protected ifstream member - c++

I am close to completion of my first OOP project, coming from a C background. I was wondering a design issue related to some ifstream object that I use in the base class to open a file. After that I would like to use the same stream to do further operation by the derived classes. I defined only this member as a protected one so I could reach that in the derived classes, protected breaks the encapsulation(I would like to earn good habits), should I define some getter function to return a reference to a stream object? Since the ifstream objects are not copiable, that might be a problem, first thing I see...
Best,
Umut

protected is ideal for preserving encapsulation, if it's integral to your design that the derived classes have the same I/O functionality as the base class.
Encapsulation does not mean everything has to be private, it means that each data or code member of a given class is visible only to the minimal set of class users to achieve the class's designed purpose. In other words, don't make everything public just because that makes it easier to code.
You would only need a public getter if you wanted to expose the I/O function of the base and derived classes to code outside of the hierarchy. Returning a reference does not imply any copy, by the way.

Related

C++ How to add new functionality that shares mostly the same code?

I currently have a class that processes files on a local file system.
Class FileProcessor
{
public:
UpdateFiles();
private:
processFiles();
checkFileIsCorrupted();
}
Now, I want to add a new functionality, where the same file processing is done on files that first needed to be downloaded, but then it would call processFiles() and checkFileIsCorrupted() as before and do the same processing.
I'm wondering what's the best way to do this is.
I could change the interface for UpdateFiles() and add a parameter do determine whether I need to download the files, but modifying the public interface is clearly not ideal.
I could add a new public interface function UpdateFilesFromRemote() and thus share the private members, though this would seem to violate the single responsibility principle, which would call for the "new" functionality to be its own class.
Make a new class. This would either duplicate all the code in processFiles() and processData(), or require a new base class where processFiles() and checkFileIsCorrupted() are protected members,and all the private member they call on would also need to be moved to protected in this base class as well. However, from what I've read so far, most people seem to consider using protected to be something to avoid.
Make a new class and make processFiles() and checkFileIsCorrupted() friends of both classes. I'm assuming this would require both functions to take FileProcessor and the new class as objects (or a base class interface), so that the private members can be accessed. Although both FileProcessor and the new class would share many private members, and so that would still require them to be protected in the base class interface. Also, having a design where checkFileIsCorrupted() needs to take a FileProcessor object as input just... doesn't feel right. After all, its not actually modifying the FileProcessor object, its just a helper function to check if a file is corrupted.
Make a new class and make processFiles() and checkFileIsCorrupted() non member, non friend functions. This would mean that internal file information that is private to both classes would need to be passed as function parameters to these non-member, non friend functions, breaking encapsulation.
Either way, no solutions seems to be "good". Is there any better way to design this?
Thanks.

Is possible to "unprivate" an element in C++ inheritance? What to do if not?

If i want to inherit from "BaseClass" but i have to manage one of the private members, can i "unprivate" it with something like this?:
using BaseClass::private_member;
If not, what to do when some of the members are NOT marked as protected as it should be? If is not possible, that means we are not supposed to inherit from classes that we did not develop?
If i want to inherit from "BaseClass" but i have to manage one of the private members, can i "unprivate" it with something like this?
No. Private members cannot be managed by derived classes. If you think you have to manage a private member of a base class, then someone's design or implementation is wrong. It might be the base class that is flawed, but keep an open mind – be sure to consider the possibility that the flaw is in your design. (Better yet, assume the flaw is probably in your design until proven otherwise.)
If not, what to do when some of the members are NOT marked as protected as it should be?
First, verify this assumption. Should the member be marked protected, or are you trying to misuse the base class? If the member truly should be marked as protected, then the thing to do is fix the base class. File a bug report if the base class is not under your control.
If is not possible, that means we are not supposed to inherit from classes that we did not develop?
No, that means you should not build upon a flawed foundation. (Or possibly it means that you should work with the base class design instead of against it.) There are plenty of well-implemented base classes out there. Use the right tool for the job at hand.

Without using `protected`, how the subclass can effectively use the variables defined in base class

