boost::asio, threads and synchronization - c++

This is somewhat related to this question, but I think I need to know a little bit more. I've been trying to get my head around how to do this for a few days (whilst working on other parts), but the time has come for me to bite the bullet and get multi-threaded. Also, I'm after a bit more information than the question linked.
Firstly, about multi-threading. As I have been testing my code, I've not bothered with any multi-threading. It's just a console application that starts a connection to a test server and everything else is then handled. The main loop is this:
while(true)
{
Root::instance().performIO(); // calls io_service::runOne();
}
When I write my main application, I'm guessing this solution won't be acceptable (as it would have to be called in the message loop which, whilst possible, would have issues when the message queue blocks waiting for a message. You could change it so that the message-loop doesn't block, but then isn't that going to whack the CPU usage through the roof?)
The solution it seems is to throw another thread at it. Okay, fine. But then I've read that io_service::run() returns when there is no work to do. What is that? Is that when there's no data, or no connections? If at least one connection exists does it stay alive? If so, that's not so much of a problem as I only have to start up a new thread when the first connection is made and I'm happy if it all stops when there is nothing going on at all. I guess I am confused by the definition of 'no work to do'.
Then I have to worry about synchronizing my boost thread with my main GUI thread. So, I guess my questions are:
What is the best-practice way of using boost::asio in a client application with regard to threads and keeping them alive?
When writing to a socket from the main thread to the IO thread, is synchronization achieved using boost::asio::post, so that the call happens later in the io_service?
When data is received, how do people get the data back to the UI thread? In the past when I used completion ports, I made a special event that could post the data back to the main UI thread using a ::SendMessage. It wasn't elegant, but it worked.
I'll be reading some more today, but it would be great to get a heads up from someone who has done this already. The Boost::asio documentation isn't great, and most of my work so far has been based on a bit of the documentation, some trial/error, some example code on the web.

1) Have a look at io_service::work. As long as an work object exists io_service::run will not return. So if you start doing your clean up, destroy the work object, cancel any outstanding operations, for example an async_read on a socket, wait for run to return and clean up your resources.
2) io_service::post will asynchronously execute the given handler from a thread running the io_service. A callback can be used to get the result of the operation executed.
3) You needs some form of messaging system to inform your GUI thread of the new data. There are several possibilities here.
As far as your remark about the documention, I thing Asio is one of the better documented boost libraries and it comes with clear examples.

boost::io_service::run() will return only when there's nothing to do, so no async operations are pending, e.g. async accept/connection, async read/write or async timer wait. so before calling io_service::run() you first have to start any async op.
i haven't got do you have console or GUI app? in any case multithreading looks like a overkill. you can use Asio in conjunction with your message loop. if it's win32 GUI you can call io_service::run_one() from you OnIdle() handler. in case of console application you can setup deadline_timer that regularly checks (every 200ms?) for user input and use it with io_service::run(). everything in single thread to greatly simplify the solution

1) What is the best-practice way of using
boost::asio in a client application
with regard to threads and keeping
them alive?
As the documentation suggests, a pool of threads invoking io_service::run is the most scalable and easiest to implement.
2) When writing to a socket from the main
thread to the IO thread, is
synchronization achieved using
boost::asio::post, so that the call
happens later in the io_service?
You will need to use a strand to protect any handlers that can be invoked by multiple threads. See this answer as it may help you, as well as this example.
3) When data is received, how do people
get the data back to the UI thread? In
the past when I used completion ports,
I made a special event that could post
the data back to the main UI thread
using a ::SendMessage. It wasn't
elegant, but it worked.
How about providing a callback in the form of a boost::function when you post an asynchronous event to the io_service? Then the event's handler can invoke the callback and update the UI with the results.

When data is received, how do people get the data back to the UI thread? In the past when I used completion ports, I made a special event that could post the data back to the main UI thread using a ::SendMessage. It wasn't elegant, but it worked
::PostMessage may be more appropriate.
Unless everything runs in one thread these mechanisms must be used to safely post events to the UI thread.

Related

Cross thread call a.k.a run on main/UI thread from other thread without dependencies needed

