Compartmentalisation and Design of Classes in C++ - c++

In my spare time, I've been taking code I've written for various purposes and appropriating them into other languages just to have a look at what's out there. Currently I'm taking a genetic programming graph colouring algorithm, originally written in Java, and trying to coerce it into C++.
The arbitrary data structure I'm using for the task has a few classes. In Java, it wasn't so much of an issue for me because I had been exposed to it for a while. The graph structure was only created once, and a Colouring was assigned to that. The Colouring (specifically finding a mostly optimal one) was the real point of the code. I could have a Graph class with inner classes like Node and Edge, for instance, or I could have a package graph with classes Graph, Node, Edge, etc.
The first case above might lend itself well to my idea of C++. A main *.cpp file might have some classes Node, Graph, Edge, defined in it. But this seems to really be missing the point of C++, from what I can tell. I'm just taking what I wrote in Java and forcing it into C++, adding destructors where appropriate and turning object references to pointers. I'm not yet thinking in C++. Do these classes bear separating into separate *.cpp files? Should they be separated, and then compiled as a library to use in the main program? What I really need are some good resources or contrived examples (or even rules of thumb) to say, in C++ programming, what are the different options that exist and when is it a good idea to thinking about one over the other?
EDIT: I've been asked by #Pawel Zubrycki to provide some example code. I'm not going to do this, because each component is fairly trivial - It generally has a reference to the next thing, and some get/set methods. I will, however, describe it.
It's essentially an incidence list. There is some unnecessary use of classes termed ...Pointer - they were a product of a literal translation of a diagram first used to explain incidence lists to me.
There is a container class, VertexList, which contains a head element VertexPointer, and methods to add new VertexPointer objects (Adding it to the graph, but not connecting it to any other nodes, allowing searches to search non-connected graphs), naive search for indices on Vertex objects, etc. Every VertexPointer has a Vertex object, as well as a VertexPointer next;, and all those handy hasNext() methods that you might expect. A Vertex also has an associated ConnectionList
The same is duplicated for EdgeList, EdgePointer, and Edge, except that an Edge is associated with two Connection objects.
ConnectionList and Connection: ConnectionList mimicking VertexList or EdgeList, having a Connection head; and all those handy methods you might expect, like addConnection(). A Connection has an Edge associated with it, as well as some Connection next;
This allows us to easily get the connected components of any one point in the graph, and have an arbitrary number of connections.
It seems pretty over-the-top complicated, but the same functionality could be duplicated with some LinkedList of Vertex objects, a LinkedList of Edge objects, and a number of LinkedList of Connection objects. The LinkedList of Vertex Objects allows us to iterate over all Vertices for exhaustive searches on Vertices, and the same applies for edges. The LinkedList objects of Connection allow us to quickly traverse to any connected Vertices and to arbitrarily add or connections in the graph. This step up in complexity was added to deal with the complexity of evaluating a certain colouring of a graph (weighted edges, quick traversal of local subgraphs, etc.)

If you have classes like Node, Graph and Edge, and their implementation is not too large, it makes perfectly good sense to define them in one and the same .cpp file. After all, they are meant to be used together.
In C++, a package like this is called a component. Usually it makes more sense to think in components than classes, since C++ is not only an OOP language and classes are not always the preferred way do things.
If you want to learn more about the preferred way to organize code in C++, I recommend Large Scale C++ Software Design.
BTW: Making a library out of these classes really seems overkill.

Related

C++ member variable change listeners (100+ classes)

