I need to put scriptable NPC in my currect game project.
The project itself is developed in C++ language.
I will using Luabind to bind lua and c++.
I need to call NPC function when certain NPC clicked or timer to do something is activated.
Currently I stuck between 2 NPC script design.
Using a kind of npcname_action to differentiate every NPC.
This is kind of troublesome to give name to every different NPC.
I'm still thinking how to implement this in my project.
Example:
HotelBellboy12_Click() { .. }
HotelBellboy12_TimerAction() { .. }
Using name of function.
Every npc have it own lua file.
I'm thinking to load script into memory and when needed will be loaded into luaState using luaL_loadbuffer
Example:
OnClick() { .. }
OnTimerAction() { .. }
Which one is better and why?
You could use another design.
Take advantage of the fact that table keys and values can be any type.
Let's say npc is a table containing all NPC's. Its keys are NPC' names and its values are another table. This other table keys are the actions, and its values are the function for this actions.
So, if you want bob to jump when clicked on, and alice to cry after a timer, simply do :
npc.bob.click = function () jump() end
npc.alice.timer = function () cry() end
I've done something like this before and I used something similar to your #2 option. When the map loads I load a configuration Lua file containing all the NPC data; among that is the name of the script file used for the NPC.
When I need to load the NPC in the game I compile the Lua file. NPC's can use a 'model' NPC type to dictate most of the common behavior (for example a Merchant type or a Commoner type) which is specified in the NPC configuration. These model types provide all the basic functionality such as providing a trade window when clicked. The specific NPC's use functions like OnClick() to override their model and provide custom handlers.
This worked pretty well for me, although it ends up being a large volume of scripts if your game gets large.
Related
Let me elaborate on the title:
I want to implement a system that would allow me to enable/disable/modify the general behavior of my program. Here are some examples:
I could switch off and on logging
I could change if my graphing program should use floating or pixel coordinates
I could change if my calculations should be based upon some method or some other method
I could enable/disable certain aspects like maybe a extension api
I could enable/disable some basic integrated profiler (if I had one)
These are some made-up examples.
Now I want to know what the most common solution for this sort of thing is.
I could imagine this working with some sort of singelton class that gets instanced globally or in some other globally available object. Another thing that would be possible would be just constexpr or other variables floating around in a namespace, again globally.
However doing something like that, globally, feels like bad practise.
second part of the question
This might sound like I cant decide what I want, but I want a way to modify all these switches/flags or whatever they are actually called in a single location, without tying any of my classes to it. I don't know if this is possible however.
Why don't I want to do that? Well I like to make my classes somewhat reusable and I don't like tying classes together, unless its required by the DRY principle and or inheritance. I basically couldn't get rid of the flags without modifying the possible hundreds of classes that used them.
What I have tried in the past
Having it all as compiler defines. This worked reasonably well, however I didnt like that I couldnt make it so if the flag file was gone there were some sort of default settings that would make the classes themselves still operational and changeable (through these default values)
Having it as a class and instancing it globally (system class). Worked ok, however I didnt like instancing anything globally. Also same problem as above
Instancing the system class locally and passing it to the classes on construction. This was kinda cool, since I could make multiple instruction sets. However at the same time that kinda ruined the point since it would lead to things that needed to have one flag set the same to have them set differently and therefore failing to properly work together. Also passing it on every construction was a pain.
A static class. This one worked ok for the longest time, however there is still the problem when there are missing dependencies.
Summary
Basically I am looking for a way to have a single "place" where I can mess with some values (bools, floats etc.) and that will change the behaviour of all classes using them for whatever, where said values either overwrite default values or get replaced by default values if said "place" isnt defined.
If a Singleton class does not work for you , maybe using a DI container may fit in your third approach? It may help with the construction and make the code more testable.
There are some DI frameworks for c++, like https://github.com/google/fruit/wiki or https://github.com/boost-experimental/di which you can use.
If you decide to use switch/flags, pay attention for "cyclometric complexity".
If you do not change the skeleton of your algorithm but only his behaviour according to the objets in parameter, have a look at "template design pattern". This method allow you to define a generic algorithm and specify particular step for a particular situation.
Here's an approach I found useful; I don't know if it's what you're looking for, but maybe it will give you some ideas.
