I want to adjust the colors depending on which xyz position they are in the world.
I tried this in my fragment shader:
varying vec4 verpos;
void main(){
vec4 c;
c.x = verpos.x;
c.y = verpos.y;
c.z = verpos.z;
c.w = 1.0;
gl_FragColor = c;
}
but it seems that the colors change depending on my camera angle/position, how do i make the coords independent from my camera position/angle?
Heres my vertex shader:
varying vec4 verpos;
void main(){
gl_Position = ftransform();
verpos = gl_ModelViewMatrix*gl_Vertex;
}
Edit2: changed title, so i want world coords, not screen coords!
Edit3: added my full code
In vertex shader you have gl_Vertex (or something else if you don't use fixed pipeline) which is the position of a vertex in model coordinates. Multiply the model matrix by gl_Vertex and you'll get the vertex position in world coordinates. Assign this to a varying variable, and then read its value in fragment shader and you'll get the position of the fragment in world coordinates.
Now the problem in this is that you don't necessarily have any model matrix if you use the default modelview matrix of OpenGL, which is a combination of both model and view matrices. I usually solve this problem by having two separate matrices instead of just one modelview matrix:
model matrix (maps model coordinates to world coordinates), and
view matrix (maps world coordinates to camera coordinates).
So just pass two different matrices to your vertex shader separately. You can do this by defining
uniform mat4 view_matrix;
uniform mat4 model_matrix;
In the beginning of your vertex shader. And then instead of ftransform(), say:
gl_Position = gl_ProjectionMatrix * view_matrix * model_matrix * gl_Vertex;
In the main program you must write values to both of these new matrices. First, to get the view matrix, do the camera transformations with glLoadIdentity(), glTranslate(), glRotate() or gluLookAt() or what ever you prefer as you would normally do, but then call glGetFloatv(GL_MODELVIEW_MATRIX, &array); in order to get the matrix data to an array. And secondly, in a similar way, to get the model matrix, also call glLoadIdentity(); and do the object transformations with glTranslate(), glRotate(), glScale() etc. and finally call glGetFloatv(GL_MODELVIEW_MATRIX, &array); to get the matrix data out of OpenGL, so you can send it to your vertex shader. Especially note that you need to call glLoadIdentity() before beginning to transform the object. Normally you would first transform the camera and then transform the object which would result in one matrix that does both the view and model functions. But because you're using separate matrices you need to reset the matrix after camera transformations with glLoadIdentity().
gl_FragCoord are the pixel coordinates and not world coordinates.
Or you could just divide the z coordinate by the w coordinate, which essentially un-does the perspective projection; giving you your original world coordinates.
ie.
depth = gl_FragCoord.z / gl_FragCoord.w;
Of course, this will only work for non-clipped coordinates..
But who cares about clipped ones anyway?
You need to pass the World/Model matrix as a uniform to the vertex shader, and then multiply it by the vertex position and send it as a varying to the fragment shader:
/*Vertex Shader*/
layout (location = 0) in vec3 Position
uniform mat4 World;
uniform mat4 WVP;
//World FragPos
out vec4 FragPos;
void main()
{
FragPos = World * vec4(Position, 1.0);
gl_Position = WVP * vec4(Position, 1.0);
}
/*Fragment Shader*/
layout (location = 0) out vec4 Color;
...
in vec4 FragPos
void main()
{
Color = FragPos;
}
The easiest way is to pass the world-position down from the vertex shader via a varying variable.
However, if you really must reconstruct it from gl_FragCoord, the only way to do this is to invert all the steps that led to the gl_FragCoord coordinates. Consult the OpenGL specs, if you really have to do this, because a deep understanding of the transformations will be necessary.
Related
In my already existing and functioning vertex shader I have something like this:
layout (location = 0) in vec3 aPos;
uniform mat4 projection;
void main(){
gl_Position = projection * vec4(aPos, 1.0);
}
The aPos is a position vector3 and the uniform variable projection is used to obtain screen-space coordinates.
In examples I've seen, the way rotation is implemented is by calculating it in code (which I've already done) and multiplying the result by vec4(aPos, 1.0);, however, I have a uniform inside my shader, the others do not projection which is already multiplying by vec4(aPos, 1.0).
My question is: What do I need to do to apply the rotation inside the vertex shader?
Do I create another uniform for the rotation result and multiply that one by both the projection and vec4(aPos, 1.0) ?
How do I do this?