I'm on some c++ mobile product, but I need my apps main thread is still running without any blocking when doing some heavy work on the background thread and run back on main thread. But I realized there is no runOnMainThread/runOnUIThread in c++ thread api. I trying to figure it out the issue and found that need to depend library, or create your own thread event queue. Although it is good, but i am thinking to have a behavior which can runOnUIThread.
How it does not work: the mentioned library creates a timer, installs a SIGALRM signal handler and dispatches queued tasks when signals are fired. This allows tasks being processed on the main thread even when it is busy. However POSIX permits only a small set of async-signal-safe functions to be invoked inside of signal handler. Running arbitrary с++ code inside of signal handler violates that restriction and leaves application in hopelessly doomed state.
After some research and development, I've created a library called NonBlockpp
it is a small c++ library to allow c++ mobile application able to process the heavy and time consuming task on background and back to Main thread again, It’s been tested and fired the main thread event.
It also allow to save the tasks and fire them later, all the task has no blocking each other and thread safety.
How it works:
If you found any query or suggestion, please don't hesitate to raise an issue and we can discuss it together.
The project has rectify from signal to pollEvent due to signal handler might not be safe to use.
Please take a look the new changed.
NonBlockpp
Usage

boost asio multithreaded tcp server with thread pool

I have a single threaded asynchronous tcp server written using boost asio. Each incoming request will go through several processing steps (synchronous and asynchronous) and finally send back the response using async write.
For small loads with 10 concurrent requests, it works decently. However, when I test using a parallelism of 100, things start worsening. Response latency starts increasing as time progresses. So, I want to try with some multi-threaded processing for handling requests.
I am looking for a decent example / help on creating and running multiple threads for asynchronous reading/writing to clients. I have the following doubts:
Should I use a single IOS object and call its run method in all of the threads of the thread pool, or should I use a separate IOS per thread?
If I use a single IOS, is there a possibility that part of the tcp data goes to one thread, while another part going to another thread and so on.. Is this understanding correct?
Is there any other better way?
Thanks for any help and pointers here.
Without seeing your code I can only guess what goes wrong. Most probably you're running long actions inside async completion handlers. The completion handlers should be fast - get the data, hand it off for further processing, done.
As a first priority, I would go full-asynchronous and run all processing in a thread pool. You can find an example here, where a new thread is started for every new client, which you can replace with a thread pool.
Use a single io_service. A single io_service can handle a lot of parallelism, provided you don't delay it inside completion handlers. This simplifies the implementation because you don't have to worry about completion handlers running in parallel, which will happen if you run multiple IOS in multiple threads.
Q1: Should I use a single IOS object and call its run method in all of the threads of the thread pool, or should I use a separate IOS per thread?
Either you can
HTTP Server 2 - IOS per thread
HTTP Server 3 - single IOS with thread pool
Q2: If I use a single IOS, is there a possibility that part of the tcp data goes to one thread, while another part going to another thread and so on.. Is this understanding correct?
Yes, there is a race condition, but boost.asio support strand to avoid it.
Q3: Is there any other better way?
To me, not find a better way, if you find, tell me or past here, thank you.
BTW, as #rustyx said, your program is blocked at sync calls, turn to full-asynchronous calls will help.

Callback in user-mode from another process, w/o extra thread

I wonder if anyone familiar with a synchronization mechanism in user-mode, by which an app can register a "callback" function that would be called when another app signals it ... i don't mind the callback to be in an arbitraty thread.
Suppose i'm having lots of "Worker" processes in parallel, And one wants to notify them of a change (no payloaded data needed), by which every process will have to do some internal updates.
The immediate approach to this was to create another thread in each of them, and have an infinite loop that waits for a global event and call the callback function right afterwards. To signal this, one process would only need to signal this global event.
The problem is that i'll have lots of parallel processes in this project, i don't want to add thread*nProcesses to the system just to implement this, even if they're mostly paused.
The current "workaround" i found for this would be to hold my own "dummy" registry key, and every process will "register registery notification callback", when one app wants to notify the others it will just trigger a write to this key... and windows will callback every process which registered to this notification.
Any other ideas?
The nicer solution, which doesn't pollute the registry, would be to use a shared pipe. All workers can connect to the named pipe server, and do an async read. When the server wants to kick the workers, it just writes a byte. This triggers the completion routine of the worker. Basic example
Still, this notification has the same drawback as most other Windows notifications. If all of your worker threads are running worker code, there's no thread on which your notification can arrive - and you didn't create a special thread for that purpose either. The only solution around that is CreateRemoteThread, but that's a very big hammer.
thank you all for the useful ideas,
Eventually, I accidentally came across RegisterWaitForSingleObject which seems to do just that.
I'm still taking in account #MSalters comment about not having enough free worker threads at a given time since i'm assuming this callback mechanism relies on the same callback mechanism most Win32API does

Question on using multithreading to periodically and forcefully check for updates on software