First, I created a BehaviorFlags.h file that declares the following function:
// Returns true iff the given feature/behavior flag was specified for us to use
bool IsBehaviorFlagEnabled(const char * flagName);
The idea being that any code in any of your classes could call this function to find out if a particular behavior should be enabled or not. For example, you might put this code at the top of your ExtensionsAPI.cpp file:
#include "BehaviorFlags.h"
static const enableExtensionAPI = IsBehaviorFlagEnabled("enable_extensions_api");
[...]
void DoTheExtensionsAPIStuff()
{
if (enableExtensionsAPI == false) return;
[... otherwise do the extensions API stuff ...]
}
Note that the IsBehaviorFlagEnabled() call is only executed once at program startup, for best run-time efficiency; but you also have the option of calling IsBehaviorFlagEnabled() on every call to DoTheExtensionsAPIStuff(), if run-time efficiency is less important that being able to change your program's behavior without having to restart your program.
As far as how the IsBehaviorFlagEnabled() function itself is implemented, it looks something like this (simplified version for demonstration purposes):
bool IsBehaviorFlagEnabled(const char * fileName)
{
// Note: a real implementation would find the user's home directory
// using the proper API and not just rely on ~ to expand to the home-dir path
std::string filePath = "~/MyProgram_Settings/";
filePath += fileName;
FILE * fpIn = fopen(filePath.c_str(), "r"); // i.e. does the file exist?
bool ret = (fpIn != NULL);
fclose(fpIn);
return ret;
}
The idea being that if you want to change your program's behavior, you can do so by creating a file (or folder) in the ~/MyProgram_Settings directory with the appropriate name. E.g. if you want to enable your Extensions API, you could just do a
touch ~/MyProgram_Settings/enable_extensions_api
... and then re-start your program, and now IsBehaviorFlagEnabled("enable_extensions_api") returns true and so your Extensions API is enabled.
The benefits I see of doing it this way (as opposed to parsing a .ini file at startup or something like that) are:
There's no need to modify any "central header file" or "registry file" every time you add a new behavior-flag.
You don't have to put a ParseINIFile() function at the top of main() in order for your flags-functionality to work correctly.
You don't have to use a text editor or memorize a .ini syntax to change the program's behavior
In a pinch (e.g. no shell access) you can create/remove settings simply using the "New Folder" and "Delete" functionality of the desktop's window manager.
The settings are persistent across runs of the program (i.e. no need to specify the same command line arguments every time)
The settings are persistent across reboots of the computer
The flags can be easily modified by a script (via e.g. touch ~/MyProgram_Settings/blah or rm -f ~/MyProgram_Settings/blah) -- much easier than getting a shell script to correctly modify a .ini file
If you have code in multiple different .cpp files that needs to be controlled by the same flag-file, you can just call IsBehaviorFlagEnabled("that_file") from each of them; no need to have every call site refer to the same global boolean variable if you don't want them to.
Extra credit: If you're using a bug-tracker and therefore have bug/feature ticket numbers assigned to various issues, you can creep the elegance a little bit further by also adding a class like this one:
/** This class encapsulates a feature that can be selectively disabled/enabled by putting an
* "enable_behavior_xxxx" or "disable_behavior_xxxx" file into the ~/MyProgram_Settings folder.
*/
class ConditionalBehavior
{
public:
/** Constructor.
* #param bugNumber Bug-Tracker ID number associated with this bug/feature.
* #param defaultState If true, this beheavior will be enabled by default (i.e. if no corresponding
* file exists in ~/MyProgram_Settings). If false, it will be disabled by default.
* #param switchAtVersion If specified, this feature's default-enabled state will be inverted if
* GetMyProgramVersion() returns any version number greater than this.
