Options for inter-service one-way communication - c++

I'm searching for different options for implementing communication between a service and other services/applications.
What I would like to do:
I have a service that is constantly running, polling a device connected to a serial port. At certain points, this service should send a message to interested clients containing data retrieved from the device. Data is uncomplicated, most likely just a single string.
Ideally, the clients would not have to subscribe to receive these messages, which leads me to some sort of event 'broadcast' setup (similar to Windows events). The message sending process should not block, and does not need a response from any clients (or that there even are any clients for that matter).
I've been reading about IPC (COM in particular) and windows events, but am yet to come across something that really fits with what I want to do.
So is this possible? If so, what technologies should I be using? If not, what are some viable communication alternatives?
Here's the particulars of the setup:
Windows 2000/XP environments
'Server' service is a windows service, using VC++2005
Clients would vary, but always be in the windows environment (usual clients would be VC++6 windows services, VB6 applications)
Any help would be appreciated!

Windows supports broadcasting messages, check here. You can SendMessage to HWND_BROADCAST from the service, and receive it in each client.

There are a number of ways to do a broadcast system, but you'll have to either give up reliability (ie, some messages must be lost) or use a proper subscription system.
If you're willing to give up reliability, you can create a shared memory segment and named manual-reset event object. When a new message arrives, write it to the shared memory segment, signal the event object, then close the event object and create a new one with a different name (the name should be in the shmem segment somewhere). Clients open the shmem segment, find the current event object, wait for it to be signaled, then read off the message and new event segment.
In this option, you must be careful to deal with the case of a client reading at the same time as the shmem segment is updated properly. One way to do this is to have two sequence number fields in the shmem segment - one is updated before the new message is written, one after. Clients read the second sequence number prior to reading the message, then re-read both sequence numbers after, and check that they are all equal (and discard the message and retry after a delay if they are not). Be sure to place memory barriers around accesses to these sequence numbers to ensure the compiler does not reorder them!
Of course, this is all a bit hairy. Named pipes are a lot simpler, but a subscription (of a sort) is required. The server calls CreateNamedPipe, then accepts connections with ConnectNamedPipe. Clients use CreateFile to connect to the server's pipe. The server then just loops to send data (using WriteFile) to all of its clients. Note that you will need to create addititonal instance of the pipe using CreateNamedPipe each time you accept a connection. An example of a named pipe server can be found here: http://msdn.microsoft.com/en-us/library/aa365588(v=vs.85).aspx

Related

Managing Players on a World Server

I am currently developing the server part of a game (MMORPG) and I am stuck on a point that seems to me quite important: how to manage the packets received by the clients and their logic?
Let me explain: I know how to get a connection from a client, how to store the socket of this client but I don't know how to manage packets that it will send later and apply the modifications on the server (all asynchronously).
I had thought of 2 solutions:
1) As soon as the server detects a client connection, it creates a thread for the client. So there is 1 thread per client that will handle the packets of a single client. But in this case, the more clients there are, the more processor will be called right?
2) As soon as the server detects a new client, it stores it in a list. A thread will loop on the client list and see if the current client is sending a packet. If so, it manages it. But this solution also poses a problem: how to manage this packet? Create a new thread specifically for this packet? But I come back to the starting point: too many packets will overload the machine.
A friend offered me a third solution: make a mixture of both. In this way, a thread would take care of NB_MAX_CLIENT.
I would like to know if there are other ways of doing that.
I'm on Windows. I develop with Visual Studio in C ++ and I use the Winsocks.
Thanks in advance and sorry for my bad english.
As soon as the server detects a client connection, it creates a thread for the client. So there is 1 thread per client that will handle the packets of a single client. But in this case, the more clients there are, the more processor will be called right?
This is fairly common unless you are running out of RAM from the stacks that each thread requires (typically OS threads require an OS stack per physical thread). The other issue is too many context switches that might make you consider otherwise.
Avoiding the thread issue is really difficult because you lose the ability to do anything per client without pivoting off a data structure since you have no idea what stack will handle the next packet.
As soon as the server detects a new client, it stores it in a list. A thread will loop on the client list and see if the current client is sending a packet. If so, it manages it. But this solution also poses a problem: how to manage this packet?
Typically you setup a producer consumer set of threads for this. One producer gets each packet and sends it to a queue which is then consumed by some number of worker threads that just handle each item.
Honestly doing this correctly requires a ton of work (as in an example of it was a major piece of technology that Netflix developed) you probably should avoid it to simplify things.
Especially since RAM is cheap and 1MB per thread requires concurrency that will knock you over from other problems before your dedicated thread stacks kill you. (Similarly when context switches become your biggest issue you are pretty far along unless you are doing something unrelated to this discussion wrong).