I'm working on an application that has a main thread performing some work (message loop of the UI etc.), but I would also like a second thread, which would periodically test if there are any updates available to download. I would also like the possibility for the main thread to ask the secondary thread to force checking for updates, and for the secondary thread to ask the main thread for confirmation on downloading updates.
I don't have that much experience with IPC and multithreading in real life situations, so I'm not sure how I should go about designing this. I would like to eventually have this work on both Windows and POSIX, but let us focus on POSIX for now. Here's my idea so far:
Secondary thread pseudocode:
repeat forever:
check_for_updates()
if (are_any_updates()) {
put the list of available updates on some message queue
send signal SIGUSER1 to main thread
wait for response from that message queue
if (response is positive) download_updates()
}
unblock signal SIGUSER1 on secondary thread
Sleep(one hour)
block signal SIGUSER1
if (any_signal_was_received_while_sleeping)
any_signal_was_received_while_sleeping := false
Sleep(one more hour)
SIGUSER1 handler on secondary thread (main thread has requested us to check for updates):
block signal SIGUSER1 (making sure we don't get signal in signal)
any_signal_was_received_while_sleeping := true
check_for_updates()
...
unblock signal SIGUSER1
Basically, main thread uses SIGUSER1 to ask the secondary thread to force checking for updates, while secondary thread uses SIGUSER1 to ask the main thread to look into the message queue for the available updates and to confirm whether they should be downloaded or not.
I'm not sure if this is a good design or if it would even work properly. One of my problems is related to handling SIGUSER1 received in the main thread, because it's a pretty big application and I'm not really sure when is the right time to block and unblock it (I assume it should be somewhere in the message loop).
Any opinion is appreciated, including advice on what IPC features should I use on Windows (maybe RPC instead of signals?). I could completely remove the use of message queue if I settled on threads, but I might consider using processes instead. I'll clearly use threads on Windows, but I'm not sure about POSIX yet.
You should strongly consider using boost::thread to solve your problem. It is far more comprehensible than directly using posix and is cross platform. Take the time to use a better tool and you will end up saving yourself a great deal of effort.
In particular I think you will find that a condition variable would neatly facilitate your simple interaction.
EDIT:
You can do almost anything with the correct use of mutexes and condition variables. Another piece of advice would be to encapsulate your threads inside class objects. This allows you to write functions that act on the thread and it's data. In your case the main thread could have a method like requestUpdateConfirmation(), inside this you can block the calling thread and wait for the main thread to deal with the request before releasing the caller.