*/
ConditionalBehavior(int bugNumber, bool defaultState, int switchAtVersion = -1)
{
if ((switchAtVersion >= 0)&&(GetMyProgramVersion() >= switchAtVersion)) _enabled = !_enabled;
std::string fn = defaultState ? "disable" : "enable";
fn += "_behavior_";
fn += to_string(bugNumber);
if ((IsBehaviorFlagEnabled(fn))
||(IsBehaviorFlagEnabled("enable_everything")))
{
_enabled = !_enabled;
printf("Note: %s Behavior #%i\n", _enabled?"Enabling":"Disabling", bugNumber);
}
}
/** Returns true iff this feature should be enabled. */
bool IsEnabled() const {return _enabled;}
private:
bool _enabled;
};
Then, in your ExtensionsAPI.cpp file, you might have something like this:
// Extensions API feature is tracker #4321; disabled by default for now
// but you can try it out via "touch ~/MyProgram_Settings/enable_feature_4321"
static const ConditionalBehavior _feature4321(4321, false);
// Also tracker #4222 is now enabled-by-default, but you can disable
// it manually via "touch ~/MyProgram_Settings/disable_feature_4222"
static const ConditionalBehavior _feature4222(4222, true);
[...]
void DoTheExtensionsAPIStuff()
{
if (_feature4321.IsEnabled() == false) return;
[... otherwise do the extensions API stuff ...]
}
... or if you know that you are planning to make your Extensions API enabled-by-default starting with version 4500 of your program, you can set it so that Extensions API will be enabled-by-default only if GetMyProgramVersion() returns 4500 or greater:
static ConditionalBehavior _feature4321(4321, false, 4500);
[...]
... also, if you wanted to get more elaborate, the API could be extended so that IsBehaviorFlagEnabled() can optionally return a string to the caller containing the contents of the file it found (if any), so that you could do shell commands like:
echo "opengl" > ~/MyProgram_Settings/graphics_renderer
... to tell your program to use OpenGL for its 3D graphics, or etc:
// In Renderer.cpp
std::string rendererType;
if (IsDebugFlagEnabled("graphics_renderer", &rendererType))
{
printf("The user wants me to use [%s] for rendering 3D graphics!\n", rendererType.c_str());
}
else printf("The user didn't specify what renderer to use.\n");
I have a custom grid control that inherits from TGrid called TFmGrid. This control was working fine in Rad Studio 10 Seattle Update One. I recently upgraded to 10.1 Berlin and started noticing this error message showing up on my TFmGrid controls both when I run the application and in the designer:
A descendant of TStyledPresentationProxy has not been registered for class TFmGrid. Maybe it is necessary to add the FMX.Grid.Style module to the uses section
The image below shows how the error message shows up on my grid controls:
I started by doing as the message suggests, and adding #include <FMX.Grid.Style.hpp> to the header file of my TFmGrid control, however this seems to have done nothing.
So as far as trying to register a decendant of TStyledPresentationProxy I am not exactly sure where to start. I found this documentation about a method which:
Attempts to register the presentation proxy class with the specified name or the specified combination of control class and control type.
So I assume I need to use this method or at least something similar, but I don't understand how I am supposed to go about calling this method.
But then that brings up the question of WHERE do I call this code?
My custom control has a method in its namespace called Register() which I believe was autogenerated by the IDE when the control was created:
namespace Fmgridu
{
void __fastcall PACKAGE Register()
{
TComponentClass classes[1] = {__classid(TFmGrid)};
RegisterComponents(L"Kalos FM Controls", classes, 0);
}
}
Do I need to call something in there to register a decendant of TStyledPresentationProxy? What is the proper way to go about this?
Just override virtual method DefinePresentationName in you TfmGrid and return name of presentation name for grid:
function TfmGrid.DefinePresentationName: string;
begin
Result := 'Grid-' + GetPresentationSuffix;
end;
Fm registers presentation by string name and uses class name for it, so if you create new component (based on existed) you automatically change classname, so system cannot find presentation for you. There are two solution:
Said that you will use presentation from TGrid (DefinePresentationName)
Register existed presentation for you class (look at the initialization section of FMX.Grid.Style.pas)
P.S. Year ago i wrote article about it in common eNew approach of development of FireMonkey control “Control – Model – Presentation”. Part 1 I hope it will help you
It's simple :
Just put "StyleBook" component to your form
I had the same issue with a test component I was developing.