How to send and receive data up to SO_SNDTIMEO and SO_RCVTIMEO without corrupting connection?

I am currently planning how to develop a man in the middle network application for TCP server that would transfer data between server and client. It would behave as regular client for server and server for remote client without modifying any data. It will be optionally used to detect and measure how long server or client is not able to receive data that is ready to be received in situation when connection is inactive.
I am planning to use blocking send and recv functions. Before any data transfer I would call a setsockopt function to set SO_SNDTIMEO and SO_RCVTIMEO to about 10 - 20 miliseconds assuming it will force blocking send and recv functions to return early in order to let another active connection data to be routed. Running thread per connection looks too expensive. I would not use async sockets here because I can not find guarantee that they will get complete in a parts of second especially when large data amount is being sent or received. High data delays does not look good. I would use very small buffers here but calling function for each received byte looks overkill.
My next assumption would be that is safe to call send or recv later if it has previously terminated by timeout and data was received less than requested.
But I am confused by contradicting information available at msdn.
send function
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740149%28v=vs.85%29.aspx
If no error occurs, send returns the total number of bytes sent, which
can be less than the number requested to be sent in the len parameter.
SOL_SOCKET Socket Options
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740532%28v=vs.85%29.aspx
SO_SNDTIMEO - The timeout, in milliseconds, for blocking send calls.
The default for this option is zero, which indicates that a send
operation will not time out. If a blocking send call times out, the
connection is in an indeterminate state and should be closed.
Are my assumptions correct that I can use these functions like this? Maybe there is more effective way to do this?
Thanks for answers
While you MIGHT implement something along the ideas you have given in your question, there are preferable alternatives on all major systems.
Namely:
kqueue on FreeBSD and family. And on MAC OSX.
epoll on linux and related types of operating systems.
IO completion ports on Windows.
Using those technologies allows you to process traffic on multiple sockets without timeout logics and polling in an efficient, reactive manner. They all can be considered successors of the ancient select() function in socket API.
As for the quoted documentation for send() in your question, it is not really confusing or contradicting. Useful network protocols implement a mechanism to create "backpressure" for situations where a sender tries to send more data than a receiver (and/or the transport channel) can accomodate for. So, an application can only provide more data to send() if the network stack has buffer space ready for it.
If, for example an application tries to send 3Kb worth of data and the tcp/ip stack has only room for 800 bytes, send() might succeed and return that it used 800 bytes of the 3k offered bytes.
The basic approach to forwarding the data on a connection is: Do not read from the incoming socket until you know you can send that data to the outgoing socket. If you read greedily (and buffer on application layer), you deprive the communication channel of its backpressure mechanism.
So basically, the "send capability" should drive the receive actions.
As for using timeouts for this "middle man", there are 2 major scenarios:
You know the sending behavior of the sender application. I.e. if it has some intent on sending any data within your chosen receive timeout at any time. Some applications only send sporadically and any chosen value for a receive timeout could be wrong. Even if it is supposed to send at a specific time interval, your timeouts will cause trouble once someone debugs the sending application.
You want the "middle man" to work for unknown applications (which must not use some encryption for middle man to have a chance, of course). There, you cannot pick any "adequate" timeout value because you know nothing about the sending behavior of the involved application(s).
As a previous poster has suggested, I strongly urge you to reconsider the design of your server so that it employs an asynchronous I/O strategy. This may very well require that you spend significant time learning about each operating systems' preferred approach. It will be time well-spent.
For anything other than a toy application, using blocking I/O in the manner that you suggest will not perform well. Even with short timeouts, it sounds to me as though you won't be able to service new connections until you have completed the work for the current connection. You may also find (with short timeouts) that you're burning more CPU time spinning waiting for work to do than actually doing work.
A previous poster wisely suggested taking a look at Windows I/O completion ports. Take a look at this article I wrote in 2007 for Dr. Dobbs. It's not perfect, but I try to do a decent job of explaining how you can design a simple server that uses a small thread pool to handle potentially large numbers of connections:
Windows I/O Completion Ports
http://www.drdobbs.com/cpp/multithreaded-asynchronous-io-io-comple/201202921
If you're on Linux/FreeBSD/MacOSX, take a look at libevent:
Libevent
http://libevent.org/
Finally, a good, practical book on writing TCP/IP servers and clients is "Practical TCP/IP Sockets in C" by Michael Donahoe and Kenneth Calvert. You could also check out the W. Richard Stevens texts (which cover the topic completely for UNIX.)
In summary, I think you should take some time to learn more about asynchronous socket I/O and the established, best-of-breed approaches for developing servers.
Feel free to private message me if you have questions down the road.