Let's say I have the following vertex shader code below:
attribute vec4 vPos;
uniform mat4 MVP;
uniform mat4 LookAt;
void main{
gl_Position = MVP * vPos;
}
How do I use the LookAt matrix in this shader to position the eye of the camera? I have tried LookAt * MVP * vPos but that didn't seem to work as my triangle just disappeared off screen!
I would suggest move the LookAt outside the shader to prevent un-necessary calculation per vertex. The shader still do
gl_Position = MVP * vPos;
and you manipulate MVP in the application with glm. For example:
projection = glm::perspective(fov, aspect, 0.1f, 10000.0f);
view = glm::lookAt(eye, center, up);
model = matrix of the model, with all the dynamic transforms.
MVP = projection * view * model;
A LookAt matrix is in general called a View matrix and is concatenated with a model-to-world transform matrix to form the WorldView matrix. This is then multiplied by the projection matrix which is often orthographic or perspective. Vertex positions in model space are multiplied with the resulting matrix in order to be transformed to clip space (kinda...I skipped a couple of steps here that you don't have to do and is performed by the hardware/driver).
In your case, make sure that you're using the correct 'handedness' for your transformations. Also you can try and multiply the position in the reverse order with the transpose of your transformation matrices like so vPos*T_MVP*T_LookAt.
I want to calculate the shadows of my pointlights with the following two passes:
First, I render the scene from pointlight's view into a cubemap into all six directions with the scene-objects' modelspace, the according viewmatrix for the cubemap's face and a projection matrix with 90 degree FOV. Then I store the distance in worldspace between the vertex and the lightposition (which is the camera's position, so just the length of the vertex rendered in worldspace).
Is it right to store worldspace here?
The cubemap is a GL_DEPTH_COMPONENT typed texture. For directional and spotlights shadowing works quite well, but those are single 2D textures
This is the shader with which I try to store the distances:
VertexShader:
#version 330
layout(location = 0) in vec3 vertexPosition;
uniform mat4 modelMatrix;
uniform mat4 viewMatrix;
uniform mat4 projectionMatrix;
out vec4 fragmentPosition_ws;
void main(){
gl_Position = projectionMatrix * viewMatrix * modelMatrix * vec4(vertexPosition, 1.0);
fragmentPosition_ws = modelMatrix * vec4(vertexPosition, 1.0);
}
FragmentShader:
#version 330
// Ouput data
layout(location = 0) out float fragmentdist;
in vec4 fragmentPosition_ws;
void main(){
fragmentdist = length(fragmentPosition_ws.xyz);
}
In the second step, when rendering the lighting itself, I try to get those distance values like this:
float shadowFactor = 0.0;
vec3 fragmentToLightWS = lightPos_worldspace - fragmentPos_worldspace;
float distancerad = texture(shadowCubeMap, vec3(fragmentToLightWS)).x;
if(distancerad + 0.001 > length(fragmentToLightWS)){
shadowFactor = 1.0;
}
Notes:
shadowCubeMap is a sampler of type samplerCube
lightPos_worldspace is the lightposition in worldspace (lights are already in worldspace - no modelmatrix)
fragmentPos_worldspace is the fragmentposition in worldspace ( * modelmatrix)
The result is, that everything is lighted aka. not in shadow. I am sure, that rendering into shadowmap works. I tried several implementations of calculating the shadow and sometimes a saw something like shadows, that could be objects. BUT this was with NDC shadowdepths and not the distancemethod. So check this also for mistakes.
So, finally I made it. I got shadows :)
The solution:
I used as suggested the old shadowmap technique with depthvalues. I sample from the cubemap still using the difference of light to vertex (both in worldspace) but I compare the value with the vertexToDepth() method from the other question mentioned.
Thanks for your help and clarifying points
The point is: Always be sure to compare the same values! When depthmap stores worldspace-depth, then also compare with such a value.
I'm trying to implement shadow mapping in my game. The shaders you see below result in correctly drawn shadows for the game's map, but all the models walking around on the map are completely black.
Here's a screenshot:
I suspect the problem lies with the calculation of the world position. The gl_Vertex is not transformed in any way. Because the map is generated with absolute world coordinates, the transformation with the light matrix results in a correct relative position that can be used to perform the shadow mapping.
However, my 3D models are all very close to the origin. So if their coordinates are plainly transformed using the light matrix, they will most likely never be lit.
I'm wondering if this could be the case, and if so, how I could fix it.
