Suppose I've written class template declaration somewhere in collector.h:
template <class T, int maxElements>
class collector {
T elements[maxElements];
int activeCount;
public:
collector();
void process();
void draw();
};
and implementing its three methods in collector.cpp:
template <class T, int maxElements>
collector<T, maxElements>::collector(){
//code here
}
template <class T, int maxElements>
void collector<T, maxElements>::process(){
//code here
}
template <class T, int maxElements>
void collector<T, maxElements>::draw(){
//code here
}
Is there any way of not writing template <class T, int maxElements> and <T, maxElements>
for every function's implementation? Something like that:
template <class T, int maxElements>{
collector<T, maxElements>::collector(){
//code here
}
void collector<T, maxElements>::process(){
//code here
}
void collector<T, maxElements>::draw(){
//code here
}
}
Put the code inside the class definition in the header file.
[You'll probably wind up doing this anyway as soon as you try to build code that uses this class template. See here for background esp. the neglected answer from #Pavel Minaev.]
Nope, you gotta write the template header every time.
Typically, people implement template classes directly inline. They have to have their full source exposed to be used (unless you explicitly instantiate the lot, anyway) so there's little point doing otherwise.
Is there any way of not writing template and for every function's implementation?
No, short of defining template members inline in the class template's definition, there is no way to do that.
The direct answer to your question has been answered by many above.
To know more on whats the best practice, refer to chapter 6 of C++ Templates - The complete guide book. It talks about which is the best place to declare and/or define template class, functions, member functions: in a .h/hpp or .cpp files.
There's always copy & paste!
Unless you have a smart C++ template-aware linker closely coupled to your compiler, you'll have to put the code in-line in the header in any case and the problem goes away. You'll want to do that in any case if the code needs to be portable.
If you really must then there is the somewhat perverse pre-processor macro solution:
#define COLLECTOR_TEMPLATE template <class T, int maxElements>
Explicitly instantiate for all the types you expect to need in the .cpp file so the compiler can generate the code a priori the linker will match the references templkates to the pre-instantiated definitions (see http://www.parashift.com/c++-faq-lite/templates.html#faq-35.13. You will however not be able to instantiate the template for new types.
For separate compilation of templates to work for arbitrarily instantiated classes, the compiler would have to embed the template source in the object file, then when the linker requires a particular instantiation to resolve a reference, it must then extract that source and pass it back to the compiler to generate the instantiated object code, which is then passed back to the linker. This requires the compiler and linker to work hand-in-glove, and for an object file format that supports template source embedding.
Most tool-chains do not support that, so you must either use in-line definition in the header, restrict use of the template to the same source file in which it is defined, or #include the .cpp containing the definition; all three of these are effectively the same thing - making the complete template definition visible to the compiler in a single compilation unit, but the first is the most conventional and flexible solution.
Related
I have some template code that I would prefer to have stored in a CPP file instead of inline in the header. I know this can be done as long as you know which template types will be used. For example:
.h file
class foo
{
public:
template <typename T>
void do(const T& t);
};
.cpp file
template <typename T>
void foo::do(const T& t)
{
// Do something with t
}
template void foo::do<int>(const int&);
template void foo::do<std::string>(const std::string&);
Note the last two lines - the foo::do template function is only used with ints and std::strings, so those definitions mean the app will link.
My question is - is this a nasty hack or will this work with other compilers/linkers? I am only using this code with VS2008 at the moment but will be wanting to port to other environments.
The problem you describe can be solved by defining the template in the header, or via the approach you describe above.
I recommend reading the following points from the C++ FAQ Lite:
Why can’t I separate the definition of my templates class from its declaration and put it inside a .cpp file?
How can I avoid linker errors with my template functions?
How does the C++ keyword export help with template linker errors?
They go into a lot of detail about these (and other) template issues.
For others on this page wondering what the correct syntax is (as did I) for explicit template specialisation (or at least in VS2008), its the following...
In your .h file...
template<typename T>
class foo
{
public:
void bar(const T &t);
};
And in your .cpp file
template <class T>
void foo<T>::bar(const T &t)
{ }
// Explicit template instantiation
template class foo<int>;
Your example is correct but not very portable.