Looking for best approach to sending the same data to multiple destinations using sockets

Looking for the best approach to sending the same message to multiple destinations using TCP/IP sockets. I'm working with an existing VS 2010 C++ application on Windows. Hoping to use a standard library/design pattern approach that has many of the complexities already worked out if possible.
Here's one approach I'm thinking about.. One main thread retrieves messages from a database and adds them to some sort of thread safe queue. The application also has one thread for each client socket connection to some destination server. Each one of these threads would read from the thread safe queue, and send the message over a tcp/ip socket.
There may be better/simpler/more robust approaches than this one though..
The issues I have to be concerned about mostly are latency. The destinations could be anywhere, and there may be significant latency between one socket connection and another.
The messages must go in an exact FIFO order to all the destinations.
Also one destination will be considered the primary destination.. all messages must get to this destination, no exceptions. For the other destinations, i.e. non-primary, the messages are just copies and it's not absolutely critical if the non-primary destinations do not receive a few messages. At any point, one of the non-primary destinations could become the primary destination. If one of the destinations falls too far behind, then that thread would need to catch up to the primary destination, but skipping some messages.
Looking for any suggestions. Preliminary research so far, my situation appears to be something akin to a single producer and multiple consumers pattern, or possibly master-worker pattern in Java.
I need to implement this in C++ on Windows, and the application must use tcp/ip sockets using an existing defined protocol.
Any help at all would be greatly appreciated.
You need exactly two threads, one that saturates the IO channel to the database and another that saturates the IO channel to the network leading to the 12 servers. Unless you have multiple network interfaces (which you should think about!) you don't send things faster by using multiple threads. Also, since you don't have multiple threads taking care of the network, you don't have to sync them.
What you definitely need to know about is select(). In the case of WinSock, also take a look at WSAEventSelect/WaitForMultipleObjects. Basically, you take a message from the queue and then send it to all clients when they're ready. select() tells you when one of a set of sockets is ready to accept data, so you don't waste time waiting or block trying to send data. What you need to come up with is a schema to reconnect after broken connections, when to drop messages to lagging clients etc. Also, in case the throughput to the different targets varies a lot, you need to think about handling multiple messages in parallel. If they are small (less than a network packet's payload) it makes sense combining them anyway to avoid overhead.
I hope this short overview helps getting you started, otherwise I can elaborate on the details.

Exchanging messages between two C++ programs

I am new to creating Windows applications in C++. My task is to write two cpp files, one of which will send a number (x) to the other one, the other one will evaluate f(x) and send it back to the first one. I should implement it using Messages. Couldn't get anything specific online, Could someone pls give me a clue, where to start?
Great thanx!
Are you talking about window messages? If so, the sending app could use SendMessage, which would cause the receiving app to get its window procedure executed. Of course, this means that the receiving app needs to create a window whose window handle is somehow made available to the sending app.
You can do it in several ways.
Using WM_COPYDATA message to pass the data
Allocating global memory to pass data and sending your own message, such that second program can read the data from memory
Sending a message (if two ints suit your needs to pass data)
Using named pipes
Using TCP/IP local connection (peer to peer or through a server)
Look at ZeroMQ (http://zeromq.org ; cross-platform, LGPL). It is a very simple, lightweight and powerfull library. From the very basic level you can use it to exchange UDP-style datagrams, but through reliable transport (TCP or some variants). Also you have cancelling support, time-based polling and advanced network schemes (which are non-needed in your case). I've selected it for a similar task, and it performs very well.