Complementing Yaroslav Brovin's speech, I solved the problem by adding the class register in the initialization and finalization clauses at the end of the unit, like this:
initialization
TPresentationProxyFactory.Current.Register(<COMPONENT CLASSNAME HERE>, TControlType.Styled, TStyledPresentationProxy<TStyledGrid>);
finalization
TPresentationProxyFactory.Current.Unregister(<COMPONENT CLASSNAME HERE>, TControlType.Styled, TStyledPresentationProxy<TStyledGrid>);
In my case looks like this:
initialization
TPresentationProxyFactory.Current.Register(TSGrid, TControlType.Styled, TStyledPresentationProxy<TStyledGrid>);
finalization
TPresentationProxyFactory.Current.Unregister(TSGrid, TControlType.Styled, TStyledPresentationProxy<TStyledGrid>);
PS: Don't forget to declare the FMX.Presentation.Factory,
FMX.Presentation.Style and FMX.Grid.Style units in the uses clause
I'm designing a new power-up system for a game I'm creating. It's a side scroller, the power ups appear as circular objects and the player has to touch / move through them to pick up their power. The power up then becomes activated, and deactivates itself a few seconds later. Each power-up has its own duration defined. For simplicity's sake the power ups are spawned (placed on the screen) every X seconds.
I created a PowerUpManager, a singleton whose job is to decide when to create new power ups and then where to place them.
I then created the Powerup base class, and a class that inherits from that base class for every new Powerup. Every Power-up can be in one of three states: Disabled, placed on the screen, and picked up by the player. If the player did not pick up the power up but moved on, the power up will exit the screen and should go back from the placed state to the disabled state, so it can be placed again.
One of the requirements (that I) put in place is that there should be minimal code changes when I code up a new Power up class. The best I could do was one piece of code: The PowerUpManager's constructor, where you must add the new power-up to the to the container that holds all power-ups:
PowerupManager::PowerupManager()
{
available = {
new PowerupSpeed(),
new PowerupAltWeapon(),
...
};
}
The PowerUpManager, in more details (Question is coming up!):
Holds a vector of pointers to PowerUp (The base class) called available. This is the initial container that holds one copy of each power up in the game.
To handle the different states, it has a couple of lists: One that holds pointers to currently placed power ups, and another list that holds pointers to currently active power ups.
It also has a method that gets called every game tick that decides if and where to place a new power up and clean up power ups that weren't picked up. Finally it has a method that gets called when the player runs into a power up, that activates the power up (Moves it from the placed to the active list, and calls the power up's activate method).
Finally, once you understand the full picture, the question:
I needed a way for client code to ask if a particular power-up is currently active. For example: The player has a weapon, but there is a power up that replaces that weapon temporarily. Where I poll for input and recognize that the player wants to fire his weapon, I need to call the correct fire method - The alternative weapon power up fire method, and not the regular weapon fire method.
I thought of this particular demand for a while and came up with this:
template <typename T>
T* isActivated() // Returns a pointer to the derived Powerup if it exists in the activated list, or nullptr if it doesn't
{
for(Powerup *i : active) // Active is a list of currently active power ups
{
T *result = dynamic_cast<T*>(i);
if(result)
return result;
}
return nullptr;
}
So client code looks like this:
PowerUpAltWeapon *weapon = powerUpManager->isActivated<PowerUpAltWeapon>();
if(weapon)
...
I thought the solution is elegant and kind of neat, but essentially what it is is trying to convert a base type to a derived type. If that doesn't work, you try the next derived type... A long chain of if / else if, it's just disguised in a loop. Does this violate the guideline that I just described? Not casting a base type to all of its derived types in a long chain of if / else if until you get a hit? Is there another solution?
A secondary question is: Is there a way to get rid of the need to construct all the different power ups in the PowerupManager constructor? That is currently the only place you need to make a change if you want to introduce a new power up. If I can get rid of that, that'd be interesting...
This is based on your design, but if it was me I choose an ID for each PowerUp and a set of IDs in the client, and each time a user posses a PowerUp that ID will be added to its set and ... you know the rest. Using this technique I can do fast look up for every PowerUp and avoid dynamic_cast:
std::set<PowerUp::ID> my_powerUps;
template< class T > bool isActivated() {
return my_powerUps.find( T::id() ) != my_powerUps.end();
}
And about your second question, I have a similar program that load some plugins instead of PowerUp, I have a pure virtual base class that contain all methods that required by that plugin and implement it in shared modules and then at startup I load them from an specific folder. For example each shared module contain a create_object that return a plugin* (in your case PowerUp* of course) and then I iterate the folder, load modules and call create_object to create my plugins from them and register them in my plugin_manager
I have a game with a mainloop - on each loop i call for every NPC in the game ->ProcessAI() to execute any actions.