I am trying to make an architecture for a MMO game and I can't figure out how I can store as many variables as I need in GameObjects without having a lot of calls to send them on a wire at the same time I update them.
What I have now is:
Game::ChangePosition(Vector3 newPos) {
gameobject.ChangePosition(newPos);
SendOnWireNEWPOSITION(gameobject.id, newPos);
}
It makes the code rubbish, hard to maintain, understand, extend. So think of a Champion example:
I would have to make a lot of functions for each variable. And this is just the generalisation for this Champion, I might have have 1-2 other member variable for each Champion type/"class".
It would be perfect if I would be able to have OnPropertyChange from .NET or something similar. The architecture I am trying to guess would work nicely is if I had something similar to:
For HP: when I update it, automatically call SendFloatOnWire("HP", hp);
For Position: when I update it, automatically call SendVector3OnWire("Position", Position)
For Name: when I update it, automatically call SendSOnWire("Name", Name);
What are exactly SendFloatOnWire, SendVector3OnWire, SendSOnWire ? Functions that serialize those types in a char buffer.
OR METHOD 2 (Preffered), but might be expensive
Update Hp, Position normally and then every Network Thread tick scan all GameObject instances on the server for the changed variables and send those.
How would that be implemented on a high scale game server and what are my options? Any useful book for such cases?
Would macros turn out to be useful? I think I was explosed to some source code of something similar and I think it used macros.
Thank you in advance.
EDIT: I think I've found a solution, but I don't know how robust it actually is. I am going to have a go at it and see where I stand afterwards. https://developer.valvesoftware.com/wiki/Networking_Entities
On method 1:
Such an approach could be relatively "easy" to implement using a maps, that are accessed via getters/setters. The general idea would be something like:
class GameCharacter {
map<string, int> myints;
// same for doubles, floats, strings
public:
GameCharacter() {
myints["HP"]=100;
myints["FP"]=50;
}
int getInt(string fld) { return myints[fld]; };
void setInt(string fld, int val) { myints[fld]=val; sendIntOnWire(fld,val); }
};
Online demo
If you prefer to keep the properties in your class, you'd go for a map to pointers or member pointers instead of values. At construction you'd then initialize the map with the relevant pointers. If you decide to change the member variable you should however always go via the setter.
You could even go further and abstract your Champion by making it just a collection of properties and behaviors, that would be accessed via the map. This component architecture is exposed by Mike McShaffry in Game Coding Complete (a must read book for any game developer). There's a community site for the book with some source code to download. You may have a look at the actor.h and actor.cpp file. Nevertheless, I really recommend to read the full explanations in the book.
The advantage of componentization is that you could embed your network forwarding logic in the base class of all properties: this could simplify your code by an order of magnitude.
On method 2:
I think the base idea is perfectly suitable, except that a complete analysis (or worse, transmission) of all objects would be an overkill.
A nice alternative would be have a marker that is set when a change is done and is reset when the change is transmitted. If you transmit marked objects (and perhaps only marked properties of those), you would minimize workload of your synchronization thread, and reduce network overhead by pooling transmission of several changes affecting the same object.
Overall conclusion I arrived at: Having another call after I update the position, is not that bad. It is a line of code longer, but it is better for different motives:
It is explicit. You know exactly what's happening.
You don't slow down the code by making all kinds of hacks to get it working.
You don't use extra memory.
Methods I've tried:
Having maps for each type, as suggest by #Christophe. The major drawback of it was that it wasn't error prone. You could've had HP and Hp declared in the same map and it could've added another layer of problems and frustrations, such as declaring maps for each type and then preceding every variable with the mapname.
Using something SIMILAR to valve's engine: It created a separate class for each networking variable you wanted. Then, it used a template to wrap up the basic types you declared (int, float, bool) and also extended operators for that template. It used way too much memory and extra calls for basic functionality.
Using a data mapper that added pointers for each variable in the constructor, and then sent them with an offset. I left the project prematurely when I realised the code started to be confusing and hard to maintain.
Using a struct that is sent every time something changes, manually. This is easily done by using protobuf. Extending structs is also easy.
Every tick, generate a new struct with the data for the classes and send it. This keeps very important stuff always up to date, but eats a lot of bandwidth.
Use reflection with help from boost. It wasn't a great solution.
After all, I went with using a mix of 4, and 5. And now I am implementing it in my game. One huge advantage of protobuf is the capability of generating structs from a .proto file, while also offering serialisation for the struct for you. It is blazingly fast.
For those special named variables that appear in subclasses, I have another struct made. Alternatively, with help from protobuf I could have an array of properties that are as simple as: ENUM_KEY_BYTE VALUE. Where ENUM_KEY_BYTE is just a byte that references a enum to properties such as IS_FLYING, IS_UP, IS_POISONED, and VALUE is a string.
The most important thing I've learned from this is to have as much serialization as possible. It is better to use more CPU on both ends than to have more Input&Output.
If anyone has any questions, comment and I will do my best helping you out.
ioanb7

In C++, should iterable types be non-polymorphic?