Multi-reader IPC solution?

I'm working on a framework in C++ (just for fun for now), that lets the user write plugins that use a standard API to stream data between each other. There's going to be three basic transport mechanisms for the data: files, sockets, and some kind of IPC piping system. The system is set up so that for the non-file transport, each stream can have multiple readers. IE once a server socket it setup, multiple computers can connect and stream the data. I'm a little stuck at the multi-reader IPC system though.
All my plugins run in threads (though I may want to go to a process-based system eventually) so they live in the same address space, so some kind of shared memory system would work fine, I was thinking I'd write my own circular buffer with a write pointer and read pointers chassing it around the buffer, but I have my doubts that I can achieve the same performance as something like linux pipes.
I'm curious what people would suggest for a multi-reader solution to something like this? Is the overhead for pipes or domain sockets low enough that I could just open a connection to each reader and issue separate writes to each reader? This is intended to be significant volumes of data (tens of mega-samples/sec), so performance is a must.
I develop a media server, and i usually use a single reader for a group of all active sockets of the same class. You can use a select() (in a blocking or non blocking mode) function for each group to read the sockets that became ready to be read. When a socket data is ready or a new connection occur i just call a notify callback function to manage it.
Each reader (that controls a group of sockets) could be managed by a separate thread, avoiding your main threads to block while waiting for new connections or socket data.
If I understand the description correctly, it seems to me that using a circular queue as you mention would be a good IPC solution. I think it could scale very well and would ultimately be better than individual pipes or individual shared memory for each client. One (of several) of the issues of using a single queue/buffer for multiple clients is to synchronize access to the buffers. A client needs to be able to successfully read an entry in the queue without the server changing it. Here is a possible mechanism for implementing that.
This requires that the server know how many active clients there are. That, I assume, would be possible as long as the clients are doing some kind of registration/login with the server (almost certainly true if they are in-process but not necessarily true for out-of-process clients).
Suppose there are N clients. For this example, assume 100 active clients.
Maintain two counting semaphores for each entry in the circular queue. If using out-of-process clients, these need to be shared between processes. Call the semaphores SemReady and SemDone.
Use SemReady to indicate that the buffer is ready for clients to read. The server writes to the buffer entry and then sets the value of the semaphore to the number of clients (100 in this case). More on this in a bit.
When a client wants to read an entry in the queue, it waits on the associated SemReady semaphore. If the initial value is at 100, then all 100 clients can successfully get the semaphore and “concurrently” read the data.
When a client is done reading/using the entry, it increments/releases the SemDone semaphore.
When a server wants to write to a buffer entry, it needs to make sure of two things: a) no clients are currently reading it, and b) no clients start to read it once the server is writing to it.
Therefore, first, block any further access to the buffer by waiting on the SemReady semaphore until the count is zero (obviously, use a zero timeout). When it hits zero, the server knows that no additional clients will start reading it.
To know that clients are done with the buffer, the server uses the SemDone semaphore. It checks the SemDone and waits until it is at value is at N minus the number of waits it did on SemReady. In other words, if SemReady was at zero, then it means all clients read the buffer entry, therefore, SemDone should be at N (100) when they are done. If, though, the server waited 10 times on SemReady, then SemDone should be at 90 (N-10) when all clients are done.
The above step needs some kind of timeout and status check on client “liveness” in case a client crashes/quits after getting SemReady and before releasing SemDone. Also, it would need to account for the possibility of new client registering during that step as well in order to keep the semaphore count values in sync.
Once the server has found no more clients are reading the buffer, it can reset SemDone to zero, write new data to the entry, and set SemReady to N (100).
Rinse and repeat.
Note 1 There are other synchronization issues to maintain the head/tail of the circular queue so that clients know where it is.
Note 2 SemDone could probably be an integer counter handled with atomic increments… I think it could anyway. Needs a bit of thought.
Note 3 It might make sense to have multiple threads in the server writing to the buffer entries. That way, if the server has to wait/timeout a bit on a crashed client that started reading but did not finish, it would not block subsequent queue entries that other clients might already be waiting for.