There is also a slightly cleaner syntax that can be used (as pointed out by #namespace-sid, among others).
However, suppose the templated class is part of some library that is to be shared...
Should other versions of the templated class be compiled?
Is the library maintainer supposed to anticipate all possible templated uses of the class?
An Alternate Approach
Add a third file that is the template implementation/instantiation file in your sources.
lib/foo.hpp - from library
#pragma once
template <typename T>
class foo {
public:
void bar(const T&);
};
lib/foo.cpp - compiling this file directly just wastes compilation time
// Include guard here, just in case
#pragma once
#include "foo.hpp"
template <typename T>
void foo::bar(const T& arg) {
// Do something with `arg`
}
foo.MyType.cpp - using the library, explicit template instantiation of foo<MyType>
// Consider adding "anti-guard" to make sure it's not included in other translation units
#if __INCLUDE_LEVEL__
#error "Don't include this file"
#endif
// Yes, we include the .cpp file
#include <lib/foo.cpp>
#include "MyType.hpp"
template class foo<MyType>;
Organize your implementations as desired:
All implementations in one file
Multiple implementation files, one for each type
An implementation file for each set of types
Why??
This setup should reduce compile times, especially for heavily used complicated templated code, because you're not recompiling the same header file in each
translation unit.
It also enables better detection of which code needs to be recompiled, by compilers and build scripts, reducing incremental build burden.
Usage Examples
foo.MyType.hpp - needs to know about foo<MyType>'s public interface but not .cpp sources
#pragma once
#include <lib/foo.hpp>
#include "MyType.hpp"
// Declare `temp`. Doesn't need to include `foo.cpp`
extern foo<MyType> temp;
examples.cpp - can reference local declaration but also doesn't recompile foo<MyType>
#include "foo.MyType.hpp"
MyType instance;
// Define `temp`. Doesn't need to include `foo.cpp`
foo<MyType> temp;
void example_1() {
// Use `temp`
temp.bar(instance);
}
void example_2() {
// Function local instance
foo<MyType> temp2;
// Use templated library function
temp2.bar(instance);
}
error.cpp - example that would work with pure header templates but doesn't here
#include <lib/foo.hpp>
// Causes compilation errors at link time since we never had the explicit instantiation:
// template class foo<int>;
// GCC linker gives an error: "undefined reference to `foo<int>::bar()'"
foo<int> nonExplicitlyInstantiatedTemplate;
void linkerError() {
nonExplicitlyInstantiatedTemplate.bar();
}
Note: Most compilers/linters/code helpers won't detect this as an error, since there is no error according to C++ standard.
But when you go to link this translation unit into a complete executable, the linker won't find a defined version of foo<int>.
Alternate approach from: https://stackoverflow.com/a/495056/4612476
This code is well-formed. You only have to pay attention that the definition of the template is visible at the point of instantiation. To quote the standard, § 14.7.2.4:
The definition of a non-exported function template, a non-exported member function template, or a non-exported member function or static data member of a class template shall be present in every translation unit in which it is explicitly instantiated.
This should work fine everywhere templates are supported. Explicit template instantiation is part of the C++ standard.
That is a standard way to define template functions. I think there are three methods I read for defining templates. Or probably 4. Each with pros and cons.
Define in class definition. I don't like this at all because I think class definitions are strictly for reference and should be easy to read. However it is much less tricky to define templates in class than outside. And not all template declarations are on the same level of complexity. This method also makes the template a true template.
Define the template in the same header, but outside of the class. This is my preferred way most of the times. It keeps your class definition tidy, the template remains a true template. It however requires full template naming which can be tricky. Also, your code is available to all. But if you need your code to be inline this is the only way. You can also accomplish this by creating a .INL file at the end of your class definitions.
Include the header.h and implementation.CPP into your main.CPP. I think that's how its done. You won't have to prepare any pre instantiations, it will behave like a true template. The problem I have with it is that it is not natural. We don't normally include and expect to include source files. I guess since you included the source file, the template functions can be inlined.
