Tips on reducing c++ linking time - c++

I have a project that takes about 8 seconds to link with g++ and ld.
It uses a bunch of static libraries, most of the code is c++.
I'm interested in a general list of tips on how to reduce link time.
Anything from "dont include debug symbols" to "make your code less spagetti"

I dealt with this for years at a previous job. The GNU linker simply has serious performance problems when linking large numbers of static libraries. At one point, link time was on par with compile time, which we found so strange we actually investigated this and figured it out.
You can try to merge your static libraries into a "super-object" before linking. Instead of linking like this:
$ g++ -o program program.o $STATIC_LIBS
You could try this:
$ ld -r -o libraries.o --whole-archive $STATIC_LIBS
$ g++ -o program program.o libraries.o
Note that this method gives the linker less opportunity to exclude unused object code, so your binaries may increase in size somewhat.

create a ramdisk ,compile to that and link to harddisk.
since you're using a lot of static libraries ,you can create a giant library containing all thos libraries so you end up with one libray. remove all libraries from your lib-list and add th giant one. This reduces openings of file to 1 for the libraries and may speed up reading actions.

Turn off whole program optimization (at least during development). Use p-impl to reduce dependencies.

8 seconds is pretty fast, unless you're really sure that it shouldn't take that long. I've got projects that take 5-8 minutes for a full relink since we don't do incremental linking on our release builds. Have you tried using incremental linking (if you're not using -shared, you can use -i or -r)?

How about compiling debug builds as shared libraries? That will solve the debug symbol bloat, as the import libraries are tiny with or without debug info. Maybe not the best solution, but I think this will cut down link time substantially...

You could try using clang and lld. From godot docs
You can also use Clang and LLD to build Godot. This has two upsides
compared to the default GCC + GNU ld setup:
LLD links Godot significantly faster compared to GNU ld or gold. This leads to faster iteration times.

Related

how to find the bottleneck in linking?

I have a project which is very slow in linking (~ 2mins and I feel this is slow). I am aware of faster linker such as gold or lld, but I cannot change a linker.
I used a lot of C++11 templates in my code and I suspect that some template code may get instantiated repeatedly in multiple object files, but I have no clue how to find if this is true.
I wonder if there is a way to profile the whole linking stage like what we do to profile a program and try to find the bottleneck. For example, a tool that I can use to inspect how many times a symbol (unnecessarily) appear in different object files and then get discarded during linking can help me to find out which template code might be the cause. The above about repeated symbols in object files is only my speculation - I need an evidence based approach. Then based on this finding, I will think about how to improve my code to reduce linking time.
I use CMake, GNU g++ and ld as my build tools and I'm working in Linux platform.
Thanks.
One way to approach this problem is to dump defined symbols of each object file and archive included in the link with nm --demangle --defined-only --extern-only and build a mapping {symbol, definition_count}. Sort this mapping by definition_count high-to-low and print.

What determines if a 32-bit library built on a 64-bit machine needs x86_64 or i386 dependencies?

I am updating some old C++ projects to build on a 64-bit Linux machine for the first time, and I don't have much Linux experience. I need to build everything as 32-bit binaries, so I'm building everything with -m32 in the compiler and linker flags. I'm finding that, when linking to their dependencies, some must link with i386 shared objects, and some must link with x86_64 shared objects. If I only include the wrong folder in the linking path (-L/path/to/wrong/folder), it says
/usr/bin/ld: skipping incompatible xxx.so when searching for -lxxx
which I've come to understand means the architecture doesn't match what I'm trying to build.
The makefiles are nearly identical for two such differing projects, so it doesn't seem like I'm doing something obviously wrong there, and -m32 appears in the calls to gcc and g++ in the terminal. What could be causing this difference? Should I be concerned, or is it typical for this to happen?
Let me know if more information is needed to answer; I'm not really sure, due to inexperience with Linux and gcc, so apologies in advance.
Thanks #Wyzard and #duskwuff for the tips. I was indeed able to find my problem by using file on my .o files. It was just a silly mistake; I had inadvertently reverted the changes I made to one of the projects' make files, which included adding the -m32 flag. I think I misunderstood what the "x86_64" libraries are for, and that confused me (I had assumed it meant "32-bit process for 64-bit machine").