This is a server so the call to ProcessAI is not executed on every frame like on a client game! Its also singlethreaded.
Now i wanted to extend the C++ codebase with lua using luabind (maybe, even with boost overhead). So i expose some functions of my NPC class to LUA.
I wanted to create actor scripts for example - boss battles which have more sophisticated behaviour - whenever in my c++ ProcessAI function an event happens - i would delegate this to the corresponding lua script for the specific NPC.
i imagined in my boss.lua script i would have something like this
function OnEngageCombat(NPC)
NPC:say ("Some taunts...")
ScheduleEvent(CastEvilSpell,/*time*/2000,/*numExecutions*/1,)
end
function CastEvilSpell(NPC)
NPC:CastSpell("someSpell")
end
However - i have no idea how to do this - i gather ScheduleEvent should be some C++ function exported to Lua - but what would be the best approach to keep the object reference of the NPC (boss) with this and call a function in that script about 2 seconds later ?
Furthmore along with this delayed execution - i want that NPCs can interact with each other - my current idea is to have an actor behavior script for each special NPC.
Now what i imagined is to initiate a conversation between two NPCs e.g.
function DoGossip(NPC)
// check if NPC1 is close to NPC2
if NPC:DistanceToNpc("SomeGuy") < 10 then
StartConversation1()
end
function StartConversation1(NPC)
NPC:Say("Hello ...")
// wait a moment now trigger NPC2 to reply
????
end
Basically - how do i call a function from lua scriptA which exists in lua scriptB which is the behavior script for NPC2.
What would be a good design?
Thanks
If you use LuaBind, you can set a global scriptable object that refers to a wrapper class around your game engine that you expose to your script.
So, whenever you set up your lua engine, you can register a global you want all scripts to have access to, like this in your C++ code:
luabind::globals(m_pLuaState)["Game"] = m_pGameWrapperClass;
Then, in your script, you could simply refer to the Game object to get at game specific functionality, like this:
Game:ScheduleEvent(...)
Your C++ game wrapper class would just implement a ScheduleEvent function that you'd bind with LuaBind. You could add/register as many game-y specific functions as you'd need on that object.
To lead into your question 2, you could simply register a function on your Game class called FindNPC(), that takes a string argument or id or something that would look up an npc in your engine, and return a reference to it. You'd probably want to write a wrapper class around the npc object that exposes npc-y functionality just like you would do with your Game class, and FindNPC() would return userdata that represents an NPC, and exposes whatever functionality that is necessary to use it, or to make it do stuff in the Game itself.
I have an existing app with a command-line interface that I'm adding a GUI to. One situation that often comes up is that I have a list of objects that inherit from one class, and need to be displayed in a list, but each subclass has a slightly different way of being displayed.
Not wanting to have giant switch statements everywhere using reflection/RTTI to do the displaying, each class knows how to return its own summary string which then gets displayed in the list:
int position = 0;
for (vector<DisplayableObject>::const_iterator iDisp = listToDisplay.begin(); iDisp != listToDisplay.end(); ++iDisp)
cout << ++position << ". " << iDisp->GetSummary();
Similar functions are there to display different information in different contexts. This was all fine and good until we needed to add a GUI. A string is no longer sufficient - I need to create graphical controls.
I don't want to have to modify every single class to be able to display it in a GUI - especially since there is at least one more GUI platform we will want to move this to.
Is there some kind of technique I can use to separate this GUI code out of the data objects without resorting to RTTI and switch statements? It would be nice to be able to take out the GetSummary functions as well.
Ideally I'd be able to have a heierarchy of display classes that could take a data class and display it based on the runtime type instead of the compile time type:
shared_ptr<Displayer> displayer = new ConsoleDisplayer();
// or new GUIDisplayer()
for (vector<DisplayableObject>::const_iterator iDisp = listToDisplay.begin(); iDisp != listToDisplay.end(); ++iDisp)
displayer->Display(*iDisp);
I don't think this will solve your problem of not needing to write the code, but you should be able to abstract the GUI logic from the data objects.
Look at a Visitor pattern (http://en.wikipedia.org/wiki/Visitor_pattern) it will allow you to add code to an existing object without changing the object itself. You can also change the visitor based on the platform.