This last method, which was the posted way, is defining the templates in a source file, just like number 3; but instead of including the source file, we pre instantiate the templates to ones we will need. I have no problem with this method and it comes in handy sometimes. We have one big code, it cannot benefit from being inlined so just put it in a CPP file. And if we know common instantiations and we can predefine them. This saves us from writing basically the same thing 5, 10 times. This method has the benefit of keeping our code proprietary. But I don't recommend putting tiny, regularly used functions in CPP files. As this will reduce the performance of your library.
Note, I am not aware of the consequences of a bloated obj file.
Let's take one example, let's say for some reason you want to have a template class:
//test_template.h:
#pragma once
#include <cstdio>
template <class T>
class DemoT
{
public:
void test()
{
printf("ok\n");
}
};
template <>
void DemoT<int>::test()
{
printf("int test (int)\n");
}
template <>
void DemoT<bool>::test()
{
printf("int test (bool)\n");
}
If you compile this code with Visual Studio - it works out of box.
gcc will produce linker error (if same header file is used from multiple .cpp files):
error : multiple definition of `DemoT<int>::test()'; your.o: .../test_template.h:16: first defined here
It's possible to move implementation to .cpp file, but then you need to declare class like this -
//test_template.h:
#pragma once
#include <cstdio>
template <class T>
class DemoT
{
public:
void test()
{
printf("ok\n");
}
};
template <>
void DemoT<int>::test();
template <>
void DemoT<bool>::test();
// Instantiate parametrized template classes, implementation resides on .cpp side.
template class DemoT<bool>;
template class DemoT<int>;
And then .cpp will look like this:
//test_template.cpp:
#include "test_template.h"
template <>
void DemoT<int>::test()
{
printf("int test (int)\n");
}
template <>
void DemoT<bool>::test()
{
printf("int test (bool)\n");
}
Without two last lines in header file - gcc will work fine, but Visual studio will produce an error:
error LNK2019: unresolved external symbol "public: void __cdecl DemoT<int>::test(void)" (?test#?$DemoT#H##QEAAXXZ) referenced in function
template class syntax is optional in case if you want to expose function via .dll export, but this is applicable only for windows platform - so test_template.h could look like this:
//test_template.h:
#pragma once
#include <cstdio>
template <class T>
class DemoT
{
public:
void test()
{
printf("ok\n");
}
};
#ifdef _WIN32
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT
#endif
template <>
void DLL_EXPORT DemoT<int>::test();
template <>
void DLL_EXPORT DemoT<bool>::test();
with .cpp file from previous example.
This however gives more headache to linker, so it's recommended to use previous example if you don't export .dll function.
This is definitely not a nasty hack, but be aware of the fact that you will have to do it (the explicit template specialization) for every class/type you want to use with the given template. In case of MANY types requesting template instantiation there can be A LOT of lines in your .cpp file. To remedy this problem you can have a TemplateClassInst.cpp in every project you use so that you have greater control what types will be instantiated. Obviously this solution will not be perfect (aka silver bullet) as you might end up breaking the ODR :).
There is, in the latest standard, a keyword (export) that would help alleviate this issue, but it isn't implemented in any compiler that I'm aware of, other than Comeau.
See the FAQ-lite about this.
Yes, that's the standard way to do specializiation explicit instantiation. As you stated, you cannot instantiate this template with other types.
Edit: corrected based on comment.
None of above worked for me, so here is how y solved it, my class have only 1 method templated..
.h
class Model
{
template <class T>
void build(T* b, uint32_t number);
};
.cpp
#include "Model.h"
template <class T>
void Model::build(T* b, uint32_t number)
{
//implementation
}
void TemporaryFunction()
{
Model m;
m.build<B1>(new B1(),1);
m.build<B2>(new B2(), 1);
m.build<B3>(new B3(), 1);
}
this avoid linker errors, and no need to call TemporaryFunction at all
Time for an update! Create an inline (.inl, or probably any other) file and simply copy all your definitions in it. Be sure to add the template above each function (template <typename T, ...>). Now instead of including the header file in the inline file you do the opposite. Include the inline file after the declaration of your class (#include "file.inl").
I don't really know why no one has mentioned this. I see no immediate drawbacks.
