key)
custid — integer
date — string
Example:
1|3|20/3/2014
2|4|25/4/2014
3|5|17/7/2014
4|9|5/1/2014
5|5|9/6/2014
Order
orderid — integer
item — string
Example:
2|gum
4|sandals
3|pen
1|gum
2|pen
3|chips
1|pop
5|chips
What i want to do is to “merge” these three tables into a new table, and the schema of new table is:
Customername Order# Date Items
Samson Bowman 17 20/3/2014 shoes, socks, milk
Samson Bowman 34 19/5/2014 gum, sandals, butter, pens, pencils
Paloma Deleon 41 6/1/2014 computer
…
So yeah, it is very SQL like. I know the SQL is very simple, but how can I implement this without SQL but instead using built-in data structure?
TEXT PRINT ERROR
When i run the function , it shows the following error:
Couldn't match type `[Char]' with `Char'
Expected type: Customer -> String
Actual type: Customer -> [String]
In the first argument of `map', namely `formatCustomer'
In the second argument of `($)', namely `map formatCustomer result'
And i am thinking that the return type of condense is [Customer], but formatCustomer uses only Customer. is this the reason?
All of your associations are one-to-many, and they don’t refer to eachother; it is strictly hierarchical. Customers have sales, sales have orders. Given that, you probably wouldn’t store each bit of information separately, but hierarchically as it truly is. I might put it into data types like this:
data Customer = Customer { customerName :: String
, sales :: [Sale]
} deriving (Eq, Read, Show)
data Sale = Sale { saleDate :: Day
, soldItems :: [String]
} deriving (Eq, Read, Show)
This will probably be very easy to manipulate from within Haskell, and, as a bonus, it’s very easy to turn into the table you wanted to end up with, simply because it’s so close to that in the first place.
But maybe I’ve misinterpreted your question and you’re not just asking for the best data structure to hold it, but how to convert from your flat data structure into this sort of structure. Fortunately, that’s easy enough. Since everything is keyed, I’d construct a Map and start unionWithing things in, or even better, do both at once with fromListWith. To put that more concretely, say you have these data structures:
data DBCustomer = DBCustomer { dbCustomerName :: String
, dbCustomerID :: Int
} deriving (Eq, Read, Show)
data DBSale = DBSale { saleOrderID :: Int
, saleCustomerID :: Int
, dbSaleDate :: Day
} deriving (Eq, Read, Show)
data DBOrder = DBOrder { dbOrderID :: Int
, dbOrderItem :: String
} deriving (Eq, Read, Show)
If I wanted a function with the type [DBSale] -> [DBOrder] -> [Sale], I could write it easily enough:
condense :: [DBSale] -> [DBOrder] -> [Sale]
condense dbSales dbOrders = flip map dbSales $ \dbSale ->
Sale (dbSaleDate dbSale)
$ fromMaybe [] (Map.lookup (saleOrderID dbSale) ordersByID) where
ordersByID = Map.fromListWith (++) . flip map dbOrders
$ \dbOrder -> (dbOrderID dbOrder, [dbOrderItem dbOrder])
Here I’m discarding the customer ID since there’s no slot in Sale for that, but you could certainly throw in another Map and get whole Customer objects out:
condense :: [DBCustomer] -> [DBSale] -> [DBOrder] -> [Customer]
condense dbCustomers dbSales dbOrders = flip map dbCustomers $ \dbCustomer ->
Customer (dbCustomerName dbCustomer)
$ lookupDef [] (dbCustomerID dbCustomer) salesByCustomerID where
lookupDef :: (Ord k) => a -> k -> Map.Map k a -> a
lookupDef def = (fromMaybe def .) . Map.lookup
salesByCustomerID = Map.fromListWith (++) . flip map dbSales
$ \dbSale -> (saleCustomerID dbSale,
[ Sale (dbSaleDate dbSale)
$ lookupDef [] (saleOrderID dbSale)
ordersByID])
ordersByID = Map.fromListWith (++) . flip map dbOrders
$ \dbOrder -> (dbOrderID dbOrder, [dbOrderItem dbOrder])
Printing
This should be reasonably easy. We’ll use Text.Printf since it makes putting things in columns easier. On the whole, each row in the result is a Sale. First, we can try formatting a single row:
formatSale :: Customer -> Sale -> String
formatSale customer sale = printf "%-16s%-8d%-10s%s"
(customerName customer)
(orderID sale)
(show $ saleDate sale)
(intercalate "," $ soldItems sale)
(Actually, we discarded the order ID; if you want to preserve that in your output, you’ll have to add that into the Sale data structure.) Then to get a list of lines for each customer is easy:
formatCustomer :: Customer -> [String]
formatCustomer customer = map (formatSale customer) $ sales customer
And then to do it for all customers and print it out, if customers was the output of condense:
putStr . unlines $ concatMap formatCustomer customers
I have some similar problems and the best I found to do SQL Join operations is to use the align function from the these package, combined with Map (where the key is on what you want to join).
The result of align will give you a map or list of These a b which is either an a, a b or both. That's pretty neat.