A bit of background:
I am currently working on an assignment from my OOP course which consists in designing and implementing a phone book manager around various design patterns.
In my project there are 3 classes around which all the action happens:
PhoneBook;
Contact (the types stored in the phone book);
ContactField (fields stored in the Contact).
ContactManager must provide a way to iterate over its contacts in 2 modes: unfiltered and filtered based on a predicate; Contact must provide a way to iterate over its fields.
How I initially decided to implement:
All design patterns books I came across recommend coding to an interface so my first thought was to extract an interface from each of the above classes and then make them implement it.
Now I also have to create some kind of polymorphic iterator for things to be smooth so I adapted the Java iterator interface to write forward iterators.
The problems:
The major setback with this design is that I lose interoperability
with stl <algorithm> and the syntactic sugar offered by range
based for loops.
Another issue I came across is the Iterator<T>::remove() function. If
I want an iterator that can alter the sequence it iterates over
(remove elements) then all is fine however if I don't want
that behavior I'm not exactly sure what to do.
I see that in Java one can throw UnsupportedOperationException
which isn't that bad since (correct me if I'm wrong) if an
exception isn't handled then the application is terminated and a
stack trace is shown. In C++ you don't really have that luxury
(unless you run with a debugger attached I think) and to be honest
I'd rather prefer to catch such errors at compile time.
The easiest way out (that I see) of this mess is to avoid using interfaces on the iterable types in order to accommodate my own stl compatible iterators. This will increase coupling however I'm not sure it will actually have any impact in the long run (not in the sense that this project will become throw away code soon of course). My guess is that it won't however, I'd like to hear the elders opinion as well before I proceed with my design.
I would probably take a slightly different approach.
Firstly, iteration over a contact is pretty simple since it's a single type of iteration and you can just provide begin and end methods to allow iteration over the underlying fields.
For the iteration over a PhoneBook I would still just provide a normal begin and end, and then provide a for_each_if function that you use to iterate over only the contacts that are interesting, instead of trying to provide a super-custom iterator that skips over un-interesting elements.

List design (Object oriented) suggestion needed

I'm trying to implement a generic class for lists for an embedded device using C++. Such a class will provide methods to update the list, sort the list, filter the list based on some user specified criteria, group the list based on some user specified criteria etc. But there are quite a few varieties of lists I want this generic class to support and each of these varieties can have different display aspects. Example: One variety of list can have strings and floating point numbers in each of its elements. Other variety could have a bitmap, string and special character in each of it's elements. etc.
I wrote down a class with the methods of interest (sort, group, etc). This class has an object of another class (say DisplayAspect) as its member. But the number of member variables and the type of each member variable of class DisplayAspect is unknown. What would be a better way to implement this?
Why not use the std::list, C++ provides that and it provides all the functionality you mentioned(It is templated class, So it supports all data types you can think of).
Also, there is no point reinventing the wheel as the code you write will almost will never be as efficient as std::list.
In case you still want to reinvent this wheel, You should write a template list class.
First, you should probably use std::list as your list, as others have stated. It seems to me that you are having problems more with what to put in the list, however, so I'm focusing on that part of the question.
Since you want to also store multiple bits of information in each element of the list, you will need to create multiple classes, one to store each combination. You don't describe why you are storing mutiple bits of information, but you'd want to use a logical name for each class. So if, for example, you were storing a name and a price (string and a double), you could give the class some name like Product.
You mention creating a class called DisplayAspect.
If this is because you want to have one piece of code print all of these lists, then you should use inheritance and polymorphism to accomplish this goal. One way to accomplish that is to make your DisplayAspect class an abstract class with the needed functions (printItem() for example) pure virtual and have each of the classes you created for the combinations of data be subclasses of this DisplayAspect class.
If, on the other hand, you created the DisplayAspect class so that you could reuse your list code, you should look into template classes. std::list is an example of a template class and it will hold any type you'd like to put into it and in that case, you could drop your DisplayAspect class.
Others (e.g., #Als) have already given the obvious, direct, answer to the question you asked. If you really want a linked list, they're undoubtedly correct: std::list is the obvious first choice.
I, however, am going to suggest that you probably don't want a linked list at all. A linked list is only rarely a useful data structure. Given what you've said you want (sorting, grouping), and especially your target (embedded system, so you probably don't have a lot of memory to waste) a linked list probably isn't a very good choice for what you're trying to do. At least right off, it sounds like something closer to an array probably makes a lot more sense.
If you end up (mistakenly) deciding that a linked list really is the right choice, there's a fair chance you only need a singly linked list though. For that, you might want to look at Boost Slist. While it's a little extra work to use (it's intrusive), this will generally have lower overhead, so it's at least not quite a poor of a choice as many generic linked lists.

Is it a good practice to write classes that typically have only one public method exposed?

