I am writing a generalized container using a class template, with a restriction (policy) that the items stored in the container should derive from a specific base class.
Here is the definition of the class template
// GenericContainer.hpp
// --------------------------------------
class ContainerItem
{
protected:
virtual ContainerItem& getInvalid() = 0;
public:
virtual ~ContainerItem();
bool isValid() const;
};
template<typename D, typename B>
class IsDerivedFrom
{
static void Constraints(D* p)
{
B* pb = p; // this line only works if 'D' inherits 'B'
pb = p; // suppress warnings about unused variables
}
protected:
void IsDerivedFrom2() { void(*p)(D*) = Constraints; }
};
// Force it to fail in the case where B is void
template<typename D>
class IsDerivedFrom<D, void>
{
void IsDerivedFrom2() { char* p = (int*)0; /* error */ }
};
template <class T>
class GenericContainer : public IsDerivedFrom<T, ContainerItem>
{
private:
typedef std::vector<T> TypeVect;
void addElement(const T& elem);
TypeVect m_elems;
public:
unsigned int size() const;
T& elementAt(const unsigned int pos);
const T& elementAt(const unsigned int pos) const;
};
template <class T>
void GenericContainer<T>::addElement(const T& elem)
{
m_elems.push_back(elem);
}
template <class T>
unsigned int GenericContainer<T>::size() const
{
return m_elems.size();
}
template <class T>
T& GenericContainer<T>::elementAt(const unsigned int pos)
{
unsigned int maxpos = m_elems.size();
if (pos < maxpos)
return m_elems[pos];
return T::getInvalid();
}
template <class T>
const T& GenericContainer<T>::elementAt(const unsigned int pos) const
{
unsigned int maxpos = m_elems.size();
if (pos < maxpos)
return m_elems[pos];
return T::getInvalid();
}
// Class to be contained (PURPOSELY, does not derive from ContainerItem)
// Data.hpp
//----------------------------------------------------------------
class Data
{ /* implem details */};
// Container for Data items
// Dataset.h
// ----------------------------------------------------------------------------
#include "GenericContainer.hpp"
#include "Data.hpp"
class Dataset: public GenericContainer<Data>
{
public:
Data& getInvalid();
};
// C++ source
// -----------------------------------------------------------
#include "Dataset.hpp"
Dataset ds;
Can anyone explain why the code above compiles?.
[Edit]
The code above should NOT compile for two reasons:
The class 'Data' does NOT derive from ContainerItem, and yet it can be stored in GenericContainer (as illustrated by the class Dataset). Incidentally, this issue has now been resolved thanks to the answer given by Omifarious and jdv
The class 'Data' does NOT implement the pure virtual method declared in the ABC ContainerItem - using the fixes recommended in the answers below, the first issue (enforcement of policy) is resolved, however the compiler fails to notice that Data does not implement the getInvalid() method of the ContainerItem 'interface'. Why is the compiler missing this glaring mistake?
BTW, compiler and OS details are:
g++ (Ubuntu 4.4.3-4ubuntu5) 4.4.3
Change IsDerivedFrom2 to IsDerivedFrom and it fails to compile in just the expected manner.
The problem is that a method from a template class is never instantiated if it isn't called. Changing the name makes it a constructor, so it then ends up being called by the constructors of classes derived from IsDerivedFrom. It will still compile to empty code. The compiler will optimize it away the dead assignment.
I would recommend you not write template code like this yourself if you can manage to use Boost, particularly is_base_of from the Boost type traits library.
In particular, your GenericContainer template can be more simply and easily implemented this way using Boost:
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_base_of.hpp>
template <class T>
class GenericContainer
{
private:
typedef std::vector<T> TypeVect;
void addElement(const T& elem);
TypeVect m_elems;
public:
unsigned int size() const;
T& elementAt(const unsigned int pos);
const T& elementAt(const unsigned int pos) const;
GenericContainer() {
BOOST_STATIC_ASSERT( (::boost::is_base_of<ContainerItem, T>::value) );
}
};
template <class T>
void GenericContainer<T>::addElement(const T& elem)
{
m_elems.push_back(elem);
}
template <class T>
unsigned int GenericContainer<T>::size() const
{
return m_elems.size();
}
template <class T>
T& GenericContainer<T>::elementAt(const unsigned int pos)
{
unsigned int maxpos = m_elems.size();
if (pos < maxpos)
return m_elems[pos];
return T::getInvalid();
}
template <class T>
const T& GenericContainer<T>::elementAt(const unsigned int pos) const
{
unsigned int maxpos = m_elems.size();
if (pos < maxpos)
return m_elems[pos];
return T::getInvalid();
}
The Constraints function is not generated because IsDerivedFrom2 is never referenced. This is required behavior for C++. Maybe it helps to call it from the constructor. Otherwise, check the boost library for functionality like this.