How can I statically link standard library to my C++ program?

I'm using Code::Blocks IDE(v13.12) with GNU GCC Compiler.
I want to the linker to link static versions of required runtime libraries for my programs, how may I do this?
I already know that my executable size will increase. Would you please tell me other the downsides?
What about doing this in Visual C++ Express?
Since nobody else has come up with an answer yet, I will give it a try. Unfortunately, I don't know that Code::Blocks IDE so my answer will only be partial.
1 How to Create a Statically Linked Executable with GCC
This is not IDE specific but holds for GCC (and many other compilers) in general. Assume you have a simplistic “hello, world” program in main.cpp (no external dependencies except for the standard library and runtime library). You'd compile and statically link it via:
Compile main.cpp to main.o (the output file name is implicit):
$ g++ -c -Wall main.cpp
The -c tells GCC to stop after the compilation step (not run the linker). The -Wall turns on most diagnostic messages. If novice programmers would use it more often and pay more attention to it, many questions on this site would not have been asked. ;-)
Link main.o (could list more than one object file) statically pulling in the standard and runtime library and put the executable in the file main:
$ g++ -o main main.o -static
Without using the -o main switch, GCC would have put the final executable in the not so well-named file a.out (which once eventually stood for “assembly output”).
Especially at the beginning, I strongly recommend doing such things “by hand” as it will help get a better understanding of the build tool-chain.
As a matter of fact, the above two commands could have been combined into just one:
$ g++ -Wall -o main main.cpp -static
Any reasonable IDE should have options for specifying such compiler / linker flags.
2 Pros and Cons of Static Linking
Reasons for static linking:
You have a single file that can be copied to any machine with a compatible architecture and operating system and it will just work, no matter what version of what library is installed.
You can execute the program in an environment where the shared libraries are not available. For example, putting a statically linked CGI executable into a chroot() jail might help reduce the attack surface on a web server.
Since no dynamic linking is needed, program startup might be faster. (I'm sure there are situations where the opposite is true, especially if the shared library was already loaded for another process.)
Since the linker can hard-code function addresses, function calls might be faster.
On systems that have more than one version of a common library (LAPACK, for example) installed, static linking can help make sure that a specific version is always used without worrying about setting the LD_LIBRARY_PATH correctly. Obviously, this is also a disadvantage since now you cannot select the library any more without recompiling. If you always wanted the same version, why would you have installed more than one in the first place?
Reasons against static linking:
As you have already mentioned, the size of the executable might grow dramatically. This depends of course heavily on what libraries you link in.
The operating system might be smart enough to load the text section of a shared library into the RAM only once if several processes need the library at the same time. By linking statically, you void this advantage and the system might run short of memory more quickly.
Your program no longer profits from library upgrades. Instead of simply replacing one shared library with a (hopefully ABI compatible) newer release, a system administrator will have to recompile and reinstall every program that uses it. This is the most severe drawback in my opinion.
Consider for example the OpenSSL library. When the Heartbleed bug was discovered and fixed earlier this year, system administrators could install a patched version of OpenSSL and restart all services to fix the vulnerability within a day as soon as the patch was out. That is, if their services were linking dynamically against OpenSSL. For those that have been linked statically, it would have taken weeks until the last one was fixed and I'm pretty sure that there is still proprietary “all in one” software out in the wild that did not see a fix up to the present day.
Your users cannot replace a shared library on the fly. For example, the torsocks script (and associated library) allows users to replace (via setting LD_PRELOAD appropriately) the networking system library by one that routes their traffic through the Tor network. And this even works for programs whose developers never even thought of that possibility. (Whether this is secure and a good idea is subject of an unrelated debate.) An other common use-case is debugging or “hardening” applications by replacing malloc and the like with specialized versions.
In my opinion, the disadvantages of static linking outweigh the advantages in all but very special cases. As a rule of thumb: link dynamically if you can and statically if you have to.
A Addendum
As Alf has pointed out (see comments), there is a special GCC option to selectively link in the C++ standard library statically but not link the whole program statically. From the GCC manual:
-static-libstdc++
When the g++ program is used to link a C++ program, it normally automatically links against libstdc++. If libstdc++ is available as a shared library, and the -static option is not used, then this links against the shared version of libstdc++. That is normally fine. However, it is sometimes useful to freeze the version of libstdc++ used by the program without going all the way to a fully static link. The -static-libstdc++ option directs the g++ driver to link libstdc++ statically, without necessarily linking other libraries statically.
In Visual C++, the /MT option does a static link and the /MD option does a dynamic link. (see http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx)
I'd recommend using /MD and redistributing the C++ runtime, which is freely available from Microsoft. Once the C++ runtime is installed, than any program requiring the run time will continue to work. You would need to pass the proper option to tell the compiler which runtime to use. There is a good explanation here, Should I compile with /MD or /MT?
On Linux, I'd recommend redistributing libstdc++ instead of a static link. If their system libstdc++ works, I'd let the user just use that. System libraries, such as libpthread and libgcc should just use the system default. This requires compiling the program on a system with symbols compatible with all linux versions you are distributing for.
On Mac OS X, just redistribute the app with dynamic linking to libstdc++. Anyone using the same OS version should be able to use your program.