The more I get into writing unit tests the more often I find myself writing smaller and smaller classes. The classes are so small now that many of them have only one public method on them that is tied to an interface. The tests then go directly against that public method and are fairly small (sometimes that public method will call out to internal private methods within the class). I then use an IOC container to manage the instantiation of these lightweight classes because there are so many of them.
Is this typical of trying to do things in a more of a TDD manner? I fear that I have now refactored a legacy 3,000 line class that had one method in it into something that is also difficult to maintain on the other side of the spectrum because there is now literally about 100 different class files.
Is what I am doing going too far? I am trying to follow the single responsibility principle with this approach but I may be treading into something that is an anemic class structure where I do not have very intelligent "business objects".
This multitude of small classes would drive me nuts. With this design style it becomes really hard to figure out where the real work gets done. I am not a fan of having a ton of interfaces each with a corresponding implementation class, either. Having lots of "IWidget" and "WidgetImpl" pairings is a code smell in my book.
Breaking up a 3,000 line class into smaller pieces is great and commendable. Remember the goal, though: it's to make the code easier to read and easier to work with. If you end up with 30 classes and interfaces you've likely just created a different type of monster. Now you have a really complicated class design. It takes a lot of mental effort to keep that many classes straight in your head. And with lots of small classes you lose the very useful ability to open up a couple of key files, pick out the most important methods, and get an idea of what the heck is going on.
For what it's worth, though, I'm not really sold on test-driven design. Writing tests early, that's sensible. But reorganizing and restructuring your class design so it can be more easily unit tested? No thanks. I'll make interfaces only if they make architectural sense, not because I need to be able to mock up some objects so I can test my classes. That's putting the cart before the horse.
You might have gone a bit too far if you are asking this question. Having only one public method in a class isn't bad as such, if that class has a clear responsibility/function and encapsulates all logic concerning that function, even if most of it is in private methods.
When refactoring such legacy code, I usually try to identify the components in play at a high level that can be assigned distinct roles/responsibilities and separate them into their own classes. I think about which functions should be which components's responsibility and move the methods into that class.
You write a class so that instances of the class maintain state. You put this state in a class because all the state in the class is related.You have function to managed this state so that invalid permutations of state can't be set (the infamous square that has members width and height, but if width doesn't equal height it's not really a square.)
If you don't have state, you don't need a class, you could just use free functions (or in Java, static functions).
So, the question isn't "should I have one function?" but rather "what state-ful entity does my class encapsulate?"
Maybe you have one function that sets all state -- and you should make it more granular, so that, e.g., instead of having void Rectangle::setWidthAndHeight( int x, int y) you should have a setWidth and a separate setHeight.
Perhaps you have a ctor that sets things up, and a single function that doesIt, whatever "it" is. Then you have a functor, and a single doIt might make sense. E.g., class Add implements Operation { Add( int howmuch); Operand doIt(Operand rhs);}
(But then you may find that you really want something like the Visitor Pattern -- a pure functor is more likely if you have purely value objects, Visitor if they're arranged in a tree and are related to each other.)
Even if having these many small objects, single-function is the correct level of granularity, you may want something like a facade Pattern, to compose out of primitive operations, often-used complex operations.
There's no one answer. If you really have a bunch of functors, it's cool. If you're really just making each free function a class, it's foolish.
The real answer lies in answering the question, "what state am I managing, and how well do my classes model my problem domain?"
I'd be speculating if I gave a definite answer without looking at the code.
However it sounds like you're concerned and that is a definite flag for reviewing the code. The short answer to your question comes back to the definition of Simple Design. Minimal number of classes and methods is one of them. If you feel like you can take away some elements without losing the other desirable attributes, go ahead and collapse/inline them.
Some pointers to help you decide:
Do you have a good check for "Single Responsibility" ? It's deceptively difficult to get it right but is a key skill (I still don't see it like the masters). It doesn't necessarily translate to one method-classes. A good yardstick is 5-7 public methods per class. Each class could have 0-5 collaborators. Also to validate against SRP, ask the question what can drive a change into this class ? If there are multiple unrelated answers (e.g. change in the packet structure (parsing) + change in the packet contents to action map (command dispatcher) ) , maybe the class needs to be split. On the other end, if you feel that a change in the packet structure, can affect 4 different classes - you've run off the other cliff; maybe you need to combine them into a cohesive class.
If you have trouble naming the concrete implementations, maybe you don't need the interface. e.g. XXXImpl classes implmenting XXX need to be looked at. I recently learned of a naming convention, where the interface describes a Role and the implementation is named by the technology used to implement the role (or falling back to what it does). e.g. XmppAuction implements Auction (or SniperNotifier implements AuctionEventListener)
Lastly are you finding it difficult to add / modify / test existing code (e.g. test setup is long or painful ) ? Those can be signs that you need to go refactoring.