Related
I frequently have to implement "container-like" classes in C++ and I find that I often forget to implement one part of the interface and have problems later. To fix this I want to create an abstract Container class that I can make my container classes inherit from that will fail to compile if any of the required interface functions are not implemented.
The issue is container classes typically define a size_type and I want the size() function to return the corresponding size_type of whatever the underlying container is.
Here is a simplified example of what I am talking about:
#include <vector>
// Abstract class
template <typename T>
class Container
{
public:
virtual ~Container() = 0;
//********************************************************************************
// How do I tell it to return whatever "size_type" is for the child class?
//********************************************************************************
virtual typename ChildClass::size_type size() const = 0;
};
template <typename T>
Container<T>::~Container() = default;
// Concrete
template <typename T>
class MyVector final : public Container<T>
{
public:
// size_type of the child class defined here
using size_type = typename std::vector<T>::size_type;
MyVector()
: m_data()
{}
size_type size() const override
{
return m_data.size();
}
private:
std::vector<T> m_data;
};
Is there any way to reference the size_type of whatever the child class is in the abstract function definition of size()?
EDIT
After applying the CRTP (recommended below) I feel like I am much closer, but it is still failing to compile the second I try to instantiate an object of MyVector<double>:
// Abstract class
template <typename T>
class Container {
public:
virtual ~Container() = default;
// Still can't seem to resolve the type here
virtual typename T::size_type size() const = 0;
};
// Concrete
template <typename T>
class MyVector final : private Container<MyVector<T>> {
public:
using size_type = typename std::vector<T>::size_type;
using value_type = T;
size_type size() const
{
return m_data.size()
}
private:
std::vector<T> m_data;
};
int main()
{
// Fails to compile
MyVector<double> v;
}
I get the compiler error:
error C2039: 'size_type': is not a member of 'MyVector'
From the answer to a related question I figured out something that works. It's a bit ugly since it requires me to define a ContainerTraits struct for each container I want to implement, but it does get the job done.
template <typename T>
struct ContainerTraits;
// Abstract class
template <typename T>
class Container {
public:
using size_type = typename ContainerTraits<T>::size_type;
virtual ~Container() = default;
virtual typename size_type size() const = 0;
};
// Concrete
template <typename T>
class MyVector final : private Container<MyVector<T>> {
public:
using size_type = typename ContainerTraits<MyVector>::size_type;
size_type size() const override { return m_data.size(); }
private:
std::vector<T> m_data;
};
template <typename T>
struct ContainerTraits<MyVector<T>>
{
using size_type = typename std::vector<T>::size_type;
};
I was thinking... how do you pass typenames to a class? As template parameter!
So you could do something like this:
#include <vector>
// interface
template <
/*typename container_type, // not required in this example */
typename size_type
>
class Container {
public:
virtual ~Container() = default;
virtual size_type size() const = 0;
};
template <
typename value_type,
typename size_type = typename std::vector<value_type>::size_type
>
class MyVector final :
public Container<
/*MyVector<T>,*/
size_type
>
{
public:
size_type size() const
{
return m_data.size();
}
private:
std::vector<value_type> m_data;
};
int main()
{
MyVector<double> v;
}
How to reduce code duplication of a class that is template specialized?
I am trying to create a class (MyArray) that acts like std::vector but receives raw-pointer as parameter in some functions.
Here is a simplified version of it :-
template<class T> class MyArray{
T database[10];
public: T& get(int index){return database[index];}
void set(int index, T t){
database[index]=t;
}
};
template<class T> class MyArray<std::unique_ptr<T>>{
T* database[10];
public: T*& get(int index){return database[index];}
void set(int index, std::unique_ptr<T> t){
T* tmp=t.release();
database[index]=tmp;
}
};
Here is a test:-
class B{};
int main() {
MyArray<B> test1;
MyArray<B*> test2;
MyArray<std::unique_ptr<B>> test3;
test3.set(2,std::make_unique<B>()));
return 0;
}
Question: Please demonstrate an elegant way to reduce the above code duplication in MyArray.
A solution that I wished for may look like :-
template<class T> class MyArray{
using U = if(T=std::uniquePtr<X>){X*}else{T};
U database[10];
public: U& get(int index){return database[index];}
void set(int index, T t){
U u = convert(t);//<-- some special function
database[index]=u;
}
};
There might be some memory leak / corruption. For simplicity, please overlook it.
I just want an idea/rough guide. (no need to provide a full run-able code, but I don't mind)
In real life, there are 20+ function in MyArray and I wish to do the same refactoring for many classes.
Edit: I have (minor) edited some code and tag. Thank AndyG and Jarod42.