There is nothing wrong with the example you have given. But i must say i believe it's not efficient to store function definitions in a cpp file. I only understand the need to separate the function's declaration and definition.
When used together with explicit class instantiation, the Boost Concept Check Library (BCCL) can help you generate template function code in cpp files.
Usually, one declares a member function in a header file and uses a source file to implement it. My understanding of the reason is that the function implementation will reside in only one translation unit and will be just linked to other units (no duplicate code), and it also allows separation of the interface and implementation, and removes the need to forward declare functions that depend on each other.
However, member functions in a template depend on the template arguments, which couldn't be known if the implementation was placed in a source file. However, it is still possible to define such functions outside the class, but the major argument for it doesn't apply anymore.
So, which is better?
template <class T>
class A
{
T m()
{
return T();
}
};
or
template <class T>
class A
{
T m();
};
template <class T>
T A::m()
{
return T();
}
These two pieces of code would be equivalent if it was inline T A::m(), but is there any difference without it? What if the function is virtual? Is it just a matter of coding style, or does it have different semantics? If the function is large enough, will it prevent duplicate code, or is the compiler smart enough not to inline it if it won't bring any benefits?
These two pieces of code would be equivalent if it was inline T A::m(), but is there any difference without it?
Not for templates, the member functions are implicitly inline, for both inside and outside the class definitions.
What if the function is virtual?
Makes no difference.
Is it just a matter of coding style, or does it have different semantics?
Mostly stylistic. However, it affects how name lookup works. So if we were to modify the class definition a bit
template <class T>
class A
{
using foo = T;
foo m();
};
We would not be able to define the member outside as
template <class T>
foo A<T>::m()
{
return T();
}
Since the lookup for foo doesn't happen inside the class definition until after the qualification A<T>::. We'd need to either fully qualify foo itself, like so typename A<T>::foo. Or perhaps use a trailing return type.
If the function is large enough, will it prevent duplicate code, or is the compiler smart enough not to inline it if it won't bring any benefits?
Neither style should have either an adverse of positive effect on it. Both are subject to quality of implementation issues. But of course, different implementations may have different qualities.
I am currently implementing generic string related template class that does a lot of complex things. To optimize compile times I thought about implementing the functionality inside translation unit instead of header file and then instantiating types for UTF-8, UTF-16 and UTF-32. The bottleneck that I'm trying to figure out is, if it's possible to split the template class instantiating into multiple translation units, since what one group of member functions does is very complex code and it would make a lot of sense to separate that into it's own translation unit.
Here's example what I'm trying to do:
example.h
template <typename T>
class Example
{
public:
void test1();
void test2();
};
example_test1.cpp
template <typename T>
void Example::test1()
{
...
}
template class Example<uint8_t>;
template class Example<uint16_t>;
template class Example<uint32_t>;
example_test2.cpp
template <typename T>
void Example::test2()
{
...
}
template class Example<uint8_t>;
template class Example<uint16_t>;
template class Example<uint32_t>;
Obvious (and hacky) solution would be to create mini "unity build" that includes example_test1.cpp and example_test2.cpp, but that's bit cheap way to do it and there would be only one translation unit. I wonder if there's any better solution?
EDIT: And please, if your answer is to "put it inside header", then don't. That's not helping. The idea here is to optimize compile time by removing stuff from headers that doesn't need to be there. Our compile time is already very high because of the excessive usage of templates in headers. And also I don't need tips about how to optimize compile times using other ways. I know how to use precompiled headers, etc. If I could just get answers that are on topic.
What you are trying to do is called explicit instantiation and the correct syntax is following:
template class Example<uint8_t>;
template class Example<uint16_t>;
template class Example<uint32_t>;
If you really need to distinguish the methods into separate files, I would create a file example_instances.cpp for the code above, just to have it only once in the sources for better manageability. The code would be organized in the following way:
example.h
template <typename T>
class Example
{
public:
void test1();
void test2();
};
example_test1.cpp
#include "example.h"
template <typename T>
void Example::test1()
{
...
}
#include "example_instances.cpp"
example_test2.cpp
#include "example.h"
template <typename T>
void Example::test2()
{
...