Network Multithreading

I'm programming an online game for two reasons, one to familiarize myself with server/client requests in a realtime environment (as opposed to something like a typical web browser, which is not realtime) and to actually get my hands wet in that area, so I can proceed to actually properly design one.
Anywho, I'm doing this in C++, and I've been using winsock to handle my basic, basic network tests. I obviously want to use a framelimiter and have 3D going and all of that at some point, and my main issue is that when I do a send() or receive(), the program kindly idles there and waits for a response. That would lead to maybe 8 fps on even the best internet connection.
So the obvious solution to me is to take the networking code out of the main process and start it up in its own thread. Ideally, I would call a "send" in my main process which would pass the networking thread a pointer to the message, and then periodically (every frame) check to see if the networking thread had received the reply, or timed out, or what have you. In a perfect world, I would actually have 2 or more networking threads running simultaneously, so that I could say run a chat window and do a background download of a piece of armor and still allow the player to run around all at once.
The bulk of my problem is that this is a new thing to me. I understand the concept of threading, but I can see some serious issues, like what happens if two threads try to read/write the same memory address at the same time, etc. I know that there are already methods in place to handle this sort of thing, so I'm looking for suggestions on the best way to implement something like this. Basically, I need thread A to be able to start a process in thread B by sending a chunk of data, poll thread B's status, and then receive the reply, also as a chunk of data., ideally without any major crashing going on. ^_^ I'll worry about what that data actually contains and how to handle dropped packets, etc later, I just need to get that happening first.
Thanks for any help/advice.
PS: Just thought about this, may make the question simpler. Is there a way to use the windows event handling system to my advantage? Like, would it be possible to have thread A initialize data somewhere, then trigger an event in thread B to have it pick up the data, and vice versa for thread B to tell thread A it was done? That would probably solve a lot of my problems, since I don't really need both threads to be able to work on the data at the same time, more of a baton pass really. I just don't know if this is possible between two different threads. (I know one thread can create its own messages for the event handler.)
The easiest thing
for you to do, would be to simply invoke the windows API QueueUserWorkItem. All you have to specify is the function that the thread will execute and the input passed to it. A thread pool will be automatically created for you and the jobs executed in it. New threads will be created as and when is required.
http://msdn.microsoft.com/en-us/library/ms684957(VS.85).aspx
More Control
You could have a more detailed control using another set of API's which can again manage the thread pool for you -
http://msdn.microsoft.com/en-us/library/ms686980(VS.85).aspx
Do it yourself
If you want to control all aspects of your thread creation and the pool management you would have to create the threads yourself, decide how they should end , how many to create etc (beginthreadex is the api you should be using to create threads. If you use MFC you should use AfxBeginThread function).
Send jobs to worker threads - Io completion Ports
In this case, you would also have to worry about how to communicate your jobs - i would recommend IoCOmpletionPorts to do that. It is the most scalable notification mechanism that i currently know of made for this purpose. It has the additional advantage that it is implemented in the kernel so you avoid all kinds of dead loack sitautions you would encounter if you decide to handroll something yourself.
This article will show you how with code samples -
http://blogs.msdn.com/larryosterman/archive/2004/03/29/101329.aspx
Communicate Back - Windows Messages
You could use windows messages to communicate the status back to your parent thread since it is doing the message wait anyway. use the PostMessage function to do this. (and check for errors)
ps : You could also allocate the data that needs to be sent out on a dedicated pointer and then the worker thread could take care of deleting it after sending it out. That way you avoid the return pointer traffic too.
BlodBath's suggestion of non-blocking sockets is potentially the right approach.
If you're trying to avoid using a multithreaded approach, then you could investigate the use of setting up overlapped I/O on your sockets. They will not block when you do a transmit or receive, but have the added bonus of giving you the option of waiting for multiple events within your single event loop. When your transmit has finished, you will receive an event. (see this for some details)
This is not incompatible with a multithreaded approach, so there's the option of changing your mind later. ;-)
On the design of your multithreaded app. the best thing to do is to work out all of the external activities that you want to be alerted to. For example, so far in your question you've listed network transmits, network receives, and user activity.
Depending on the number of concurrent connections you're going to be dealing with you'll probably find it conceptually simpler to have a thread per socket (assuming small numbers of sockets), where each thread is responsible for all of the processing for that socket.
Then you can implement some form of messaging system between your threads as RC suggested.
Arrange your system so that when a message is sent to a particular thread and event is also sent. Your threads can then be sent to sleep waiting for one of those events. (as well as any other stimulus - like socket events, user events etc.)
You're quite right that you need to be careful of situations where more than one thread is trying to access the same piece of memory. Mutexes and semaphores are the things to use there.
Also be aware of the limitations that your gui has when it comes to multithreading.
Some discussion on the subject can be found in this question.
But the abbreviated version is that most (and Windows is one of these) GUIs don't allow multiple threads to perform GUI operations simultaneously. To get around this problem you can make use of the message pump in your application, by sending custom messages to your gui thread to get it to perform gui operations.
I suggest looking into non-blocking sockets for the quick fix. Using non-blocking sockets send() and recv() do not block, and using the select() function you can get any waiting data every frame.
See it as a producer-consumer problem: when receiving, your network communication thread is the producer whereas the UI thread is the consumer. When sending, it's just the opposite. Implement a simple buffer class which gives you methods like push and pop (pop should be blocking for the network thread and non-blocking for the UI thread).
Rather than using the Windows event system, I would prefer something that is more portable, for example Boost condition variables.
I don't code games, but I've used a system similar to what pukku suggested. It lends nicely to doing things like having the buffer prioritize your messages to be processed if you have such a need.
I think of them as mailboxes per thread. You want to send a packet? Have the ProcessThread create a "thread message" with the payload to go on the wire and "send" it to the NetworkThread (i.e. push it on the NetworkThread's queue/mailbox and signal the condition variable of the NetworkThread so he'll wake up and pull it off). When the NetworkThread receives the response, package it up in a thread message and send it back to the ProcessThread in the same manner. Difference is the ProcessThread won't be blocked on a condition variable, just polling on mailbox.empty( ) when you want to check for the response.
You may want to push and pop directly, but a more convenient way for larger projects is to implement a toThreadName, fromThreadName scheme in a ThreadMsg base class, and a Post Office that threads register their Mailbox with. The PostOffice then has a send(ThreadMsg*); function that gets/pushes the messages to the appropriate Mailbox based on the to and from. Mailbox (the buffer/queue class) contains the ThreadMsg* = receiveMessage(), basically popping it off the underlying queue.
Depending on your needs, you could have ThreadMsg contain a virtual function process(..) that could be overridden accordingly in derived classes, or just have an ordinary ThreadMessage class with a to, from members and a getPayload( ) function to get back the raw data and deal with it directly in the ProcessThread.
Hope this helps.
Some topics you might be interested in:
mutex: A mutex allows you to lock access to specific resources for one thread only
semaphore: A way to determine how many users a certain resource still has (=how many threads are accessing it) and a way for threads to access a resource. A mutex is a special case of a semaphore.
critical section: a mutex-protected piece of code (street with only one lane) that can only be travelled by one thread at a time.
message queue: a way of distributing messages in a centralized queue
inter-process communication (IPC) - a way of threads and processes to communicate with each other through named pipes, shared memory and many other ways (it's more of a concept than a special technique)
All topics in bold print can be easily looked up on a search engine.