Here's my vertex shader:
#version 120
uniform mat4x4 LightMatrixValue;
varying vec4 shadowMapPosition;
varying vec3 worldPos;
void main(void)
{
vec4 modelPos = gl_Vertex;
worldPos=modelPos.xyz/modelPos.w;
vec4 lightPos = LightMatrixValue*modelPos;
shadowMapPosition = 0.5 * (lightPos.xyzw +lightPos.wwww);
gl_Position = ftransform();
}
And the fragment shader:
varying vec4 shadowMapPosition;
varying vec3 worldPos;
uniform sampler2D depthMap;
uniform vec4 LightPosition;
void main(void)
{
vec4 textureColour = gl_Color;
vec3 realShadowMapPosition = shadowMapPosition.xyz/shadowMapPosition.w;
float depthSm = texture2D(depthMap, realShadowMapPosition.xy).r;
if (depthSm < realShadowMapPosition.z-0.0001)
{
textureColour = vec4(0, 0, 0, 1);
}
gl_FragColor= textureColour;
}
I write this here because it will not fit above, i hope it will solve you problem.
For rendering you on the one hand have your models with their model matrix to position the element, on the other hand you have you view and projection matrix that transforms your model into the screen space.
For creating your shadow map (simplest approach, and i guess the one you have chosen) you render the scene from the view of the light source, so you apply the view and projection matrix of you light source, which will map the x, y and z value to screen space. The x and y values are for the position in the image, the z is for the depth buffer test and for the color you write in your color buffer (you later use as shadow map).
For the final rendering you load this shadow map and the view and projection matrix of the light to your shader. For the display in the scene you apply your view and project matrix of the camera to the vertexes, for the shadow map lookup you apply the view and projection matrix of the light to the vertex (like you did with the rendering for the shadow map). When you apply the lights view and projection matrix to the vertex you have the same mapping as in the shadow map pass, now you only need to transform your x and y coordinates to the texture coordinates and lookup the stored z value, which you compare with the calculated one.
Transforming the models world position into screen space (from the lights point of view)
This part is often done in the vertex or geometry shader:
shadowMapPosition = matLightViewProjection * modelWoldPos;
This is often done in the fragment shader:
shadowMapPosition = shadowMapPosition / shadowMapPosition.w ;
// Add an offset to prevent self-shadowing and moiré pattern
shadowMapPosition.z += 0.0005;
//lookup the stored z value
float distanceFromLight = texture2D(depthMap,shadowMapPosition.xz).z;
Now just compare the distanceFromLight with the shadowMapPosition.z to see if the object is in shadow or not.
So in your second pass you will do the steps of the shadow mapping again, except that you don't draw the data you calculated but compare it to the one you calculated in the pass before.
VC++ 2010, OpenGL, GLSL, SDL
I am moving over to shaders, and have run into a problem that originally occured while working with the ogl pipeline. That is, the position of the light seems to point in whatever direction my camera faces. In the ogl pipeline it was just the specular highlight, which was fixable with:
glLightModelf(GL_LIGHT_MODEL_LOCAL_VIEWER, 1.0f);
Here are the two shaders:
Vertex
varying vec3 lightDir,normal;
void main()
{
normal = normalize(gl_NormalMatrix * gl_Normal);
lightDir = normalize(vec3(gl_LightSource[0].position));
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform();
}
Fragment
varying vec3 lightDir,normal;
uniform sampler2D tex;
void main()
{
vec3 ct,cf;
vec4 texel;
float intensity,at,af;
intensity = max(dot(lightDir,normalize(normal)),0.0);
cf = intensity * (gl_FrontMaterial.diffuse).rgb +
gl_FrontMaterial.ambient.rgb;
af = gl_FrontMaterial.diffuse.a;
texel = texture2D(tex,gl_TexCoord[0].st);
ct = texel.rgb;
at = texel.a;
gl_FragColor = vec4(ct * cf, at * af);
}
Any help would be much appreciated!
The question is: What coordinate system (reference frame) do you want the lights to be in? Probably "the world".
OpenGL's fixed-function pipeline, however, has no notion of world coordinates, because it uses a modelview matrix, which transforms directly from eye (camera) coordinates to model coordinates. In order to have “fixed” lights, you could do one of these:
The classic OpenGL approach is to, every frame, set up the modelview matrix to be the view transform only (that is, be the coordinate system you want to specify your light positions in) and then use glLight to set the position (which is specified to apply the modelview matrix to the input).
Since you are using shaders, you could also have separate model and view matrices and have your shader apply both (rather than using ftransform) to vertices, but only the view matrix to lights. However, this means more per-vertex matrix operations and is probably not an especially good idea unless you are looking for clarity rather than performance.