Bjarne Stroustrup once said that he can address most of the tasks with ONLY private or public member variables and he seldom uses protected member variables in his design. I have heard similar arguments in other places. Here is an example,
class BaseClass
{
...
private:
int m_iAge;
double m_dSalary;
string m_strName;
bool m_bGender;
}
class SubClass : public BaseClass
{
...
}
Given the above class design, how the subclass SubClass can use the variables defined in BaseClass?
Question1> Why we should prefer to having private rather than protected variables? Is it the reason that the BaseClass can hide the implementation detail and make it easy for further improvement?
Question2> In order to let the SubClass access the variable defined in BaseClass, it seems to me that we have to define public access(get/set). However, getter/setter are evil! So the second choice is to define protected access(get/set). Any better idea?
Thank you
Bjarne's point is that generally the derived class shouldn't access the variables of the base class -- doing so frequently leads to maintenance problems. And no, changing it to use get/set (accessor/mutator) functions isn't an improvement.
Ask yourself - why would the derived class ever change the value of m_bGender? Or m_iAge? Doesn't the base class already handle these values correctly?
See, there is generally no need to have direct access to the internals of the base class. So we make them private, and use the class' public interface.
In some very rare cases, there might also be one or two protected functions, if derived classes need some special interface. But that is unusual. If derived classes have different behaviour, we more often use virtual functions for that.
I think the rationale for this claim is that in many situations, subclassing doesn't often change the behavior of the existing (inherited fields), but rather one adds fields and adds new methods that manipulate the new fields.
If you are looking for a way to manipulate inherited members w/o protected, you can, in the base class, make the derived class a friend. You would have to know it ahead of time, though.
The only main reason to use private over protected members is if they indeed are not required in child implementations. That's why we have protected members, because there are cases where the child class does need direct access to members of a parent class. I think Stroustrup is referring to a design whereby there is little need to access parent members in the first place, and child classes simply build upon the functionality of their parent rather than modify the functionality of their parent.
However, getter/setter are evil!
Why so? Getters and setters are an important part of OOP from my experience. There are good reasons to make an interface with a class, rather than access its variables directly.

If a class might be inherited, should every function be virtual?

In C++, a coder doesn't know whether other coders will inherit his class. Should he make every function in that class virtual? Are there any drawbacks? Or is it just not acceptable at all?
In C++, you should only make a class inheritable from if you intend for it to be used polymorphically. The way that you treat polymorphic objects in C++ is very different from how you treat other objects. You don't tend to put polymorphic classes on the stack, or pass them by or return them from functions by value, since this can lead to slicing. Polymorphic objects tend to be heap-allocated, be passed around and returns by pointer or by reference, etc.
If you design a class to not be inherited from and then inherit from it, you cause all sorts of problems. If the destructor isn't marked virtual, you can't delete the object through a base class pointer without causing undefined behavior. Without the member functions marked virtual, they can't be overridden in a derived class.
As a general rule in C++, when you design the class, determine whether you want it be inherited from. If you do, mark the appropriate functions virtual and give it a virtual destructor. You might also disable the copy assignment operator to avoid slicing. Similarly, if you want the class not to be inheritable, don't give it any of these functions. In most cases it's a logic error to inherit from a class that wasn't designed to be inherited from, and most of the times you'd want to do this you can often use composition instead of inheritance to achieve this effect.
No, not usually.
A non-virtual function enforces class-invariant behavior. A virtual function doesn't. As such, the person writing the base class should think about whether the behavior of a particular function is/should be class invariant or not.
While it's possible for a design to allow all behaviors to vary in derived classes, it's fairly unusual. It's usually a pretty good clue that the person who wrote the class either didn't think much about its design, lacked the resolve to make a decision.
In C++ you design your class to be used either as a value type or a polymorphic type. See, for example, C++ FAQ.
If you are making a class to be used by other people, you should put a lot of thought into your interface and try to work out how your class will be used. Then make the decisions like which functions should be virtual.
Or better yet write a test case for your class, using it how you expect it to be used, and then make the interface work for that. You might be surprised what you find out doing it. Things you thought were absolutely necessary might turn out to be rarely needed and things that you thought were not going to be used might turn out to be the most useful methods. Doing it this way around will save you time not doing unnecessary work in the long run and end up with solid designs.
Jerry Coffin and Dominic McDonnell have already covered the most important points.
I'll just add an observation, that in the time of MFC (middle 1990s) I was very annoyed with the lack of ways hook into things. For example, the documentation suggested copying MFC's source code for printing and modifying, instead of overriding behavior. Because nothing was virtual there.
There are of course a zillion+1 ways to provide "hooks", but virtual methods are one easy way. They're needed in badly designed classes, so that the client code can fix things, but in those badly designed classes the methods are not virtual. For classes with better design there is not so much need to override behavior, and so for those classes making methods virtual by default (and non-virtual only as active choice) can be counter-productive; as Jerry remarked, virtuals provide opportunites for derived classes to screw up.
There are design patterns that can be employed to minimize the possibilities of screw-ups.
For example, wrapping internal virtuals in exposed non-virtual methods with sanity checks, and, for example, using decoupled event handling (where appropriate) instead of virtuals.
Cheers & hth.,
When you create a class, and you want that class to be used polymorphically you have to consider that the class has two different interfaces. The user interface is defined by the set of public functions that are available in your base class, and that should pretty much cover all operations that users want to perform on objects of your class. This interface is defined by the access qualifiers, and in particular the public qualifier.
There is a second interface, that defines how your class is to be extended. At that level you have to think on what behavior you want to be overridden by extending classes, and what elements of your object you want to provide to extending classes. You offer access to derived classes by means of the protected qualifier, and you offer extension points by means of virtual functions.
You should try to follow the Non-Virtual Interface idiom whenever possible. That idiom (google for it) basically tries to fully separate the two interfaces by not having public virtual functions. Users call non-virtual functions, and those in turn call on configurable functionalities by means of protected/private virtual functions. This clearly separates extension points from the class interface.
There is a single case, where virtual has to be part of the user interface: the destructor. If you want to offer your users the ability to destroy derived objects through pointers to the base, then you have to provide a virtual destructor. Else you just provide a protected non-virtual one.
He should code the functions as it is, he shouldn't make them virtual at all, as in the circumstances specified by you.
The reasons being
1> The CLASS CODER would obviously have certain use of functions he is using.
2> The inherited class may or may not make use of these functions as per requirement.
3> Any function may be overwritten in derived class without any errors.