Structure for hierarchal Component storage

I've been batting this problem around in my head for a few days now and haven't come to any satisfactory conclusions so I figured I would ask the SO crew for their opinion. For a game that I'm working on I'm using a Component Object Model as described here and here. It's actually going fairly well but my current storage solution is turning out to be limiting (I can only request components by their class name or an arbitrary "family" name). What I would like is the ability to request a given type and iterate through all components of that type or any type derived from it.
In considering this I've first implemented a simple RTTI scheme that stores the base class type through the derived type in that order. This means that the RTTI for, say, a sprite would be: component::renderable::sprite. This allows me to compare types easily to see if type A is derived from type B simply by comparing the all elements of B: i.e. component::renderable::sprite is derived from component::renderable but not component::timer. Simple, effective, and already implemented.
What I want now is a way to store the components in a way that represents that hierarchy. The first thing that comes to mind is a tree using the types as nodes, like so:
component
/ \
timer renderable
/ / \
shotTimer sprite particle
At each node I would store a list of all components of that type. That way requesting the "component::renderable" node will give me access to all renderable components regardless of derived type. The rub is that I want to be able to access those components with an iterator, so that I could do something like this:
for_each(renderable.begin(), renderable.end(), renderFunc);
and have that iterate over the entire tree from renderable down. I have this pretty much working using a really ugly map/vector/tree node structure and an custom forward iterator that tracks a node stack of where I've been. All the while implementing, though, I felt that there must be a better, clearer way... I just can't think of one :(
So the question is: Am I over-complicating this needlessly? Is there some obvious simplification I'm missing, or pre-existing structure I should be using? Or is this just inheritly a complex problem and I'm probably doing just fine already?
Thanks for any input you have!
You should think about how often you need to do the following:
traverse the tree
add/remove elements from the tree
how many objects do you need to keep track of
Which is more frequent will help determine the optimum solution
Perhaps instead of make a complex tree, just have a list of all types and add a pointer to the object for each type it is derived from. Something like this:
map<string,set<componenet *>> myTypeList
Then for an object that is of type component::renderable::sprite
myTypeList["component"].insert(&object);
myTypeList["renderable"].insert(&object);
myTypeList["sprite"].insert(&object);
By registering each obejct in multiple lists, it then becomes easy to do something to all object of a given type and subtypes
for_each(myTypeList["renderable"].begin(),myTypeList["renderable"].end(),renderFunc);
Note that std::set and my std::map construct may not be the optimum choice, depending on how you will use it.
Or perhaps a hybrid approach storing only the class heirarchy in the tree
map<string, set<string> > myTypeList;
map<string, set<component *> myObjectList;
myTypeList["component"].insert("component");
myTypeList["component"].insert("renderable");
myTypeList["component"].insert("sprite");
myTypeList["renderable"].insert("renderable");
myTypeList["renderable"].insert("sprite");
myTypeList["sprite"].insert("sprite");
// this isn't quite right, but you get the idea
struct doForList {
UnaryFunction f;
doForList(UnaryFunction f): func(f) {};
operator ()(string typename) {
for_each(myTypeList[typename].begin();myTypeList[typename].end(), func);
}
}
for_each(myTypeList["renderable"].begin(),myTypeList["renderable"].end(), doForList(myFunc))
The answer depends on the order you need them in. You pretty much have a choice of preorder, postorder, and inorder. Thus have obvious analogues in breadth first and depth first search, and in general you'll have trouble beating them.
Now, if you constraint the problem a litle, there are a number of old fashioned algorithms for storing trees of arbitrary data as arrays. We used them a lot in the FORTRAN days. One of them had the key trick being to store the children of A, say A2 and A3, at index(A)*2,index(A)*2+1. The problem is that if your tree is sparse you waste space, and the size of your tree is limited by the array size. But, if I remember this right, you get the elements in breadth-first order by simple DO loop.
Have a look at Knuth Volume 3, there is a TON of that stuff in there.
If you want to see code for an existing implementation, the Game Programming Gems 5 article referenced in the Cowboy Programming page comes with a somewhat stripped down version of the code we used for our component system (I did a fair chunk of the design and implementation of the system described in that article).
I'd need to go back and recheck the code, which I can't do right now, we didn't represent things in a hierarchy in the way you show. Although components lived in a class hierarchy in code, the runtime representation was a flat list. Components just declared a list of interfaces that they implemented. The user could query for interfaces or concrete types.
So, in your example, Sprite and Particle would declare that they implemented the RENDERABLE interface, and if we wanted to do something to all renderables, we'd just loop through the list of active components and check each one. Not terribly efficient on the face of it, but it was fine in practice. The main reason it wasn't an issue was that it actually turns out to not be a very common operation. Things like renderables, for example, added themselves to the render scene at creation, so the global scene manager maintained its own list of renderable objects and never needed to query the component system for them. Similarly with phyics and collision components and that sort of thing.