}
#include "example_instances.cpp"
If you are discouraged from including .cpp files, put the instances into a separate header file. However, this one should be included after implementation unlike common header files (explicit instantiation of function template fails (g++)).
So you are trying to do compiller job. There is no instantation of member function of template classes if there is no call. So it is useless to define them in different translation units. Compiller do it without you and better than you. My advice is to put all your code into header file.
I have a container object that is templatized. I am trying to make a specialized constructor for float versions. Problem is, when the compiler attempts to compile the second object that uses the float version, I get a multiple definition of error.
NOTES: The entire class in in the h file. The file is wrapped with a definition (#ifndef, #define, and #endif). g++ version 3.4.6. This compiles fine with other compilers, e.g. Intel's icc.
Code is similar to the following:
template <typename T>
class Container {
public:
Container();
virtual ~Container() {}
private:
std::vector<T> data;
// other members
};
template <> Container<float>::Container() {
// do something special
}
template <typename T> Container<T>::Container() {
// do default initialization
}
Any ideas? Thanks!
EDIT The objects being compiled are also going into separate shared objects, not sure if that has something to do with it.
Specializations still must abide by the one-definition rule just like any other non-template method. Either mark it inline or define the method body in a source file (not your header).
template <> Container<float>::Container() {
// do something special
}
is a definition of the specialisation. A specialisation has to be declared in every compilation unit it is used:
template <> Container<float>::Container();
and defined in only one of the CU. So your .h has to have the declaration and you have to find an adequate (probably new) .cpp for the definition. (As Mark B point out, making the specialization inline is also a way to allow to put the definition in all compilation unit where it is needed).
This is tricky. The problem is that your specialization is not a
template, but an actual function definition. And since it's in a
header, you get multiple definitions when you include it twice.
Something like:
template<> Container<float>::Container();
in the header, and the implementation in a single source file.
you could use typeid:
template <typename T> Container<T>::Container() {
if(typeid(T)==typeid(float)) {
// do something special
}
else {
// do default initialization
}
}
downside: you cant use initialization list for your special case.
EDIT:
When i wrote this answer, i still assumed that the error was caused by the compiler, not by the code of the OP (did not look into it that much). However this typeid approach is absolutely valid C++ (see link below), and its a quite nice workaround if templates indeed would not work correctly with your specific compiler, and it can easily be replaced by the template solution if once day you can switch to a better compiler.
demonstration: example # ideone
I have some template code that I would prefer to have stored in a CPP file instead of inline in the header. I know this can be done as long as you know which template types will be used. For example:
.h file
class foo
{
public:
template <typename T>
void do(const T& t);
};
.cpp file
template <typename T>
void foo::do(const T& t)
{
// Do something with t
}
template void foo::do<int>(const int&);
template void foo::do<std::string>(const std::string&);
Note the last two lines - the foo::do template function is only used with ints and std::strings, so those definitions mean the app will link.
My question is - is this a nasty hack or will this work with other compilers/linkers? I am only using this code with VS2008 at the moment but will be wanting to port to other environments.
The problem you describe can be solved by defining the template in the header, or via the approach you describe above.
I recommend reading the following points from the C++ FAQ Lite:
Why can’t I separate the definition of my templates class from its declaration and put it inside a .cpp file?
How can I avoid linker errors with my template functions?
How does the C++ keyword export help with template linker errors?
They go into a lot of detail about these (and other) template issues.
For others on this page wondering what the correct syntax is (as did I) for explicit template specialisation (or at least in VS2008), its the following...
In your .h file...
template<typename T>
class foo
{
public:
void bar(const T &t);
};
And in your .cpp file
template <class T>
void foo<T>::bar(const T &t)
{ }
// Explicit template instantiation
template class foo<int>;
Your example is correct but not very portable.
There is also a slightly cleaner syntax that can be used (as pointed out by #namespace-sid, among others).
However, suppose the templated class is part of some library that is to be shared...
Should other versions of the templated class be compiled?
Is the library maintainer supposed to anticipate all possible templated uses of the class?