Abstract Base Class with Data Members

If I'm creating an abstract base class, and the classes derived from it are going to have some of the same data members, is it better practice to make those members private in the abstract base class and give protected access to them? Or to not bother and just put the data members in the derived classes. This is in C++.
The main question to ask in an OOP setting is: Where does this data belong?
In an inheritance relationship, Data (and functionality) should be defined at the highest stage where it is more or less invariant. This promotes maximum modularity and code-reuse. For example, assume two classes:
class Human;
class Student : public Human;
When adding a data member 'm_Arms', we determine the 'Human' level as the best place to define the data, its usage and its visibility to the derived classes, based on the following questions:
Will specializations of humans require more-or-less invariant behavior from the human's arms? i.e. Will they be able to do something that a 'generic' human normally cannot? - (determining common data).
Will the student (or other possible Human specializations) require direct access to it? (determining visibility to child classes).
If visible, which functions are common? (determining associated common functions)
The context should be thought of from the base class's perspective - even if there is one additional is-a-Human class that can do something extra, then it needs to have access to the data. e.g. If for some reason, you decide class Robocop : public Human, you need access to his thigh directly to store the gun inside. Under this architecture, Thigh then needs to become visible to all child classes of Human.
The architecture can be refined using the same principles of data modularity, function modularity and visibility. For example, when defining the class Robocop, The base class Human can be further extracted as follows to allow a change in visibility, and consequent changes in functionality.
class Human;
class NormalHuman : public Human; //declare Thigh private here.
class SuperHuman : public Human; //continue using Thigh as protected.
Further, Arms may themselves be made polymorphic, allowing (excuse the unintended dystopic interpretation) factory-based architectures to modularly assemble different types of Humans using Human parts.
If the data belongs to the derived class, let the derived class do what it wants to contain that data.
By placing that data in the base class (not privately), you force every derived class to have it. The derived classes shouldn't be forced to do anything unless they need to fill out the data member, for example. The base class defines what derived classes must do, not how they should do it.
If you find there might be a common theme, you can make a derived class that has those members and implementations, which is then intended to be the base class for those that want to use it. For example:
struct car
{
virtual ~car(){}
virtual unsigned year(void) const = 0;
virtual const std::string make(void) const = 0;
}
// Dodge cars can feel free to derive from this instead, it's just a helper
struct dodge_car
{
virtual ~car(){}
virtual unsigned year(void) const = 0;
const std::string make(void) const
{
static const std::string result = "Dodge";
return result;
}
}
And so on. But you see, any derived classes still have the choice of implementing the entire car interface. This also improves code cleanliness. By keeping your interface a real interface, implementation details won't get in the way.
Any variables your base class uses should be private, because derived classes don't need to know how it works, in the same way users of your derived class don't need to know how the internals of the derived class work.
How can you make members private and give protected access?
Derived class cannot access base class' private members.
Would Derived class A and Derived class B both need those data members you are talking about? If yes, then put them in base class and make it protected yes.
I know, I actually wanted to post a comment, but I don't know how. May be I need more reputation?
Don't think about what some of your derived classes would do, think about what all of them must do, when writing the base class. In other words, think about the base class itself and the guarantees it makes—its interface.
C++ doesn't have a separate concept of "interface definition" and just reuses classes for that. (Or duck typing in templates.) Because of this, be careful how you write your abstract interface classes so you don't impose restrictions on implementations.
I'm not answering either yes or no because you haven't given enough information, and the answer depends on those other details; but if you follow the guidelines I've briefly laid out, you'll be in decent shape.
There's nothing wrong with having some of the data (and of the implementation, i.e. methods) in the base class.
The base class could be virtual by the mere fact that only one of its methods must be implemented in derived class. The decision of making these variables and methods [of the base class] private, protected or even public, is a case by case issue.
For example the base class could have a public method, a protected method and/or data, and a few private methods.