Maybe can you delegate the implementation details to a struct you provide to your class, and you specialize this struct, not MyArray:
template <typename T>
struct Policy {
using type = T;
static type convert(T t) { ... }
};
template <typename T>
struct Policy<std::unique_ptr<T>> {
using type = T*;
static type convert(T t) { ... }
};
template <typename T, typename P = Policy<T>>
class MyArray
{
using type = typename P::type;
void set(int index, T t) { type result = P::convert(t); }
};
You might think about using a common base class for the common functionality:
template<class T>
class Base{
protected:
T database[10];
public:
T& get(int index){return database[index];}
};
template<class T>
class MyArray : public Base<T>{
public:
void set(int index, T t){
this->database[index]=t;
}
};
template<class T>
class MyArray<std::unique_ptr<T>> : public Base<T*>
{
public:
void set(int index, std::unique_ptr<T>&& t){
T* tmp=t.release();
this->database[index]=tmp; //a little different
}
};
Demo
I´m having problems while writing a Resource class:
class BaseResource {
protected:
unsigned int size;
public:
virtual ~BaseResource() {}
template<class T> const T& GetValue() const;
template<class T, class U> void GetValue(const U& rhs);
unsigned int GetSize() {
return this->size;
}
void SetSize(unsigned int size) {
this->size = size;
}
};
template<class T>
class Resource : public BaseResource {
T value;
public:
virtual ~Resource() {}
Resource(unsigned int size, const T& rhs) { this->size = size; this->value = rhs; }
const T& GetValue() const {return value;}
void SetValue(const T& rhs) {value=rhs;}
};
I think that the classes above are defined correctly so I
do not understand why the following code produce a linker error:
Test.obj : error LNK2001: unresolved external symbol ""public: char * const & __thiscall BaseResource::GetValue(void)const " (??$GetValue#PAD#BaseResource##QBEABQADXZ)".
char* c = new char[3];
c[0] = '1';
c[1] = '2';
c[2] = '3';
BaseResource* resource = new Resource<char*>(3, c);
char* loadedResource = resource->GetValue<char*>();
In my opinion this should create an instance of Resource which holds a char* and can return it.
Can anybody tell me where I`ve done the mistake causing this?
Following methods are not implemented :
template<class T> const T& GetValue() const;
template<class T, class U> void GetValue(const U& rhs);
I hope you are not planning on making them virtual because that wil not work.
Template methods cannot be made virtual.
As they are not implemented that definitely explains the linking problem.
The implementation of these function should be in the same header as the class. In this case you have instantiated the template function and the concrete instantiated function is not defied. Any time you use templates you need to include the definition of the function in the translation unit that uses the function.
Edit
This is the basic Idea. You need to have the implantation defined so that when the class is instantiated the class is fully defined.
public:
virtual ~BaseResource() {}
template<class T> const T& GetValue() const
{
return someT;
}
template<class T, class U> void GetValue(const U& rhs)
{
return someT;
}
unsigned int GetSize() {
return this->size;
}
void SetSize(unsigned int size) {
this->size = size;
}
};
I would like to overload the [] operator for a template class in respect with the template parameters. Like so:
template<
typename T,
template<typename> class Property,
template<typename> class Key1,
template<typename> class Key2>
class a_map
{
public:
const Property<T>& operator[](const Key1<T>& k) const
{ return _values[k.index()]; }
const Property<T>& operator[](const Key2<T>& k) const
{ return _values[k.index()]; }
protected:
std::vector<Property<T> > _values;
};
I would use this class like so:
int main()
{
a_map<float, prop, key_a, key_b> pm;
}
Basically I want to be able to access the elements inside the _values vector without having to worry to much about the Key types. All that matters is that they have an index() member.
However I get the following error
error C2535: 'const Property &a_map::operator
[](const Key1 &) const' : member function already defined or
declared
even though key_a and key_b are two totaly different types class templates.
Am I missing something? Is the compiler afraid that in certain situation Key1<T> and Key2<T> might actually be the same type?
Edit
These are the class templates used in main
template<typename T>
struct prop
{
T weight;
T height;
};
template<typename T>
class key_a
{
public:
int index() { return _i; }
private:
int _i;
};
template<typename T>
class key_b
{
public:
int index() { return 3; } // Always return 3
Edit
I'm using MVC++ 2008 compiler.
Since both of your operator[] are the same except for the argument type, why not template them?
template <typename TT>
const Property<T>& operator[](const TT& k) const
{
return _values[k.index()];
}
You need to declare your index() functions as const because inside the a_map template you are invoking them through const objects
template<typename T> class key_a {
public:
int index() const // <- `const` is necessary
{ return _i; }
private:
int _i;
};
template<typename T> class key_b {
public:
int index() const // <- `const` is necessary
{ return 3; }
};
But otherwise, everything compiles and work fine for me.
Tried it in VS2010 compiler and get the same error as yours. This is obviously a compiler bug in MSVC++ compilers. Handling of template-template arguments is implemented incorrectly.