An Alternate Approach
Add a third file that is the template implementation/instantiation file in your sources.
lib/foo.hpp - from library
#pragma once
template <typename T>
class foo {
public:
void bar(const T&);
};
lib/foo.cpp - compiling this file directly just wastes compilation time
// Include guard here, just in case
#pragma once
#include "foo.hpp"
template <typename T>
void foo::bar(const T& arg) {
// Do something with `arg`
}
foo.MyType.cpp - using the library, explicit template instantiation of foo<MyType>
// Consider adding "anti-guard" to make sure it's not included in other translation units
#if __INCLUDE_LEVEL__
#error "Don't include this file"
#endif
// Yes, we include the .cpp file
#include <lib/foo.cpp>
#include "MyType.hpp"
template class foo<MyType>;
Organize your implementations as desired:
All implementations in one file
Multiple implementation files, one for each type
An implementation file for each set of types
Why??
This setup should reduce compile times, especially for heavily used complicated templated code, because you're not recompiling the same header file in each
translation unit.
It also enables better detection of which code needs to be recompiled, by compilers and build scripts, reducing incremental build burden.
Usage Examples
foo.MyType.hpp - needs to know about foo<MyType>'s public interface but not .cpp sources
#pragma once
#include <lib/foo.hpp>
#include "MyType.hpp"
// Declare `temp`. Doesn't need to include `foo.cpp`
extern foo<MyType> temp;
examples.cpp - can reference local declaration but also doesn't recompile foo<MyType>
#include "foo.MyType.hpp"
MyType instance;
// Define `temp`. Doesn't need to include `foo.cpp`
foo<MyType> temp;
void example_1() {
// Use `temp`
temp.bar(instance);
}
void example_2() {
// Function local instance
foo<MyType> temp2;
// Use templated library function
temp2.bar(instance);
}
error.cpp - example that would work with pure header templates but doesn't here
#include <lib/foo.hpp>
// Causes compilation errors at link time since we never had the explicit instantiation:
// template class foo<int>;
// GCC linker gives an error: "undefined reference to `foo<int>::bar()'"
foo<int> nonExplicitlyInstantiatedTemplate;
void linkerError() {
nonExplicitlyInstantiatedTemplate.bar();
}
Note: Most compilers/linters/code helpers won't detect this as an error, since there is no error according to C++ standard.
But when you go to link this translation unit into a complete executable, the linker won't find a defined version of foo<int>.
Alternate approach from: https://stackoverflow.com/a/495056/4612476
This code is well-formed. You only have to pay attention that the definition of the template is visible at the point of instantiation. To quote the standard, § 14.7.2.4:
The definition of a non-exported function template, a non-exported member function template, or a non-exported member function or static data member of a class template shall be present in every translation unit in which it is explicitly instantiated.
This should work fine everywhere templates are supported. Explicit template instantiation is part of the C++ standard.
That is a standard way to define template functions. I think there are three methods I read for defining templates. Or probably 4. Each with pros and cons.
Define in class definition. I don't like this at all because I think class definitions are strictly for reference and should be easy to read. However it is much less tricky to define templates in class than outside. And not all template declarations are on the same level of complexity. This method also makes the template a true template.
Define the template in the same header, but outside of the class. This is my preferred way most of the times. It keeps your class definition tidy, the template remains a true template. It however requires full template naming which can be tricky. Also, your code is available to all. But if you need your code to be inline this is the only way. You can also accomplish this by creating a .INL file at the end of your class definitions.
Include the header.h and implementation.CPP into your main.CPP. I think that's how its done. You won't have to prepare any pre instantiations, it will behave like a true template. The problem I have with it is that it is not natural. We don't normally include and expect to include source files. I guess since you included the source file, the template functions can be inlined.
This last method, which was the posted way, is defining the templates in a source file, just like number 3; but instead of including the source file, we pre instantiate the templates to ones we will need. I have no problem with this method and it comes in handy sometimes. We have one big code, it cannot benefit from being inlined so just put it in a CPP file. And if we know common instantiations and we can predefine them. This saves us from writing basically the same thing 5, 10 times. This method has the benefit of keeping our code proprietary. But I don't recommend putting tiny, regularly used functions in CPP files. As this will reduce the performance of your library.