Operating on an F# List of Union Types

This is a continuation of my question at F# List of Union Types. Thanks to the helpful feedback, I was able to create a list of Reports, with Report being either Detail or Summary. Here's the data definition once more:
module Data
type Section = { Header: string;
Lines: string list;
Total: string }
type Detail = { State: string;
Divisions: string list;
Sections: Section list }
type Summary = { State: string;
Office: string;
Sections: Section list }
type Report = Detail of Detail | Summary of Summary
Now that I've got the list of Reports in a variable called reports, I want to iterate over those Report objects and perform operations based on each one. The operations are the same except for the cases of dealing with either Detail.Divisions or Summary.Office. Obviously, I have to handle those differently. But I don't want to duplicate all the code for handling the similar State and Sections of each.
My first (working) idea is something like the following:
for report in reports do
let mutable isDetail = false
let mutable isSummary = false
match report with
| Detail _ -> isDetail <- true
| Summary _ -> isSummary <- true
...
This will give me a way to know when to handle Detail.Divisions rather than Summary.Office. But it doesn't give me an object to work with. I'm still stuck with report, not knowing which it is, Detail or Summary, and also unable to access the attributes. I'd like to convert report to the appropriate Detail or Summary and then use the same code to process either case, with the exception of Detail.Divisions and Summary.Office. Is there a way to do this?
Thanks.
You could do something like this:
for report in reports do
match report with
| Detail { State = s; Sections = l }
| Summary { State = s; Sections = l } ->
// common processing for state and sections (using bound identifiers s and l)
match report with
| Detail { Divisions = l } ->
// unique processing for divisions
| Summary { Office = o } ->
// unique processing for office
The answer by #kvb is probably the approach I would use if I had the data structure you described. However, I think it would make sense to think whether the data types you have are the best possible representation.
The fact that both Detail and Summary share two of the properties (State and Sections) perhaps implies that there is some common part of a Report that is shared regardless of the kind of report (and the report can either add Divisions if it is detailed or just Office if if is summary).
Something like that would be better expressed using the following (Section stays the same, so I did not include it in the snippet):
type ReportInformation =
| Divisions of string list
| Office of string
type Report =
{ State : string;
Sections : Section list
Information : ReportInformation }
If you use this style, you can just access report.State and report.Sections (to do the common part of the processing) and then you can match on report.Information to do the varying part of the processing.
EDIT - In answer to Jeff's comment - if the data structure is already fixed, but the view has changed, you can use F# active patterns to write "adaptor" that provides access to the old data structure using the view that I described above:
let (|Report|) = function
| Detail dt -> dt.State, dt.Sections
| Summary st -> st.State, st.Sections
let (|Divisions|Office|) = function
| Detail dt -> Divisions dt.Divisions
| Summary st -> Office st.Office
The first active pattern always succeeds and extracts the common part. The second allows you to distinguish between the two cases. Then you can write:
let processReport report =
let (Report(state, sections)) = report
// Common processing
match report wiht
| Divisions divs -> // Divisions-specific code
| Office ofc -> // Offices-specific code
This is actually an excellent example of how F# active patterns provide an abstraction that allows you to hide implementation details.
kvb's answer is good, and probably what I would use. But the way you've expressed your problem sounds like you want classic inheritance.
type ReportPart(state, sections) =
member val State = state
member val Sections = sections
type Detail(state, sections, divisions) =
inherit ReportPart(state, sections)
member val Divisions = divisions
type Summary(state, sections, office) =
inherit ReportPart(state, sections)
member val Office = office
Then you can do precisely what you expect:
for report in reports do
match report with
| :? Detail as detail -> //use detail.Divisions
| :? Summary as summary -> //use summary.Office
//use common properties
You can pattern match on the Detail or Summary record in each of the union cases when you match and handle the Divisions or Office value with a separate function e.g.
let blah =
for report in reports do
let out = match report with
| Detail({ State = state; Divisions = divisions; Sections = sections } as d) ->
Detail({ d with Divisions = (handleDivisions divisions) })
| Summary({ State = state; Office = office; Sections = sections } as s) ->
Summary( { s with Office = handleOffice office })
//process out
You can refactor the code to have a utility function for each common field and use nested pattern matching:
let handleReports reports =
reports |> List.iter (function
| Detail {State = s; Sections = ss; Divisions = ds} ->
handleState s
handleSections ss
handleDivisions ds
| Summary {State = s; Sections = ss; Office = o} ->
handleState s
handleSections ss
handleOffice o)
You can also filter Detail and Summary to process them separately in different functions:
let getDetails reports =
List.choose (function Detail d -> Some d | _ -> None) reports
let getSummaries reports =
List.choose (function Summary s -> Some s | _ -> None) reports