Static linking of Glibc

How can i compile my app linking statically glibc library, but only the code needed for my app? (Not all lib)
Now my compile command:
g++ -o newserver test.cpp ... -lboost_system -lboost_thread -std=c++0x
Thanks!
That's what -static does (as described in another answer): unneeded modules won't get linked into your program. But your expectations on the amount of stuff which is needed (in a sense that we can't convince linker to the contrary) may be too optimistic.
If you trying to do it for portability (running an executable on other machines with older glibc or something like that), there is one easy test question to see if you're going to get what you want:
Did you think of the problem with libnss, and are you sure it is not going to bite you?
If your answer is yes, maybe it makes sense to go on. If the answer is no, or the question seems too obscure and there is no answer, just quit your expirements with statically linked glibc: it has more chance to hurt than help.
Add -static to the compile line. It will only add what your application needs [and of course, any functions the functions you application calls, and any functions those functions call, including a bunch of startup code and some other bits and pieces], so it will be around 800K (for a simple "hello world" program) on an x86 machine. Other architectures vary. Since boost probably also calls the standard library at least a little bit, it's likely that you will have more than 800K added to your appliciation. But it only applies functions used by any of the code in the final binary, not the entire library [about 2MB as a shared library].
If you ONLY want link glibc, you will need to modify the linking line to your compile to:
-Wl,-Bstatic -libc -Wl,-Bdynamic. This will prevent any other library from being linked statically [you sometimes need to have more than one of these statements, as sometimes something pulled in by another library requires "more" from glibc to be pulled in - don't worry, it won't bring in anything more than the linker thinks is necessary].

Minimal executable size after linkage

I link with Qt statically, so can linker or some other tool avoid adding unused binary code (from Qt libraries) to the final executable? I don't think i use all the 10 MB of Qt library code.
If you compile the Qt library yourself at some point and you are using the g++ you should try to use the Link Time Optimisation (LTO) options.
You can do this by adding -flto to all your g++ calls. This lets the g++ add so called GIMPLE code to your object files which corresponds to your source (so it is not completly compiled). In the linking step you should add -fwhole-program or -fuse-linker-plugin. The gcc then reads the Gimple code, and optimises your program as a whole, therby it should be able to get rid of any unused code. However I cannot garantee this works for you.