Note, I am not aware of the consequences of a bloated obj file.
Let's take one example, let's say for some reason you want to have a template class:
//test_template.h:
#pragma once
#include <cstdio>
template <class T>
class DemoT
{
public:
void test()
{
printf("ok\n");
}
};
template <>
void DemoT<int>::test()
{
printf("int test (int)\n");
}
template <>
void DemoT<bool>::test()
{
printf("int test (bool)\n");
}
If you compile this code with Visual Studio - it works out of box.
gcc will produce linker error (if same header file is used from multiple .cpp files):
error : multiple definition of `DemoT<int>::test()'; your.o: .../test_template.h:16: first defined here
It's possible to move implementation to .cpp file, but then you need to declare class like this -
//test_template.h:
#pragma once
#include <cstdio>
template <class T>
class DemoT
{
public:
void test()
{
printf("ok\n");
}
};
template <>
void DemoT<int>::test();
template <>
void DemoT<bool>::test();
// Instantiate parametrized template classes, implementation resides on .cpp side.
template class DemoT<bool>;
template class DemoT<int>;
And then .cpp will look like this:
//test_template.cpp:
#include "test_template.h"
template <>
void DemoT<int>::test()
{
printf("int test (int)\n");
}
template <>
void DemoT<bool>::test()
{
printf("int test (bool)\n");
}
Without two last lines in header file - gcc will work fine, but Visual studio will produce an error:
error LNK2019: unresolved external symbol "public: void __cdecl DemoT<int>::test(void)" (?test#?$DemoT#H##QEAAXXZ) referenced in function
template class syntax is optional in case if you want to expose function via .dll export, but this is applicable only for windows platform - so test_template.h could look like this:
//test_template.h:
#pragma once
#include <cstdio>
template <class T>
class DemoT
{
public:
void test()
{
printf("ok\n");
}
};
#ifdef _WIN32
#define DLL_EXPORT __declspec(dllexport)
#else
#define DLL_EXPORT
#endif
template <>
void DLL_EXPORT DemoT<int>::test();
template <>
void DLL_EXPORT DemoT<bool>::test();
with .cpp file from previous example.
This however gives more headache to linker, so it's recommended to use previous example if you don't export .dll function.
This is definitely not a nasty hack, but be aware of the fact that you will have to do it (the explicit template specialization) for every class/type you want to use with the given template. In case of MANY types requesting template instantiation there can be A LOT of lines in your .cpp file. To remedy this problem you can have a TemplateClassInst.cpp in every project you use so that you have greater control what types will be instantiated. Obviously this solution will not be perfect (aka silver bullet) as you might end up breaking the ODR :).
There is, in the latest standard, a keyword (export) that would help alleviate this issue, but it isn't implemented in any compiler that I'm aware of, other than Comeau.
See the FAQ-lite about this.
Yes, that's the standard way to do specializiation explicit instantiation. As you stated, you cannot instantiate this template with other types.
Edit: corrected based on comment.
None of above worked for me, so here is how y solved it, my class have only 1 method templated..
.h
class Model
{
template <class T>
void build(T* b, uint32_t number);
};
.cpp
#include "Model.h"
template <class T>
void Model::build(T* b, uint32_t number)
{
//implementation
}
void TemporaryFunction()
{
Model m;
m.build<B1>(new B1(),1);
m.build<B2>(new B2(), 1);
m.build<B3>(new B3(), 1);
}
this avoid linker errors, and no need to call TemporaryFunction at all
Time for an update! Create an inline (.inl, or probably any other) file and simply copy all your definitions in it. Be sure to add the template above each function (template <typename T, ...>). Now instead of including the header file in the inline file you do the opposite. Include the inline file after the declaration of your class (#include "file.inl").
I don't really know why no one has mentioned this. I see no immediate drawbacks.
There is nothing wrong with the example you have given. But i must say i believe it's not efficient to store function definitions in a cpp file. I only understand the need to separate the function's declaration and definition.
When used together with explicit class instantiation, the Boost Concept Check Library (BCCL) can help you generate template function code in cpp files.