To work around the problem I was able to use this technique
template<
typename T,
template<typename> class Property,
template<typename> class Key1,
template<typename> class Key2>
class a_map
{
public:
const Property<T>& operator[](const typename Key1<T>::self& k) const
{ return _values[k.index()]; }
const Property<T>& operator[](const typename Key2<T>::self& k) const
{ return _values[k.index()]; }
protected:
std::vector<Property<T> > _values;
};
and define the key templates as
template<typename T> class key_a {
public:
typedef key_a self;
int index() const { return _i; }
private:
int _i;
};
template<typename T> class key_b {
public:
typedef key_b self;
int index() const { return 3; }
};
This is inelegant, but it makes it work correctly with MSVC++ compilers.
Compiles fine like this... note how Prop/K1/K2 should be defined.
#include <vector>
template<
typename T,
template<typename> class Property,
template<typename> class Key1,
template<typename> class Key2>
class a_map
{
public:
const Property<T>& operator[](const Key1<T>& k) const
{ return _values[k.index()]; }
const Property<T>& operator[](const Key2<T>& k) const
{ return _values[k.index()]; }
protected:
std::vector<Property<T> > _values;
};
template <typename T> struct K1 { int index() const { return 0; } };
template <typename T> struct K2 { int index() const { return 0; } };
template <typename T> struct Prop { };
int main()
{
a_map<float, Prop, K1, K2> m;
}
If I want to create a function template, where the template parameter isn't used in the argument list, I can do it thusly:
template<T>
T myFunction()
{
//return some T
}
But the invocation must specify the 'T' to use, as the compiler doesn't know how to work it out.
myFunction<int>();
But, suppose I wanted to do something similar, but for the '[]' operator.
template
T SomeObject::operator [ unsigned int ]
{
//Return some T
}
Is there any way to invoke this operator?
This doesn't appear valid:
SomeObject a;
a<int>[3];
This should work:
class C
{
public:
template <class T>
T operator[](int n)
{
return T();
}
};
void foo()
{
C c;
int x = c.operator[]<int>(0);
}
But it's of no real value because you'd always have to specify the type, and so it looks like a very ugly function call - the point of an operator overload is to look like an operator invocation.
Boost.Program_options uses this neat syntax:
int& i = a["option"].as<int>();
Which is achieved with something like this:
class variable_value
{
public:
variable_value(const boost::any& value) : m_value(value) {}
template<class T>
const T& as() const {
return boost::any_cast<const T&>(m_value);
}
template<class T>
T& as() {
return boost::any_cast<T&>(m_value);
}
private:
boost::any m_value;
};
class variables_map
{
public:
const variable_value& operator[](const std::string& name) const
{
return m_variables[name];
}
variable_value& operator[](const std::string& name)
{
return m_variables[name];
}
private:
std::map<std::string, variable_value> m_variables;
};
You could adapt this idea to suit your own needs.
Like with any operator, the function name is operator#, so:
a.operator[]<int>(3);
You can use a.operator[]<int>(1);
But why do you want this?
This may not be an optimal solution, but you could directly call the operator as such:
a.operator[](3);
I tried this in g++ with the following test:
class MyClass {
public:
template<class T>
T operator[](unsigned int) {
// do something
return T();
}
};
int main(int argc, char* argv[]) {
MyClass test;
test.operator[]<int>(0);
//test<int>[0]; // doesn't compile, as you mentioned
return 0;
}
If you need to define operator[] then probably define the template at the class level. Something like this:
template<class T>
class C
{
public:
T operator[](int n)
{
return T();
}
};
int main()
{
C<int> c;
int x = c[0];
return 0;
}
I have a hard time coming up with an example where this would be needed (couldn't you just overload the operator instead?), but here's my thoughts anyway:
Since you cannot use the infix operator syntax with templatized operators, you might want to do the template instantiation before you call the operator. A proxy might be a way to do this.
class some_class {
private:
template<class T> class proxy {
some_class* that_;
public:
proxy(some_class* that) : that_(that) {}
T& operator[](std::size_type idx) {return that->get<T>(idx);}
};
template<class T> class const_proxy {
some_class* that_;
public:
proxy(const some_class* that) : that_(that) {}
const T& operator[](std::size_type idx) const {return that->get<T>(idx);}
};
template< typename T > proxy<T> get_array() {return proxy<T>(this);}
template< typename T > const_proxy<T> get_array() const {return proxy<T>(this);}
template< typename T > T& get(std::size_t idx) {/* whatever */}
template< typename T > const T& get(std::size_t idx) const {/* whatever */}
};
// This is a lousy use case.
// Did I already say I have a hard time imagining how to use this?
template< typename T >
void f(some_class& some_object, sid::size_t idx)
{
T& = some_object.get_array<T>()[idx];
}