Prolog: Writing each element of an existing list

I'm trying to do two things. (1) display each element of an existing list, and (2) search a list to display all names that contain that element.
Here are some facts:
classes(hannes, [cs490, cs499, cs413]). % name has this list of classes
classes(tony, [ma330, ma211, ma250]).
classes(nicholas, [cs424, cs570, ma330]).
classes(pj, [ma211, ma250, ma285, cs424]).
classes(inga, [cs285, cs307, cs309]).
classes(christine, [ma285, ma211, ma330]).
classes(lisa, [cs424, cs413, cs490]).
classes(marty, [cs570, cs424]).
And, here is my rule so far:
taking(N,C) :- % student Name N is taking class C
classes(N,Cs),
[C|T] = Cs.
At the moment, I know this only takes the head of the list and displays it. I need to display each item of the list (one line at a time, if easy enough to do, but not important). But, I also need to be able to do it in reverse. If 1 course is queried (ma330), I want it to display all students that have that particular course.
Query example 1:
?- taking(nicholas, Classes).
Classes = [cs424, cs570, ma330] ;
OR
?- taking(nicholas, Classes).
Classes = cs424 ;
Classes = cs570 ;
Classes = ma330 ;
Query example 2:
?- taking(Names, ma330).
Names = tony ;
Names = nicholas ;
Names = christine ;
I'm going to keep searching for a resolution, but if anyone can help, it would be appreciated.
Thank you!!!
Think of that : C is member of Classes.
EDIT OK try this code :
taking(N,C) :- % student Name N is taking class C
classes(N,Cs),
member(C, Cs).

Scala objects not changing their internal state

I am seeing a problem with some Scala 2.7.7 code I'm working on, that should not happen if it the equivalent was written in Java. Loosely, the code goes creates a bunch of card players and assigns them to tables.
class Player(val playerNumber : Int)
class Table (val tableNumber : Int) {
var players : List[Player] = List()
def registerPlayer(player : Player) {
println("Registering player " + player.playerNumber + " on table " + tableNumber)
players = player :: players
}
}
object PlayerRegistrar {
def assignPlayersToTables(playSamplesToExecute : Int, playersPerTable:Int) = {
val numTables = playSamplesToExecute / playersPerTable
val tables = (1 to numTables).map(new Table(_))
assert(tables.size == numTables)
(0 until playSamplesToExecute).foreach {playSample =>
val tableNumber : Int = playSample % numTables
tables(tableNumber).registerPlayer(new Player(playSample))
}
tables
}
}
The PlayerRegistrar assigns a number of players between tables. First, it works out how many tables it will need to break up the players between and creates a List of them.
Then in the second part of the code, it works out which table a player should be assigned to, pulls that table from the list and registers a new player on that table.
The list of players on a table is a var, and is overwritten each time registerPlayer() is called. I have checked that this works correctly through a simple TestNG test:
#Test def testRegisterPlayer_multiplePlayers() {
val table = new Table(1)
(1 to 10).foreach { playerNumber =>
val player = new Player(playerNumber)
table.registerPlayer(player)
assert(table.players.contains(player))
assert(table.players.length == playerNumber)
}
}
I then test the table assignment:
#Test def testAssignPlayerToTables_1table() = {
val tables = PlayerRegistrar.assignPlayersToTables(10, 10)
assertEquals(tables.length, 1)
assertEquals(tables(0).players.length, 10)
}
The test fails with "expected:<10> but was:<0>". I've been scratching my head, but can't work out why registerPlayer() isn't mutating the table in the list. Any help would be appreciated.
The reason is that in the assignPlayersToTables method, you are creating a new Table object. You can confirm this by adding some debugging into the loop:
val tableNumber : Int = playSample % numTables
println(tables(tableNumber))
tables(tableNumber).registerPlayer(new Player(playSample))
Yielding something like:
Main$$anon$1$Table#5c73a7ab
Registering player 0 on table 1
Main$$anon$1$Table#21f8c6df
Registering player 1 on table 1
Main$$anon$1$Table#53c86be5
Registering player 2 on table 1
Note how the memory address of the table is different for each call.
The reason for this behaviour is that a Range is non-strict in Scala (until Scala 2.8, anyway). This means that the call to the range is not evaluated until it's needed. So you think you're getting back a list of Table objects, but actually you're getting back a range which is evaluated (instantiating a new Table object) each time you call it. Again, you can confirm this by adding some debugging:
val tables = (1 to numTables).map(new Table(_))
println(tables)
Which gives you:
RangeM(Main$$anon$1$Table#5492bbba)
To do what you want, add a toList to the end:
val tables = (1 to numTables).map(new Table(_)).toList
val tables = (1 to numTables).map(new Table(_))
This line seems to be causing all the trouble - mapping over 1 to n gives you a RandomAccessSeq.Projection, and to be honest, I don't know how exactly they work, but a bit less clever initialising technique does the job.
var tables: Array[Table] = new Array(numTables)
for (i <- 0 to numTables) tables(i) = new Table(i)
Using the first initialisation method I wasn't able to change the objects (just like you), but using a simple array everything seems to be working.